| /* |
| * QEMU ARM CPU -- internal functions and types |
| * |
| * Copyright (c) 2014 Linaro Ltd |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see |
| * <http://www.gnu.org/licenses/gpl-2.0.html> |
| * |
| * This header defines functions, types, etc which need to be shared |
| * between different source files within target/arm/ but which are |
| * private to it and not required by the rest of QEMU. |
| */ |
| |
| #ifndef TARGET_ARM_INTERNALS_H |
| #define TARGET_ARM_INTERNALS_H |
| |
| #include "hw/registerfields.h" |
| |
| /* register banks for CPU modes */ |
| #define BANK_USRSYS 0 |
| #define BANK_SVC 1 |
| #define BANK_ABT 2 |
| #define BANK_UND 3 |
| #define BANK_IRQ 4 |
| #define BANK_FIQ 5 |
| #define BANK_HYP 6 |
| #define BANK_MON 7 |
| |
| static inline bool excp_is_internal(int excp) |
| { |
| /* Return true if this exception number represents a QEMU-internal |
| * exception that will not be passed to the guest. |
| */ |
| return excp == EXCP_INTERRUPT |
| || excp == EXCP_HLT |
| || excp == EXCP_DEBUG |
| || excp == EXCP_HALTED |
| || excp == EXCP_EXCEPTION_EXIT |
| || excp == EXCP_KERNEL_TRAP |
| || excp == EXCP_SEMIHOST; |
| } |
| |
| /* Scale factor for generic timers, ie number of ns per tick. |
| * This gives a 62.5MHz timer. |
| */ |
| #define GTIMER_SCALE 16 |
| |
| /* Bit definitions for the v7M CONTROL register */ |
| FIELD(V7M_CONTROL, NPRIV, 0, 1) |
| FIELD(V7M_CONTROL, SPSEL, 1, 1) |
| FIELD(V7M_CONTROL, FPCA, 2, 1) |
| FIELD(V7M_CONTROL, SFPA, 3, 1) |
| |
| /* Bit definitions for v7M exception return payload */ |
| FIELD(V7M_EXCRET, ES, 0, 1) |
| FIELD(V7M_EXCRET, RES0, 1, 1) |
| FIELD(V7M_EXCRET, SPSEL, 2, 1) |
| FIELD(V7M_EXCRET, MODE, 3, 1) |
| FIELD(V7M_EXCRET, FTYPE, 4, 1) |
| FIELD(V7M_EXCRET, DCRS, 5, 1) |
| FIELD(V7M_EXCRET, S, 6, 1) |
| FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ |
| |
| /* Minimum value which is a magic number for exception return */ |
| #define EXC_RETURN_MIN_MAGIC 0xff000000 |
| /* Minimum number which is a magic number for function or exception return |
| * when using v8M security extension |
| */ |
| #define FNC_RETURN_MIN_MAGIC 0xfefffffe |
| |
| /* We use a few fake FSR values for internal purposes in M profile. |
| * M profile cores don't have A/R format FSRs, but currently our |
| * get_phys_addr() code assumes A/R profile and reports failures via |
| * an A/R format FSR value. We then translate that into the proper |
| * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). |
| * Mostly the FSR values we use for this are those defined for v7PMSA, |
| * since we share some of that codepath. A few kinds of fault are |
| * only for M profile and have no A/R equivalent, though, so we have |
| * to pick a value from the reserved range (which we never otherwise |
| * generate) to use for these. |
| * These values will never be visible to the guest. |
| */ |
| #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ |
| #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ |
| |
| /* |
| * For AArch64, map a given EL to an index in the banked_spsr array. |
| * Note that this mapping and the AArch32 mapping defined in bank_number() |
| * must agree such that the AArch64<->AArch32 SPSRs have the architecturally |
| * mandated mapping between each other. |
| */ |
| static inline unsigned int aarch64_banked_spsr_index(unsigned int el) |
| { |
| static const unsigned int map[4] = { |
| [1] = BANK_SVC, /* EL1. */ |
| [2] = BANK_HYP, /* EL2. */ |
| [3] = BANK_MON, /* EL3. */ |
| }; |
| assert(el >= 1 && el <= 3); |
| return map[el]; |
| } |
| |
| /* Map CPU modes onto saved register banks. */ |
| static inline int bank_number(int mode) |
| { |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| return BANK_USRSYS; |
| case ARM_CPU_MODE_SVC: |
| return BANK_SVC; |
