| /* |
| * QEMU Executable loader |
| * |
| * Copyright (c) 2006 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| * Gunzip functionality in this file is derived from u-boot: |
| * |
| * (C) Copyright 2008 Semihalf |
| * |
| * (C) Copyright 2000-2005 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/datadir.h" |
| #include "qapi/error.h" |
| #include "trace.h" |
| #include "hw/hw.h" |
| #include "disas/disas.h" |
| #include "migration/vmstate.h" |
| #include "monitor/monitor.h" |
| #include "sysemu/reset.h" |
| #include "sysemu/sysemu.h" |
| #include "uboot_image.h" |
| #include "hw/loader.h" |
| #include "hw/nvram/fw_cfg.h" |
| #include "exec/memory.h" |
| #include "exec/address-spaces.h" |
| #include "hw/boards.h" |
| #include "qemu/cutils.h" |
| #include "sysemu/runstate.h" |
| |
| #include <zlib.h> |
| |
| static int roms_loaded; |
| |
| /* return the size or -1 if error */ |
| int64_t get_image_size(const char *filename) |
| { |
| int fd; |
| int64_t size; |
| fd = open(filename, O_RDONLY | O_BINARY); |
| if (fd < 0) |
| return -1; |
| size = lseek(fd, 0, SEEK_END); |
| close(fd); |
| return size; |
| } |
| |
| /* return the size or -1 if error */ |
| ssize_t load_image_size(const char *filename, void *addr, size_t size) |
| { |
| int fd; |
| ssize_t actsize, l = 0; |
| |
| fd = open(filename, O_RDONLY | O_BINARY); |
| if (fd < 0) { |
| return -1; |
| } |
| |
| while ((actsize = read(fd, addr + l, size - l)) > 0) { |
| l += actsize; |
| } |
| |
| close(fd); |
| |
| return actsize < 0 ? -1 : l; |
| } |
| |
| /* read()-like version */ |
| ssize_t read_targphys(const char *name, |
| int fd, hwaddr dst_addr, size_t nbytes) |
| { |
| uint8_t *buf; |
| ssize_t did; |
| |
| buf = g_malloc(nbytes); |
| did = read(fd, buf, nbytes); |
| if (did > 0) |
| rom_add_blob_fixed("read", buf, did, dst_addr); |
| g_free(buf); |
| return did; |
| } |
| |
| int load_image_targphys(const char *filename, |
| hwaddr addr, uint64_t max_sz) |
| { |
| return load_image_targphys_as(filename, addr, max_sz, NULL); |
| } |
| |
| /* return the size or -1 if error */ |
| int load_image_targphys_as(const char *filename, |
| hwaddr addr, uint64_t max_sz, AddressSpace *as) |
| { |
| int size; |
| |
| size = get_image_size(filename); |
| if (size < 0 || size > max_sz) { |
| return -1; |
| } |
| if (size > 0) { |
| if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { |
| return -1; |
| } |
| } |
| return size; |
| } |
| |
| int load_image_mr(const char *filename, MemoryRegion *mr) |
| { |
| int size; |
| |
| if (!memory_access_is_direct(mr, false)) { |
| /* Can only load an image into RAM or ROM */ |
| return -1; |
| } |
| |
| size = get_image_size(filename); |
| |
| if (size < 0 || size > memory_region_size(mr)) { |
| return -1; |
| } |
| if (size > 0) { |
| if (rom_add_file_mr(filename, mr, -1) < 0) { |
| return -1; |
| } |
| } |
| return size; |
| } |
| |
| void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, |
| const char *source) |
| { |
| const char *nulp; |
| char *ptr; |
| |
| if (buf_size <= 0) return; |
| nulp = memchr(source, 0, buf_size); |
| if (nulp) { |
| rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); |
| } else { |
| rom_add_blob_fixed(name, source, buf_size, dest); |
| ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); |
| *ptr = 0; |
| } |
| } |
| |
| /* A.OUT loader */ |
| |
| struct exec |
| { |
| uint32_t a_info; /* Use macros N_MAGIC, etc for access */ |
| uint32_t a_text; /* length of text, in bytes */ |
| uint32_t a_data; /* length of data, in bytes */ |
| uint32_t a_bss; /* length of uninitialized data area, in bytes */ |
| uint32_t a_syms; /* length of symbol table data in file, in bytes */ |
| uint32_t a_entry; /* start address */ |
| uint32_t a_trsize; /* length of relocation info for text, in bytes */ |
| uint32_t a_drsize; /* length of relocation info for data, in bytes */ |
| }; |
| |
| static void bswap_ahdr(struct exec *e) |
| { |
| bswap32s(&e->a_info); |
| bswap32s(&e->a_text); |
| bswap32s(&e->a_data); |
| bswap32s(&e->a_bss); |
| bswap32s(&e->a_syms); |
| bswap32s(&e->a_entry); |
| bswap32s(&e->a_trsize); |
| bswap32s(&e->a_drsize); |
| } |
| |
| #define N_MAGIC(exec) ((exec).a_info & 0xffff) |
| #define OMAGIC 0407 |
| #define NMAGIC 0410 |
| #define ZMAGIC 0413 |
| #define QMAGIC 0314 |
| #define _N_HDROFF(x) (1024 - sizeof (struct exec)) |
| #define N_TXTOFF(x) \ |
| (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ |
| (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) |
| #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) |
| #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) |
| |
| #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) |
| |
| #define N_DATADDR(x, target_page_size) \ |
| (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ |
| : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) |
| |
| |
| int load_aout(const char *filename, hwaddr addr, int max_sz, |
| int bswap_needed, hwaddr target_page_size) |
| { |
| int fd; |
| ssize_t size, ret; |
| struct exec e; |
| uint32_t magic; |
| |
| fd = open(filename, O_RDONLY | O_BINARY); |
| if (fd < 0) |
| return -1; |
| |
| size = read(fd, &e, sizeof(e)); |
| if (size < 0) |
| goto fail; |
| |
| if (bswap_needed) { |
| bswap_ahdr(&e); |
| } |
| |
| magic = N_MAGIC(e); |
| switch (magic) { |
| case ZMAGIC: |
| case QMAGIC: |
| case OMAGIC: |
| if (e.a_text + e.a_data > max_sz) |
| goto fail; |
| lseek(fd, N_TXTOFF(e), SEEK_SET); |
| size = read_targphys(filename, fd, addr, e.a_text + e.a_data); |
| if (size < 0) |
| goto fail; |
| break; |
| case NMAGIC: |
| if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) |
| goto fail; |
| lseek(fd, N_TXTOFF(e), SEEK_SET); |
| size = read_targphys(filename, fd, addr, e.a_text); |
| if (size < 0) |
| goto fail; |
| ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), |
| e.a_data); |
| if (ret < 0) |
| goto fail; |
| size += ret; |
| break; |
| default: |
| goto fail; |
| } |
| close(fd); |
| return size; |
| fail: |
| close(fd); |
| return -1; |
| } |
| |
| /* ELF loader */ |
| |
| static void *load_at(int fd, off_t offset, size_t size) |
| { |
| void *ptr; |
| if (lseek(fd, offset, SEEK_SET) < 0) |
| return NULL; |
| ptr = g_malloc(size); |
| if (read(fd, ptr, size) != size) { |
| g_free(ptr); |
| return NULL; |
| } |
| return ptr; |
| } |
| |
| #ifdef ELF_CLASS |
| #undef ELF_CLASS |
| #endif |
| |
| #define ELF_CLASS ELFCLASS32 |
| #include "elf.h" |
| |
| #define SZ 32 |
| #define elf_word uint32_t |
| #define elf_sword int32_t |
| #define bswapSZs bswap32s |
| #include "hw/elf_ops.h" |
| |
| #undef elfhdr |
| #undef elf_phdr |
| #undef elf_shdr |
| #undef elf_sym |
| #undef elf_rela |
| #undef elf_note |
| #undef elf_word |
| #undef elf_sword |
| #undef bswapSZs |
| #undef SZ |
| #define elfhdr elf64_hdr |
| #define elf_phdr elf64_phdr |
| #define elf_note elf64_note |
| #define elf_shdr elf64_shdr |
| #define elf_sym elf64_sym |
| #define elf_rela elf64_rela |
| #define elf_word uint64_t |
| #define elf_sword int64_t |
| #define bswapSZs bswap64s |
| #define SZ 64 |
| #include "hw/elf_ops.h" |
| |
| const char *load_elf_strerror(int error) |
| { |
| switch (error) { |
| case 0: |
| return "No error"; |
| case ELF_LOAD_FAILED: |
| return "Failed to load ELF"; |
| case ELF_LOAD_NOT_ELF: |
| return "The image is not ELF"; |
| case ELF_LOAD_WRONG_ARCH: |
| return "The image is from incompatible architecture"; |
| case ELF_LOAD_WRONG_ENDIAN: |
| return "The image has incorrect endianness"; |
| case ELF_LOAD_TOO_BIG: |
| return "The image segments are too big to load"; |
| default: |
| return "Unknown error"; |
| } |
| } |
| |
| void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) |
| { |
| int fd; |
| uint8_t e_ident_local[EI_NIDENT]; |
| uint8_t *e_ident; |
| size_t hdr_size, off; |
| bool is64l; |
| |
| if (!hdr) { |
| hdr = e_ident_local; |
| } |
| e_ident = hdr; |
| |
| fd = open(filename, O_RDONLY | O_BINARY); |
| if (fd < 0) { |
| error_setg_errno(errp, errno, "Failed to open file: %s", filename); |
| return; |
| } |
| if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { |
| error_setg_errno(errp, errno, "Failed to read file: %s", filename); |
| goto fail; |
| } |
| if (e_ident[0] != ELFMAG0 || |
| e_ident[1] != ELFMAG1 || |
| e_ident[2] != ELFMAG2 || |
| e_ident[3] != ELFMAG3) { |
| error_setg(errp, "Bad ELF magic"); |
| goto fail; |
| } |
| |
| is64l = e_ident[EI_CLASS] == ELFCLASS64; |
| hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); |
| if (is64) { |
| *is64 = is64l; |
| } |
| |
| off = EI_NIDENT; |
| while (hdr != e_ident_local && off < hdr_size) { |
| size_t br = read(fd, hdr + off, hdr_size - off); |
| switch (br) { |
| case 0: |
| error_setg(errp, "File too short: %s", filename); |
| goto fail; |
| case -1: |
| error_setg_errno(errp, errno, "Failed to read file: %s", |
| filename); |
| goto fail; |
| } |
| off += br; |
| } |
| |
| fail: |
| close(fd); |
| } |
| |
| /* return < 0 if error, otherwise the number of bytes loaded in memory */ |
| int load_elf(const char *filename, |
| uint64_t (*elf_note_fn)(void *, void *, bool), |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, |
| uint64_t *highaddr, uint32_t *pflags, int big_endian, |
| int elf_machine, int clear_lsb, int data_swab) |
| { |
| return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, |
| pentry, lowaddr, highaddr, pflags, big_endian, |
| elf_machine, clear_lsb, data_swab, NULL); |
| } |
| |
| /* return < 0 if error, otherwise the number of bytes loaded in memory */ |
| int load_elf_as(const char *filename, |
| uint64_t (*elf_note_fn)(void *, void *, bool), |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, |
| uint64_t *highaddr, uint32_t *pflags, int big_endian, |
| int elf_machine, int clear_lsb, int data_swab, AddressSpace *as) |
| { |
| return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, |
| pentry, lowaddr, highaddr, pflags, big_endian, |
| elf_machine, clear_lsb, data_swab, as, true); |
| } |
| |
| /* return < 0 if error, otherwise the number of bytes loaded in memory */ |
| int load_elf_ram(const char *filename, |
| uint64_t (*elf_note_fn)(void *, void *, bool), |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, |
| uint64_t *highaddr, uint32_t *pflags, int big_endian, |
| int elf_machine, int clear_lsb, int data_swab, |
| AddressSpace *as, bool load_rom) |
| { |
| return load_elf_ram_sym(filename, elf_note_fn, |
| translate_fn, translate_opaque, |
| pentry, lowaddr, highaddr, pflags, big_endian, |
| elf_machine, clear_lsb, data_swab, as, |
| load_rom, NULL); |
| } |
| |
| /* return < 0 if error, otherwise the number of bytes loaded in memory */ |
| int load_elf_ram_sym(const char *filename, |
| uint64_t (*elf_note_fn)(void *, void *, bool), |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, uint64_t *pentry, |
| uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, |
| int big_endian, int elf_machine, |
| int clear_lsb, int data_swab, |
| AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) |
| { |
| int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; |
| uint8_t e_ident[EI_NIDENT]; |
| |
| fd = open(filename, O_RDONLY | O_BINARY); |
| if (fd < 0) { |
| perror(filename); |
| return -1; |
| } |
| if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) |
| goto fail; |
| if (e_ident[0] != ELFMAG0 || |
| e_ident[1] != ELFMAG1 || |
| e_ident[2] != ELFMAG2 || |
| e_ident[3] != ELFMAG3) { |
| ret = ELF_LOAD_NOT_ELF; |
| goto fail; |
| } |
| #ifdef HOST_WORDS_BIGENDIAN |
| data_order = ELFDATA2MSB; |
| #else |
| data_order = ELFDATA2LSB; |
| #endif |
| must_swab = data_order != e_ident[EI_DATA]; |
| if (big_endian) { |
| target_data_order = ELFDATA2MSB; |
| } else { |
| target_data_order = ELFDATA2LSB; |
| } |
| |
| if (target_data_order != e_ident[EI_DATA]) { |
| ret = ELF_LOAD_WRONG_ENDIAN; |
| goto fail; |
| } |
| |
| lseek(fd, 0, SEEK_SET); |
| if (e_ident[EI_CLASS] == ELFCLASS64) { |
| ret = load_elf64(filename, fd, elf_note_fn, |
| translate_fn, translate_opaque, must_swab, |
| pentry, lowaddr, highaddr, pflags, elf_machine, |
| clear_lsb, data_swab, as, load_rom, sym_cb); |
| } else { |
| ret = load_elf32(filename, fd, elf_note_fn, |
| translate_fn, translate_opaque, must_swab, |
| pentry, lowaddr, highaddr, pflags, elf_machine, |
| clear_lsb, data_swab, as, load_rom, sym_cb); |
| } |
| |
| fail: |
| close(fd); |
| return ret; |
| } |
| |
| static void bswap_uboot_header(uboot_image_header_t *hdr) |
| { |
| #ifndef HOST_WORDS_BIGENDIAN |
| bswap32s(&hdr->ih_magic); |
| bswap32s(&hdr->ih_hcrc); |
| bswap32s(&hdr->ih_time); |
| bswap32s(&hdr->ih_size); |
| bswap32s(&hdr->ih_load); |
| bswap32s(&hdr->ih_ep); |
| bswap32s(&hdr->ih_dcrc); |
| #endif |
| } |
| |
| |
| #define ZALLOC_ALIGNMENT 16 |
| |
| static void *zalloc(void *x, unsigned items, unsigned size) |
| { |
| void *p; |
| |
| size *= items; |
| size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); |
| |
| p = g_malloc(size); |
| |
| return (p); |
| } |
| |
| static void zfree(void *x, void *addr) |
| { |
| g_free(addr); |
| } |
| |
| |
| #define HEAD_CRC 2 |
| #define EXTRA_FIELD 4 |
| #define ORIG_NAME 8 |
| #define COMMENT 0x10 |
| #define RESERVED 0xe0 |
| |
| #define DEFLATED 8 |
| |
| ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) |
| { |
| z_stream s; |
| ssize_t dstbytes; |
| int r, i, flags; |
| |
| /* skip header */ |
| i = 10; |
| flags = src[3]; |
| if (src[2] != DEFLATED || (flags & RESERVED) != 0) { |
| puts ("Error: Bad gzipped data\n"); |
| return -1; |
| } |
| if ((flags & EXTRA_FIELD) != 0) |
| i = 12 + src[10] + (src[11] << 8); |
| if ((flags & ORIG_NAME) != 0) |
| while (src[i++] != 0) |
| ; |
| if ((flags & COMMENT) != 0) |
| while (src[i++] != 0) |
| ; |
| if ((flags & HEAD_CRC) != 0) |
| i += 2; |
| if (i >= srclen) { |
| puts ("Error: gunzip out of data in header\n"); |
| return -1; |
| } |
| |
| s.zalloc = zalloc; |
| s.zfree = zfree; |
| |
| r = inflateInit2(&s, -MAX_WBITS); |
| if (r != Z_OK) { |
| printf ("Error: inflateInit2() returned %d\n", r); |
| return (-1); |
| } |
| s.next_in = src + i; |
| s.avail_in = srclen - i; |
| s.next_out = dst; |
| s.avail_out = dstlen; |
| r = inflate(&s, Z_FINISH); |
| if (r != Z_OK && r != Z_STREAM_END) { |
| printf ("Error: inflate() returned %d\n", r); |
| return -1; |
| } |
| dstbytes = s.next_out - (unsigned char *) dst; |
| inflateEnd(&s); |
| |
| return dstbytes; |
| } |
| |
| /* Load a U-Boot image. */ |
| static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, |
| int *is_linux, uint8_t image_type, |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, AddressSpace *as) |
| { |
| int fd; |
| int size; |
| hwaddr address; |
| uboot_image_header_t h; |
| uboot_image_header_t *hdr = &h; |
| uint8_t *data = NULL; |
| int ret = -1; |
| int do_uncompress = 0; |
| |
| fd = open(filename, O_RDONLY | O_BINARY); |
| if (fd < 0) |
| return -1; |
| |
| size = read(fd, hdr, sizeof(uboot_image_header_t)); |
| if (size < sizeof(uboot_image_header_t)) { |
| goto out; |
| } |
| |
| bswap_uboot_header(hdr); |
| |
| if (hdr->ih_magic != IH_MAGIC) |
| goto out; |
| |
| if (hdr->ih_type != image_type) { |
| if (!(image_type == IH_TYPE_KERNEL && |
| hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { |
| fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, |
| image_type); |
| goto out; |
| } |
| } |
| |
| /* TODO: Implement other image types. */ |
| switch (hdr->ih_type) { |
| case IH_TYPE_KERNEL_NOLOAD: |
| if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { |
| fprintf(stderr, "this image format (kernel_noload) cannot be " |
| "loaded on this machine type"); |
| goto out; |
| } |
| |
| hdr->ih_load = *loadaddr + sizeof(*hdr); |
| hdr->ih_ep += hdr->ih_load; |
| /* fall through */ |
| case IH_TYPE_KERNEL: |
| address = hdr->ih_load; |
| if (translate_fn) { |
| address = translate_fn(translate_opaque, address); |
| } |
| if (loadaddr) { |
| *loadaddr = hdr->ih_load; |
| } |
| |
| switch (hdr->ih_comp) { |
| case IH_COMP_NONE: |
| break; |
| case IH_COMP_GZIP: |
| do_uncompress = 1; |
| break; |
| default: |
| fprintf(stderr, |
| "Unable to load u-boot images with compression type %d\n", |
| hdr->ih_comp); |
| goto out; |
| } |
| |
| if (ep) { |
| *ep = hdr->ih_ep; |
| } |
| |
| /* TODO: Check CPU type. */ |
| if (is_linux) { |
| if (hdr->ih_os == IH_OS_LINUX) { |
| *is_linux = 1; |
| } else { |
| *is_linux = 0; |
| } |
| } |
| |
| break; |
| case IH_TYPE_RAMDISK: |
| address = *loadaddr; |