| case ARM_CPU_MODE_ABT: |
| return BANK_ABT; |
| case ARM_CPU_MODE_UND: |
| return BANK_UND; |
| case ARM_CPU_MODE_IRQ: |
| return BANK_IRQ; |
| case ARM_CPU_MODE_FIQ: |
| return BANK_FIQ; |
| case ARM_CPU_MODE_HYP: |
| return BANK_HYP; |
| case ARM_CPU_MODE_MON: |
| return BANK_MON; |
| } |
| g_assert_not_reached(); |
| } |
| |
| void switch_mode(CPUARMState *, int); |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); |
| void arm_translate_init(void); |
| |
| enum arm_fprounding { |
| FPROUNDING_TIEEVEN, |
| FPROUNDING_POSINF, |
| FPROUNDING_NEGINF, |
| FPROUNDING_ZERO, |
| FPROUNDING_TIEAWAY, |
| FPROUNDING_ODD |
| }; |
| |
| int arm_rmode_to_sf(int rmode); |
| |
| static inline void aarch64_save_sp(CPUARMState *env, int el) |
| { |
| if (env->pstate & PSTATE_SP) { |
| env->sp_el[el] = env->xregs[31]; |
| } else { |
| env->sp_el[0] = env->xregs[31]; |
| } |
| } |
| |
| static inline void aarch64_restore_sp(CPUARMState *env, int el) |
| { |
| if (env->pstate & PSTATE_SP) { |
| env->xregs[31] = env->sp_el[el]; |
| } else { |
| env->xregs[31] = env->sp_el[0]; |
| } |
| } |
| |
| static inline void update_spsel(CPUARMState *env, uint32_t imm) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| /* Update PSTATE SPSel bit; this requires us to update the |
| * working stack pointer in xregs[31]. |
| */ |
| if (!((imm ^ env->pstate) & PSTATE_SP)) { |
| return; |
| } |
| aarch64_save_sp(env, cur_el); |
| env->pstate = deposit32(env->pstate, 0, 1, imm); |
| |
| /* We rely on illegal updates to SPsel from EL0 to get trapped |
| * at translation time. |
| */ |
| assert(cur_el >= 1 && cur_el <= 3); |
| aarch64_restore_sp(env, cur_el); |
| } |
| |
| /* |
| * arm_pamax |
| * @cpu: ARMCPU |
| * |
| * Returns the implementation defined bit-width of physical addresses. |
| * The ARMv8 reference manuals refer to this as PAMax(). |
| */ |
| static inline unsigned int arm_pamax(ARMCPU *cpu) |
| { |
| static const unsigned int pamax_map[] = { |
| [0] = 32, |
| [1] = 36, |
| [2] = 40, |
| [3] = 42, |
| [4] = 44, |
| [5] = 48, |
| }; |
| unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4); |
| |
| /* id_aa64mmfr0 is a read-only register so values outside of the |
| * supported mappings can be considered an implementation error. */ |
| assert(parange < ARRAY_SIZE(pamax_map)); |
| return pamax_map[parange]; |
| } |
| |
| /* Return true if extended addresses are enabled. |
| * This is always the case if our translation regime is 64 bit, |
| * but depends on TTBCR.EAE for 32 bit. |
| */ |
| static inline bool extended_addresses_enabled(CPUARMState *env) |
| { |
| TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; |
| return arm_el_is_aa64(env, 1) || |
| (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); |
| } |
| |
| /* Valid Syndrome Register EC field values */ |
| enum arm_exception_class { |
| EC_UNCATEGORIZED = 0x00, |
| EC_WFX_TRAP = 0x01, |
| EC_CP15RTTRAP = 0x03, |
| EC_CP15RRTTRAP = 0x04, |
| EC_CP14RTTRAP = 0x05, |
| EC_CP14DTTRAP = 0x06, |
| EC_ADVSIMDFPACCESSTRAP = 0x07, |
| EC_FPIDTRAP = 0x08, |
| EC_CP14RRTTRAP = 0x0c, |
| EC_ILLEGALSTATE = 0x0e, |
| EC_AA32_SVC = 0x11, |
| EC_AA32_HVC = 0x12, |
| EC_AA32_SMC = 0x13, |
| EC_AA64_SVC = 0x15, |
| EC_AA64_HVC = 0x16, |
| EC_AA64_SMC = 0x17, |
| EC_SYSTEMREGISTERTRAP = 0x18, |
| EC_SVEACCESSTRAP = 0x19, |
| EC_INSNABORT = 0x20, |
| EC_INSNABORT_SAME_EL = 0x21, |
| EC_PCALIGNMENT = 0x22, |
| EC_DATAABORT = 0x24, |
| EC_DATAABORT_SAME_EL = 0x25, |
| EC_SPALIGNMENT = 0x26, |
| EC_AA32_FPTRAP = 0x28, |
| EC_AA64_FPTRAP = 0x2c, |
| EC_SERROR = 0x2f, |
| EC_BREAKPOINT = 0x30, |
| EC_BREAKPOINT_SAME_EL = 0x31, |
| EC_SOFTWARESTEP = 0x32, |
| EC_SOFTWARESTEP_SAME_EL = 0x33, |
| EC_WATCHPOINT = 0x34, |
| EC_WATCHPOINT_SAME_EL = 0x35, |
| EC_AA32_BKPT = 0x38, |
| EC_VECTORCATCH = 0x3a, |