| break; |
| default: |
| fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); |
| goto out; |
| } |
| |
| data = g_malloc(hdr->ih_size); |
| |
| if (read(fd, data, hdr->ih_size) != hdr->ih_size) { |
| fprintf(stderr, "Error reading file\n"); |
| goto out; |
| } |
| |
| if (do_uncompress) { |
| uint8_t *compressed_data; |
| size_t max_bytes; |
| ssize_t bytes; |
| |
| compressed_data = data; |
| max_bytes = UBOOT_MAX_GUNZIP_BYTES; |
| data = g_malloc(max_bytes); |
| |
| bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); |
| g_free(compressed_data); |
| if (bytes < 0) { |
| fprintf(stderr, "Unable to decompress gzipped image!\n"); |
| goto out; |
| } |
| hdr->ih_size = bytes; |
| } |
| |
| rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); |
| |
| ret = hdr->ih_size; |
| |
| out: |
| g_free(data); |
| close(fd); |
| return ret; |
| } |
| |
| int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, |
| int *is_linux, |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque) |
| { |
| return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, |
| translate_fn, translate_opaque, NULL); |
| } |
| |
| int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, |
| int *is_linux, |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, AddressSpace *as) |
| { |
| return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, |
| translate_fn, translate_opaque, as); |
| } |
| |
| /* Load a ramdisk. */ |
| int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) |
| { |
| return load_ramdisk_as(filename, addr, max_sz, NULL); |
| } |
| |
| int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, |
| AddressSpace *as) |
| { |
| return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, |
| NULL, NULL, as); |
| } |
| |
| /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ |
| int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, |
| uint8_t **buffer) |
| { |
| uint8_t *compressed_data = NULL; |
| uint8_t *data = NULL; |
| gsize len; |
| ssize_t bytes; |
| int ret = -1; |
| |
| if (!g_file_get_contents(filename, (char **) &compressed_data, &len, |
| NULL)) { |
| goto out; |
| } |
| |
| /* Is it a gzip-compressed file? */ |
| if (len < 2 || |
| compressed_data[0] != 0x1f || |
| compressed_data[1] != 0x8b) { |
| goto out; |
| } |
| |
| if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { |
| max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; |
| } |
| |
| data = g_malloc(max_sz); |
| bytes = gunzip(data, max_sz, compressed_data, len); |
| if (bytes < 0) { |
| fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", |
| filename); |
| goto out; |
| } |
| |
| /* trim to actual size and return to caller */ |
| *buffer = g_realloc(data, bytes); |
| ret = bytes; |
| /* ownership has been transferred to caller */ |
| data = NULL; |
| |
| out: |
| g_free(compressed_data); |
| g_free(data); |
| return ret; |
| } |
| |
| /* Load a gzip-compressed kernel. */ |
| int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) |
| { |
| int bytes; |
| uint8_t *data; |
| |
| bytes = load_image_gzipped_buffer(filename, max_sz, &data); |
| if (bytes != -1) { |
| rom_add_blob_fixed(filename, data, bytes, addr); |
| g_free(data); |
| } |
| return bytes; |
| } |
| |
| /* |
| * Functions for reboot-persistent memory regions. |
| * - used for vga bios and option roms. |
| * - also linux kernel (-kernel / -initrd). |
| */ |
| |
| typedef struct Rom Rom; |
| |
| struct Rom { |
| char *name; |
| char *path; |
| |
| /* datasize is the amount of memory allocated in "data". If datasize is less |
| * than romsize, it means that the area from datasize to romsize is filled |
| * with zeros. |
| */ |
| size_t romsize; |
| size_t datasize; |
| |
| uint8_t *data; |
| MemoryRegion *mr; |
| AddressSpace *as; |
| int isrom; |
| char *fw_dir; |
| char *fw_file; |
| GMappedFile *mapped_file; |
| |
| bool committed; |
| |
| hwaddr addr; |
| QTAILQ_ENTRY(Rom) next; |
| }; |
| |
| static FWCfgState *fw_cfg; |
| static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); |
| |
| /* |
| * rom->data can be heap-allocated or memory-mapped (e.g. when added with |
| * rom_add_elf_program()) |
| */ |
| static void rom_free_data(Rom *rom) |
| { |
| if (rom->mapped_file) { |
| g_mapped_file_unref(rom->mapped_file); |
| rom->mapped_file = NULL; |
| } else { |
| g_free(rom->data); |
| } |
| |
| rom->data = NULL; |
| } |
| |
| static void rom_free(Rom *rom) |
| { |
| rom_free_data(rom); |
| g_free(rom->path); |
| g_free(rom->name); |
| g_free(rom->fw_dir); |
| g_free(rom->fw_file); |
| g_free(rom); |
| } |
| |
| static inline bool rom_order_compare(Rom *rom, Rom *item) |
| { |
| return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || |
| (rom->as == item->as && rom->addr >= item->addr); |
| } |
| |
| static void rom_insert(Rom *rom) |
| { |
| Rom *item; |
| |
| if (roms_loaded) { |
| hw_error ("ROM images must be loaded at startup\n"); |
| } |
| |
| /* The user didn't specify an address space, this is the default */ |
| if (!rom->as) { |
| rom->as = &address_space_memory; |
| } |
| |
| rom->committed = false; |
| |
| /* List is ordered by load address in the same address space */ |
| QTAILQ_FOREACH(item, &roms, next) { |
| if (rom_order_compare(rom, item)) { |
| continue; |
| } |
| QTAILQ_INSERT_BEFORE(item, rom, next); |
| return; |
| } |
| QTAILQ_INSERT_TAIL(&roms, rom, next); |
| } |
| |
| static void fw_cfg_resized(const char *id, uint64_t length, void *host) |
| { |
| if (fw_cfg) { |
| fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); |
| } |
| } |
| |
| static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) |
| { |
| void *data; |
| |
| rom->mr = g_malloc(sizeof(*rom->mr)); |
| memory_region_init_resizeable_ram(rom->mr, owner, name, |
| rom->datasize, rom->romsize, |
| fw_cfg_resized, |
| &error_fatal); |
| memory_region_set_readonly(rom->mr, ro); |
| vmstate_register_ram_global(rom->mr); |
| |
| data = memory_region_get_ram_ptr(rom->mr); |
| memcpy(data, rom->data, rom->datasize); |
| |
| return data; |
| } |
| |
| int rom_add_file(const char *file, const char *fw_dir, |
| hwaddr addr, int32_t bootindex, |
| bool option_rom, MemoryRegion *mr, |
| AddressSpace *as) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); |
| Rom *rom; |
| int rc, fd = -1; |
| char devpath[100]; |
| |
| if (as && mr) { |
| fprintf(stderr, "Specifying an Address Space and Memory Region is " \ |
| "not valid when loading a rom\n"); |
| /* We haven't allocated anything so we don't need any cleanup */ |
| return -1; |
| } |
| |
| rom = g_malloc0(sizeof(*rom)); |
| rom->name = g_strdup(file); |
| rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); |
| rom->as = as; |
| if (rom->path == NULL) { |
| rom->path = g_strdup(file); |
| } |
| |
| fd = open(rom->path, O_RDONLY | O_BINARY); |
| if (fd == -1) { |
| fprintf(stderr, "Could not open option rom '%s': %s\n", |
| rom->path, strerror(errno)); |
| goto err; |
| } |
| |
| if (fw_dir) { |
| rom->fw_dir = g_strdup(fw_dir); |
| rom->fw_file = g_strdup(file); |
| } |
| rom->addr = addr; |
| rom->romsize = lseek(fd, 0, SEEK_END); |
| if (rom->romsize == -1) { |
| fprintf(stderr, "rom: file %-20s: get size error: %s\n", |
| rom->name, strerror(errno)); |
| goto err; |
| } |
| |
| rom->datasize = rom->romsize; |
| rom->data = g_malloc0(rom->datasize); |
| lseek(fd, 0, SEEK_SET); |
| rc = read(fd, rom->data, rom->datasize); |
| if (rc != rom->datasize) { |
| fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", |
| rom->name, rc, rom->datasize); |
| goto err; |
| } |
| close(fd); |
| rom_insert(rom); |
| if (rom->fw_file && fw_cfg) { |
| const char *basename; |
| char fw_file_name[FW_CFG_MAX_FILE_PATH]; |
| void *data; |
| |
| basename = strrchr(rom->fw_file, '/'); |
| if (basename) { |
| basename++; |
| } else { |
| basename = rom->fw_file; |
| } |
| snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, |
| basename); |
| snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); |
| |
| if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { |
| data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); |
| } else { |
| data = rom->data; |
| } |
| |
| fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); |
| } else { |
| if (mr) { |
| rom->mr = mr; |
| snprintf(devpath, sizeof(devpath), "/rom@%s", file); |
| } else { |
| snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); |
| } |
| } |
| |
| add_boot_device_path(bootindex, NULL, devpath); |
| return 0; |
| |
| err: |
| if (fd != -1) |
| close(fd); |
| |
| rom_free(rom); |
| return -1; |
| } |
| |
| MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, |
| size_t max_len, hwaddr addr, const char *fw_file_name, |
| FWCfgCallback fw_callback, void *callback_opaque, |
| AddressSpace *as, bool read_only) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); |
| Rom *rom; |
| MemoryRegion *mr = NULL; |
| |
| rom = g_malloc0(sizeof(*rom)); |
| rom->name = g_strdup(name); |
| rom->as = as; |
| rom->addr = addr; |
| rom->romsize = max_len ? max_len : len; |
| rom->datasize = len; |
| g_assert(rom->romsize >= rom->datasize); |
| rom->data = g_malloc0(rom->datasize); |
| memcpy(rom->data, blob, len); |
| rom_insert(rom); |
| if (fw_file_name && fw_cfg) { |
| char devpath[100]; |
| void *data; |
| |
| if (read_only) { |
| snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); |
| } else { |
| snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); |
| } |
| |
| if (mc->rom_file_has_mr) { |
| data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); |
| mr = rom->mr; |
| } else { |
| data = rom->data; |
| } |
| |
| fw_cfg_add_file_callback(fw_cfg, fw_file_name, |
| fw_callback, NULL, callback_opaque, |
| data, rom->datasize, read_only); |
| } |
| return mr; |
| } |
| |
| /* This function is specific for elf program because we don't need to allocate |
| * all the rom. We just allocate the first part and the rest is just zeros. This |
| * is why romsize and datasize are different. Also, this function takes its own |
| * reference to "mapped_file", so we don't have to allocate and copy the buffer. |
| */ |
| int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, |
| size_t datasize, size_t romsize, hwaddr addr, |
| AddressSpace *as) |
| { |
| Rom *rom; |
| |
| rom = g_malloc0(sizeof(*rom)); |
| rom->name = g_strdup(name); |
| rom->addr = addr; |
| rom->datasize = datasize; |
| rom->romsize = romsize; |
| rom->data = data; |
| rom->as = as; |
| |
| if (mapped_file && data) { |
| g_mapped_file_ref(mapped_file); |
| rom->mapped_file = mapped_file; |
| } |
| |
| rom_insert(rom); |
| return 0; |
| } |
| |
| int rom_add_vga(const char *file) |
| { |
| return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); |
| } |
| |
| int rom_add_option(const char *file, int32_t bootindex) |
| { |
| return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); |
| } |
| |
| static void rom_reset(void *unused) |
| { |
| Rom *rom; |
| |
| QTAILQ_FOREACH(rom, &roms, next) { |
| if (rom->fw_file) { |
| continue; |
| } |
| /* |
| * We don't need to fill in the RAM with ROM data because we'll fill |
| * the data in during the next incoming migration in all cases. Note |
| * that some of those RAMs can actually be modified by the guest. |
| */ |
| if (runstate_check(RUN_STATE_INMIGRATE)) { |
| if (rom->data && rom->isrom) { |
| /* |
| * Free it so that a rom_reset after migration doesn't |
| * overwrite a potentially modified 'rom'. |
| */ |
| rom_free_data(rom); |
| } |
| continue; |
| } |
| |
| if (rom->data == NULL) { |
| continue; |
| } |
| if (rom->mr) { |
| void *host = memory_region_get_ram_ptr(rom->mr); |
| memcpy(host, rom->data, rom->datasize); |
| } else { |
| address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, |
| rom->data, rom->datasize); |
| } |
| if (rom->isrom) { |
| /* rom needs to be written only once */ |
| rom_free_data(rom); |
| } |
| /* |
| * The rom loader is really on the same level as firmware in the guest |
| * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure |
| * that the instruction cache for that new region is clear, so that the |
| * CPU definitely fetches its instructions from the just written data. |
| */ |
| cpu_flush_icache_range(rom->addr, rom->datasize); |
| |
| trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); |
| } |
| } |
| |
| /* Return true if two consecutive ROMs in the ROM list overlap */ |
| static bool roms_overlap(Rom *last_rom, Rom *this_rom) |
| { |
| if (!last_rom) { |
| return false; |
| } |
| return last_rom->as == this_rom->as && |
| last_rom->addr + last_rom->romsize > this_rom->addr; |
| } |
| |
| static const char *rom_as_name(Rom *rom) |
| { |
| const char *name = rom->as ? rom->as->name : NULL; |
| return name ?: "anonymous"; |
| } |
| |
| static void rom_print_overlap_error_header(void) |
| { |
| error_report("Some ROM regions are overlapping"); |
| error_printf( |
| "These ROM regions might have been loaded by " |
| "direct user request or by default.\n" |
| "They could be BIOS/firmware images, a guest kernel, " |
| "initrd or some other file loaded into guest memory.\n" |
| "Check whether you intended to load all this guest code, and " |
| "whether it has been built to load to the correct addresses.\n"); |
| } |
| |
| static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) |
| { |
| error_printf( |
| "\nThe following two regions overlap (in the %s address space):\n", |
| rom_as_name(rom)); |
| error_printf( |
| " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", |
| last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); |
| error_printf( |
| " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", |
| rom->name, rom->addr, rom->addr + rom->romsize); |
| } |
| |
| int rom_check_and_register_reset(void) |
| { |
| MemoryRegionSection section; |
| Rom *rom, *last_rom = NULL; |
| bool found_overlap = false; |
| |
| QTAILQ_FOREACH(rom, &roms, next) { |
| if (rom->fw_file) { |
| continue; |
| } |
| if (!rom->mr) { |
| if (roms_overlap(last_rom, rom)) { |
| if (!found_overlap) { |
| found_overlap = true; |
| rom_print_overlap_error_header(); |
| } |
| rom_print_one_overlap_error(last_rom, rom); |
| /* Keep going through the list so we report all overlaps */ |
| } |
| last_rom = rom; |
| } |
| section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), |
| rom->addr, 1); |
| rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); |
| memory_region_unref(section.mr); |
| } |
| if (found_overlap) { |
| return -1; |
| } |
| |
| qemu_register_reset(rom_reset, NULL); |
| roms_loaded = 1; |
| return 0; |
| } |
| |
| void rom_set_fw(FWCfgState *f) |
| { |
| fw_cfg = f; |
| } |
| |
| void rom_set_order_override(int order) |
| { |
| if (!fw_cfg) |
| return; |
| fw_cfg_set_order_override(fw_cfg, order); |
| } |
| |
| void rom_reset_order_override(void) |
| { |
| if (!fw_cfg) |
| return; |
| fw_cfg_reset_order_override(fw_cfg); |
| } |
| |
| void rom_transaction_begin(void) |
| { |
| Rom *rom; |
| |
| /* Ignore ROMs added without the transaction API */ |
| QTAILQ_FOREACH(rom, &roms, next) { |
| rom->committed = true; |
| } |
| } |
| |
| void rom_transaction_end(bool commit) |
| { |
| Rom *rom; |
| Rom *tmp; |
| |
| QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { |
| if (rom->committed) { |
| continue; |
| } |
| if (commit) { |
| rom->committed = true; |
| } else { |
| QTAILQ_REMOVE(&roms, rom, next); |
| rom_free(rom); |
| } |
| } |
| } |
| |
| static Rom *find_rom(hwaddr addr, size_t size) |
| { |
| Rom *rom; |
| |
| QTAILQ_FOREACH(rom, &roms, next) { |
| if (rom->fw_file) { |
| continue; |
| } |
| if (rom->mr) { |
| continue; |
| } |
| if (rom->addr > addr) { |
| continue; |
| } |
| if (rom->addr + rom->romsize < addr + size) { |
| continue; |
| } |
| return rom; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Copies memory from registered ROMs to dest. Any memory that is contained in |
| * a ROM between addr and addr + size is copied. Note that this can involve |
| * multiple ROMs, which need not start at addr and need not end at addr + size. |
| */ |
| int rom_copy(uint8_t *dest, hwaddr addr, size_t size) |
| { |
| hwaddr end = addr + size; |
| uint8_t *s, *d = dest; |
| size_t l = 0; |
| Rom *rom; |
| |
| QTAILQ_FOREACH(rom, &roms, next) { |
| if (rom->fw_file) { |
| continue; |
| } |
| if (rom->mr) { |
| continue; |
| } |
| if (rom->addr + rom->romsize < addr) { |
| continue; |
| } |
| if (rom->addr > end || rom->addr < addr) { |
| break; |
| } |
| |
| d = dest + (rom->addr - addr); |