| EC_AA64_BKPT = 0x3c, |
| }; |
| |
| #define ARM_EL_EC_SHIFT 26 |
| #define ARM_EL_IL_SHIFT 25 |
| #define ARM_EL_ISV_SHIFT 24 |
| #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT) |
| #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT) |
| |
| /* Utility functions for constructing various kinds of syndrome value. |
| * Note that in general we follow the AArch64 syndrome values; in a |
| * few cases the value in HSR for exceptions taken to AArch32 Hyp |
| * mode differs slightly, so if we ever implemented Hyp mode then the |
| * syndrome value would need some massaging on exception entry. |
| * (One example of this is that AArch64 defaults to IL bit set for |
| * exceptions which don't specifically indicate information about the |
| * trapping instruction, whereas AArch32 defaults to IL bit clear.) |
| */ |
| static inline uint32_t syn_uncategorized(void) |
| { |
| return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL; |
| } |
| |
| static inline uint32_t syn_aa64_svc(uint32_t imm16) |
| { |
| return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); |
| } |
| |
| static inline uint32_t syn_aa64_hvc(uint32_t imm16) |
| { |
| return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); |
| } |
| |
| static inline uint32_t syn_aa64_smc(uint32_t imm16) |
| { |
| return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); |
| } |
| |
| static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit) |
| { |
| return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) |
| | (is_16bit ? 0 : ARM_EL_IL); |
| } |
| |
| static inline uint32_t syn_aa32_hvc(uint32_t imm16) |
| { |
| return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); |
| } |
| |
| static inline uint32_t syn_aa32_smc(void) |
| { |
| return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL; |
| } |
| |
| static inline uint32_t syn_aa64_bkpt(uint32_t imm16) |
| { |
| return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); |
| } |
| |
| static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit) |
| { |
| return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) |
| | (is_16bit ? 0 : ARM_EL_IL); |
| } |
| |
| static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2, |
| int crn, int crm, int rt, |
| int isread) |
| { |
| return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL |
| | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5) |
| | (crm << 1) | isread; |
| } |
| |
| static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2, |
| int crn, int crm, int rt, int isread, |
| bool is_16bit) |
| { |
| return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT) |
| | (is_16bit ? 0 : ARM_EL_IL) |
| | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) |
| | (crn << 10) | (rt << 5) | (crm << 1) | isread; |
| } |
| |
| static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2, |
| int crn, int crm, int rt, int isread, |
| bool is_16bit) |
| { |
| return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT) |
| | (is_16bit ? 0 : ARM_EL_IL) |
| | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) |
| | (crn << 10) | (rt << 5) | (crm << 1) | isread; |
| } |
| |
| static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm, |
| int rt, int rt2, int isread, |
| bool is_16bit) |
| { |
| return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT) |
| | (is_16bit ? 0 : ARM_EL_IL) |
| | (cv << 24) | (cond << 20) | (opc1 << 16) |
| | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; |
| } |
| |
| static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm, |
| int rt, int rt2, int isread, |
| bool is_16bit) |
| { |
| return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT) |
| | (is_16bit ? 0 : ARM_EL_IL) |
| | (cv << 24) | (cond << 20) | (opc1 << 16) |
| | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; |
| } |
| |
| static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit) |
| { |
| return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) |
| | (is_16bit ? 0 : ARM_EL_IL) |
| | (cv << 24) | (cond << 20); |
| } |
| |
| static inline uint32_t syn_sve_access_trap(void) |
| { |
| return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT; |
| } |
| |
| static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc) |
| { |
| return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) |
| | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc; |
| } |
| |
| static inline uint32_t syn_data_abort_no_iss(int same_el, |
| int ea, int cm, int s1ptw, |
| int wnr, int fsc) |
| { |
| return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) |
| | ARM_EL_IL |
| | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; |
| } |
| |
| static inline uint32_t syn_data_abort_with_iss(int same_el, |
| int sas, int sse, int srt, |
| int sf, int ar, |
| int ea, int cm, int s1ptw, |
| int wnr, int fsc, |
| bool is_16bit) |
| { |
| return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) |
| | (is_16bit ? 0 : ARM_EL_IL) |
| | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16) |
| | (sf << 15) | (ar << 14) |
| | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; |
| } |
| |
| static inline uint32_t syn_swstep(int same_el, int isv, int ex) |
| { |
| return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) |
| | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22; |
| } |
| |
| static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr) |
| { |
| return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) |
| | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22; |
| } |
| |
| static inline uint32_t syn_breakpoint(int same_el) |
| { |
| return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) |
| | ARM_EL_IL | 0x22; |
| } |
| |
| static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit) |
| { |
| return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) | |
| (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) | |
| (cv << 24) | (cond << 20) | ti; |
| } |
| |
| /* Update a QEMU watchpoint based on the information the guest has set in the |
| * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. |
| */ |
| void hw_watchpoint_update(ARMCPU *cpu, int n); |
| /* Update the QEMU watchpoints for every guest watchpoint. This does a |
| * complete delete-and-reinstate of the QEMU watchpoint list and so is |
| * suitable for use after migration or on reset. |
| */ |
| void hw_watchpoint_update_all(ARMCPU *cpu); |
| /* Update a QEMU breakpoint based on the information the guest has set in the |
| * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. |
| */ |
| void hw_breakpoint_update(ARMCPU *cpu, int n); |
| /* Update the QEMU breakpoints for every guest breakpoint. This does a |
| * complete delete-and-reinstate of the QEMU breakpoint list and so is |
| * suitable for use after migration or on reset. |
| */ |
| void hw_breakpoint_update_all(ARMCPU *cpu); |
| |
| /* Callback function for checking if a watchpoint should trigger. */ |
| bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); |
| |
| /* Adjust addresses (in BE32 mode) before testing against watchpoint |
| * addresses. |
| */ |
| vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); |
| |
| /* Callback function for when a watchpoint or breakpoint triggers. */ |
| void arm_debug_excp_handler(CPUState *cs); |
| |
| #ifdef CONFIG_USER_ONLY |
| static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) |
| { |
| return false; |
| } |
| #else |
| /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ |
| bool arm_is_psci_call(ARMCPU *cpu, int excp_type); |
| /* Actually handle a PSCI call */ |
| void arm_handle_psci_call(ARMCPU *cpu); |
| #endif |
| |
| /** |