| s = rom->data; |
| l = rom->datasize; |
| |
| if ((d + l) > (dest + size)) { |
| l = dest - d; |
| } |
| |
| if (l > 0) { |
| memcpy(d, s, l); |
| } |
| |
| if (rom->romsize > rom->datasize) { |
| /* If datasize is less than romsize, it means that we didn't |
| * allocate all the ROM because the trailing data are only zeros. |
| */ |
| |
| d += l; |
| l = rom->romsize - rom->datasize; |
| |
| if ((d + l) > (dest + size)) { |
| /* Rom size doesn't fit in the destination area. Adjust to avoid |
| * overflow. |
| */ |
| l = dest - d; |
| } |
| |
| if (l > 0) { |
| memset(d, 0x0, l); |
| } |
| } |
| } |
| |
| return (d + l) - dest; |
| } |
| |
| void *rom_ptr(hwaddr addr, size_t size) |
| { |
| Rom *rom; |
| |
| rom = find_rom(addr, size); |
| if (!rom || !rom->data) |
| return NULL; |
| return rom->data + (addr - rom->addr); |
| } |
| |
| typedef struct FindRomCBData { |
| size_t size; /* Amount of data we want from ROM, in bytes */ |
| MemoryRegion *mr; /* MR at the unaliased guest addr */ |
| hwaddr xlat; /* Offset of addr within mr */ |
| void *rom; /* Output: rom data pointer, if found */ |
| } FindRomCBData; |
| |
| static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, |
| hwaddr offset_in_region, void *opaque) |
| { |
| FindRomCBData *cbdata = opaque; |
| hwaddr alias_addr; |
| |
| if (mr != cbdata->mr) { |
| return false; |
| } |
| |
| alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; |
| cbdata->rom = rom_ptr(alias_addr, cbdata->size); |
| if (!cbdata->rom) { |
| return false; |
| } |
| /* Found a match, stop iterating */ |
| return true; |
| } |
| |
| void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) |
| { |
| /* |
| * Find any ROM data for the given guest address range. If there |
| * is a ROM blob then return a pointer to the host memory |
| * corresponding to 'addr'; otherwise return NULL. |
| * |
| * We look not only for ROM blobs that were loaded directly to |
| * addr, but also for ROM blobs that were loaded to aliases of |
| * that memory at other addresses within the AddressSpace. |
| * |
| * Note that we do not check @as against the 'as' member in the |
| * 'struct Rom' returned by rom_ptr(). The Rom::as is the |
| * AddressSpace which the rom blob should be written to, whereas |
| * our @as argument is the AddressSpace which we are (effectively) |
| * reading from, and the same underlying RAM will often be visible |
| * in multiple AddressSpaces. (A common example is a ROM blob |
| * written to the 'system' address space but then read back via a |
| * CPU's cpu->as pointer.) This does mean we might potentially |
| * return a false-positive match if a ROM blob was loaded into an |
| * AS which is entirely separate and distinct from the one we're |
| * querying, but this issue exists also for rom_ptr() and hasn't |
| * caused any problems in practice. |
| */ |
| FlatView *fv; |
| void *rom; |
| hwaddr len_unused; |
| FindRomCBData cbdata = {}; |
| |
| /* Easy case: there's data at the actual address */ |
| rom = rom_ptr(addr, size); |
| if (rom) { |
| return rom; |
| } |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| fv = address_space_to_flatview(as); |
| cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, |
| false, MEMTXATTRS_UNSPECIFIED); |
| if (!cbdata.mr) { |
| /* Nothing at this address, so there can't be any aliasing */ |
| return NULL; |
| } |
| cbdata.size = size; |
| flatview_for_each_range(fv, find_rom_cb, &cbdata); |
| return cbdata.rom; |
| } |
| |
| void hmp_info_roms(Monitor *mon, const QDict *qdict) |
| { |
| Rom *rom; |
| |
| QTAILQ_FOREACH(rom, &roms, next) { |
| if (rom->mr) { |
| monitor_printf(mon, "%s" |
| " size=0x%06zx name=\"%s\"\n", |
| memory_region_name(rom->mr), |
| rom->romsize, |
| rom->name); |
| } else if (!rom->fw_file) { |
| monitor_printf(mon, "addr=" TARGET_FMT_plx |
| " size=0x%06zx mem=%s name=\"%s\"\n", |
| rom->addr, rom->romsize, |
| rom->isrom ? "rom" : "ram", |
| rom->name); |
| } else { |
| monitor_printf(mon, "fw=%s/%s" |
| " size=0x%06zx name=\"%s\"\n", |
| rom->fw_dir, |
| rom->fw_file, |
| rom->romsize, |
| rom->name); |
| } |
| } |
| } |
| |
| typedef enum HexRecord HexRecord; |
| enum HexRecord { |
| DATA_RECORD = 0, |
| EOF_RECORD, |
| EXT_SEG_ADDR_RECORD, |
| START_SEG_ADDR_RECORD, |
| EXT_LINEAR_ADDR_RECORD, |
| START_LINEAR_ADDR_RECORD, |
| }; |
| |
| /* Each record contains a 16-bit address which is combined with the upper 16 |
| * bits of the implicit "next address" to form a 32-bit address. |
| */ |
| #define NEXT_ADDR_MASK 0xffff0000 |
| |
| #define DATA_FIELD_MAX_LEN 0xff |
| #define LEN_EXCEPT_DATA 0x5 |
| /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + |
| * sizeof(checksum) */ |
| typedef struct { |
| uint8_t byte_count; |
| uint16_t address; |
| uint8_t record_type; |
| uint8_t data[DATA_FIELD_MAX_LEN]; |
| uint8_t checksum; |
| } HexLine; |
| |
| /* return 0 or -1 if error */ |
| static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, |
| uint32_t *index, const bool in_process) |
| { |
| /* +-------+---------------+-------+---------------------+--------+ |
| * | byte | |record | | | |
| * | count | address | type | data |checksum| |
| * +-------+---------------+-------+---------------------+--------+ |
| * ^ ^ ^ ^ ^ ^ |
| * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | |
| */ |
| uint8_t value = 0; |
| uint32_t idx = *index; |
| /* ignore space */ |
| if (g_ascii_isspace(c)) { |
| return true; |
| } |
| if (!g_ascii_isxdigit(c) || !in_process) { |