| * arm_clear_exclusive: clear the exclusive monitor |
| * @env: CPU env |
| * Clear the CPU's exclusive monitor, like the guest CLREX instruction. |
| */ |
| static inline void arm_clear_exclusive(CPUARMState *env) |
| { |
| env->exclusive_addr = -1; |
| } |
| |
| /** |
| * ARMFaultType: type of an ARM MMU fault |
| * This corresponds to the v8A pseudocode's Fault enumeration, |
| * with extensions for QEMU internal conditions. |
| */ |
| typedef enum ARMFaultType { |
| ARMFault_None, |
| ARMFault_AccessFlag, |
| ARMFault_Alignment, |
| ARMFault_Background, |
| ARMFault_Domain, |
| ARMFault_Permission, |
| ARMFault_Translation, |
| ARMFault_AddressSize, |
| ARMFault_SyncExternal, |
| ARMFault_SyncExternalOnWalk, |
| ARMFault_SyncParity, |
| ARMFault_SyncParityOnWalk, |
| ARMFault_AsyncParity, |
| ARMFault_AsyncExternal, |
| ARMFault_Debug, |
| ARMFault_TLBConflict, |
| ARMFault_Lockdown, |
| ARMFault_Exclusive, |
| ARMFault_ICacheMaint, |
| ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ |
| ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ |
| } ARMFaultType; |
| |
| /** |
| * ARMMMUFaultInfo: Information describing an ARM MMU Fault |
| * @type: Type of fault |
| * @level: Table walk level (for translation, access flag and permission faults) |
| * @domain: Domain of the fault address (for non-LPAE CPUs only) |
| * @s2addr: Address that caused a fault at stage 2 |
| * @stage2: True if we faulted at stage 2 |
| * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk |
| * @ea: True if we should set the EA (external abort type) bit in syndrome |
| */ |
| typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; |
| struct ARMMMUFaultInfo { |
| ARMFaultType type; |
| target_ulong s2addr; |
| int level; |
| int domain; |
| bool stage2; |
| bool s1ptw; |
| bool ea; |
| }; |
| |
| /** |
| * arm_fi_to_sfsc: Convert fault info struct to short-format FSC |
| * Compare pseudocode EncodeSDFSC(), though unlike that function |
| * we set up a whole FSR-format code including domain field and |
| * putting the high bit of the FSC into bit 10. |
| */ |
| static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) |
| { |
| uint32_t fsc; |
| |
| switch (fi->type) { |
| case ARMFault_None: |
| return 0; |
| case ARMFault_AccessFlag: |
| fsc = fi->level == 1 ? 0x3 : 0x6; |
| break; |
| case ARMFault_Alignment: |
| fsc = 0x1; |
| break; |
| case ARMFault_Permission: |
| fsc = fi->level == 1 ? 0xd : 0xf; |
| break; |
| case ARMFault_Domain: |
| fsc = fi->level == 1 ? 0x9 : 0xb; |
| break; |
| case ARMFault_Translation: |
| fsc = fi->level == 1 ? 0x5 : 0x7; |
| break; |
| case ARMFault_SyncExternal: |
| fsc = 0x8 | (fi->ea << 12); |
| break; |
| case ARMFault_SyncExternalOnWalk: |
| fsc = fi->level == 1 ? 0xc : 0xe; |
| fsc |= (fi->ea << 12); |
| break; |
| case ARMFault_SyncParity: |
| fsc = 0x409; |
| break; |
| case ARMFault_SyncParityOnWalk: |
| fsc = fi->level == 1 ? 0x40c : 0x40e; |
| break; |
| case ARMFault_AsyncParity: |
| fsc = 0x408; |
| break; |
| case ARMFault_AsyncExternal: |
| fsc = 0x406 | (fi->ea << 12); |
| break; |
| case ARMFault_Debug: |
| fsc = 0x2; |
| break; |
| case ARMFault_TLBConflict: |
| fsc = 0x400; |
| break; |
| case ARMFault_Lockdown: |
| fsc = 0x404; |
| break; |
| case ARMFault_Exclusive: |
| fsc = 0x405; |
| break; |
| case ARMFault_ICacheMaint: |
| fsc = 0x4; |
| break; |
| case ARMFault_Background: |
| fsc = 0x0; |
| break; |
| case ARMFault_QEMU_NSCExec: |
| fsc = M_FAKE_FSR_NSC_EXEC; |
| break; |
| case ARMFault_QEMU_SFault: |
| fsc = M_FAKE_FSR_SFAULT; |
| break; |
| default: |
| /* Other faults can't occur in a context that requires a |
| * short-format status code. |
| */ |
| g_assert_not_reached(); |
| } |
| |
| fsc |= (fi->domain << 4); |
| return fsc; |
| } |
| |
| /** |