| return false; |
| } |
| value = g_ascii_xdigit_value(c); |
| value = (idx & 0x1) ? (value & 0xf) : (value << 4); |
| if (idx < 2) { |
| line->byte_count |= value; |
| } else if (2 <= idx && idx < 6) { |
| line->address <<= 4; |
| line->address += g_ascii_xdigit_value(c); |
| } else if (6 <= idx && idx < 8) { |
| line->record_type |= value; |
| } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { |
| line->data[(idx - 8) >> 1] |= value; |
| } else if (8 + 2 * line->byte_count <= idx && |
| idx < 10 + 2 * line->byte_count) { |
| line->checksum |= value; |
| } else { |
| return false; |
| } |
| *our_checksum += value; |
| ++(*index); |
| return true; |
| } |
| |
| typedef struct { |
| const char *filename; |
| HexLine line; |
| uint8_t *bin_buf; |
| hwaddr *start_addr; |
| int total_size; |
| uint32_t next_address_to_write; |
| uint32_t current_address; |
| uint32_t current_rom_index; |
| uint32_t rom_start_address; |
| AddressSpace *as; |
| bool complete; |
| } HexParser; |
| |
| /* return size or -1 if error */ |
| static int handle_record_type(HexParser *parser) |
| { |
| HexLine *line = &(parser->line); |
| switch (line->record_type) { |
| case DATA_RECORD: |
| parser->current_address = |
| (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; |
| /* verify this is a contiguous block of memory */ |
| if (parser->current_address != parser->next_address_to_write) { |
| if (parser->current_rom_index != 0) { |
| rom_add_blob_fixed_as(parser->filename, parser->bin_buf, |
| parser->current_rom_index, |
| parser->rom_start_address, parser->as); |
| } |
| parser->rom_start_address = parser->current_address; |
| parser->current_rom_index = 0; |
| } |
| |
| /* copy from line buffer to output bin_buf */ |
| memcpy(parser->bin_buf + parser->current_rom_index, line->data, |
| line->byte_count); |
| parser->current_rom_index += line->byte_count; |
| parser->total_size += line->byte_count; |
| /* save next address to write */ |
| parser->next_address_to_write = |
| parser->current_address + line->byte_count; |
| break; |
| |
| case EOF_RECORD: |
| if (parser->current_rom_index != 0) { |
| rom_add_blob_fixed_as(parser->filename, parser->bin_buf, |
| parser->current_rom_index, |
| parser->rom_start_address, parser->as); |
| } |
| parser->complete = true; |
| return parser->total_size; |
| case EXT_SEG_ADDR_RECORD: |
| case EXT_LINEAR_ADDR_RECORD: |
| if (line->byte_count != 2 && line->address != 0) { |
| return -1; |
| } |
| |
| if (parser->current_rom_index != 0) { |
| rom_add_blob_fixed_as(parser->filename, parser->bin_buf, |
| parser->current_rom_index, |
| parser->rom_start_address, parser->as); |
| } |
| |
| /* save next address to write, |
| * in case of non-contiguous block of memory */ |
| parser->next_address_to_write = (line->data[0] << 12) | |
| (line->data[1] << 4); |
| if (line->record_type == EXT_LINEAR_ADDR_RECORD) { |
| parser->next_address_to_write <<= 12; |
| } |
| |
| parser->rom_start_address = parser->next_address_to_write; |
| parser->current_rom_index = 0; |
| break; |
| |
| case START_SEG_ADDR_RECORD: |
| if (line->byte_count != 4 && line->address != 0) { |
| return -1; |
| } |
| |
| /* x86 16-bit CS:IP segmented addressing */ |
| *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + |
| ((line->data[2] << 8) | line->data[3]); |
| break; |
| |
| case START_LINEAR_ADDR_RECORD: |
| if (line->byte_count != 4 && line->address != 0) { |
| return -1; |
| } |
| |
| *(parser->start_addr) = ldl_be_p(line->data); |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| return parser->total_size; |
| } |
| |
| /* return size or -1 if error */ |
| static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, |
| size_t hex_blob_size, AddressSpace *as) |
| { |
| bool in_process = false; /* avoid re-enter and |
| * check whether record begin with ':' */ |
| uint8_t *end = hex_blob + hex_blob_size; |
| uint8_t our_checksum = 0; |
| uint32_t record_index = 0; |
| HexParser parser = { |
| .filename = filename, |
| .bin_buf = g_malloc(hex_blob_size), |
| .start_addr = addr, |
| .as = as, |
| .complete = false |
| }; |
| |
| rom_transaction_begin(); |
| |
| for (; hex_blob < end && !parser.complete; ++hex_blob) { |
| switch (*hex_blob) { |
| case '\r': |
| case '\n': |
| if (!in_process) { |
| break; |
| } |
| |
| in_process = false; |
| if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != |
| record_index || |
| our_checksum != 0) { |
| parser.total_size = -1; |
| goto out; |
| } |
| |
| if (handle_record_type(&parser) == -1) { |
| parser.total_size = -1; |
| goto out; |
| } |
| break; |
| |
| /* start of a new record. */ |
| case ':': |
| memset(&parser.line, 0, sizeof(HexLine)); |
| in_process = true; |
| record_index = 0; |
| break; |
| |
| /* decoding lines */ |
| default: |
| if (!parse_record(&parser.line, &our_checksum, *hex_blob, |
| &record_index, in_process)) { |
| parser.total_size = -1; |
| goto out; |
| } |
| break; |
| } |
| } |
| |
| out: |
| g_free(parser.bin_buf); |
| rom_transaction_end(parser.total_size != -1); |
| return parser.total_size; |
| } |
| |
| /* return size or -1 if error */ |
| int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) |
| { |
| gsize hex_blob_size; |
| gchar *hex_blob; |
| int total_size = 0; |
| |
| if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { |
| return -1; |
| } |
| |
| total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, |
| hex_blob_size, as); |
| |
| g_free(hex_blob); |
| return total_size; |
| } |