| * arm_fi_to_lfsc: Convert fault info struct to long-format FSC |
| * Compare pseudocode EncodeLDFSC(), though unlike that function |
| * we fill in also the LPAE bit 9 of a DFSR format. |
| */ |
| static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) |
| { |
| uint32_t fsc; |
| |
| switch (fi->type) { |
| case ARMFault_None: |
| return 0; |
| case ARMFault_AddressSize: |
| fsc = fi->level & 3; |
| break; |
| case ARMFault_AccessFlag: |
| fsc = (fi->level & 3) | (0x2 << 2); |
| break; |
| case ARMFault_Permission: |
| fsc = (fi->level & 3) | (0x3 << 2); |
| break; |
| case ARMFault_Translation: |
| fsc = (fi->level & 3) | (0x1 << 2); |
| break; |
| case ARMFault_SyncExternal: |
| fsc = 0x10 | (fi->ea << 12); |
| break; |
| case ARMFault_SyncExternalOnWalk: |
| fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12); |
| break; |
| case ARMFault_SyncParity: |
| fsc = 0x18; |
| break; |
| case ARMFault_SyncParityOnWalk: |
| fsc = (fi->level & 3) | (0x7 << 2); |
| break; |
| case ARMFault_AsyncParity: |
| fsc = 0x19; |
| break; |
| case ARMFault_AsyncExternal: |
| fsc = 0x11 | (fi->ea << 12); |
| break; |
| case ARMFault_Alignment: |
| fsc = 0x21; |
| break; |
| case ARMFault_Debug: |
| fsc = 0x22; |
| break; |
| case ARMFault_TLBConflict: |
| fsc = 0x30; |
| break; |
| case ARMFault_Lockdown: |
| fsc = 0x34; |
| break; |
| case ARMFault_Exclusive: |
| fsc = 0x35; |
| break; |
| default: |
| /* Other faults can't occur in a context that requires a |
| * long-format status code. |
| */ |
| g_assert_not_reached(); |
| } |
| |
| fsc |= 1 << 9; |
| return fsc; |
| } |
| |
| static inline bool arm_extabort_type(MemTxResult result) |
| { |
| /* The EA bit in syndromes and fault status registers is an |
| * IMPDEF classification of external aborts. ARM implementations |
| * usually use this to indicate AXI bus Decode error (0) or |
| * Slave error (1); in QEMU we follow that. |
| */ |
| return result != MEMTX_DECODE_ERROR; |
| } |
| |
| /* Do a page table walk and add page to TLB if possible */ |
| bool arm_tlb_fill(CPUState *cpu, vaddr address, |
| MMUAccessType access_type, int mmu_idx, |
| ARMMMUFaultInfo *fi); |
| |
| /* Return true if the stage 1 translation regime is using LPAE format page |
| * tables */ |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); |
| |
| /* Raise a data fault alignment exception for the specified virtual address */ |
| void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, |
| MMUAccessType access_type, |
| int mmu_idx, uintptr_t retaddr); |
| |
| /* arm_cpu_do_transaction_failed: handle a memory system error response |
| * (eg "no device/memory present at address") by raising an external abort |
| * exception |
| */ |
| void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, |
| vaddr addr, unsigned size, |
| MMUAccessType access_type, |
| int mmu_idx, MemTxAttrs attrs, |
| MemTxResult response, uintptr_t retaddr); |
| |
| /* Call the EL change hook if one has been registered */ |
| static inline void arm_call_el_change_hook(ARMCPU *cpu) |
| { |
| if (cpu->el_change_hook) { |
| cpu->el_change_hook(cpu, cpu->el_change_hook_opaque); |
| } |
| } |
| |
| /* Return true if this address translation regime is secure */ |
| static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_S12NSE0: |
| case ARMMMUIdx_S12NSE1: |
| case ARMMMUIdx_S1NSE0: |
| case ARMMMUIdx_S1NSE1: |
| case ARMMMUIdx_S1E2: |
| case ARMMMUIdx_S2NS: |
| case ARMMMUIdx_MPrivNegPri: |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MPriv: |
| case ARMMMUIdx_MUser: |
| return false; |
| case ARMMMUIdx_S1E3: |
| case ARMMMUIdx_S1SE0: |
| case ARMMMUIdx_S1SE1: |
| case ARMMMUIdx_MSPrivNegPri: |
| case ARMMMUIdx_MSUserNegPri: |
| case ARMMMUIdx_MSPriv: |
| case ARMMMUIdx_MSUser: |
| return true; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| #endif |