blob: 89c7d4556a016d1e020cc65298dade249f349e77 [file] [log] [blame]
/*
* MIPS emulation helpers for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internal.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/memop.h"
#include "fpu_helper.h"
/*****************************************************************************/
/* Exceptions processing helpers */
void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
int error_code)
{
do_raise_exception_err(env, exception, error_code, 0);
}
void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
{
do_raise_exception(env, exception, GETPC());
}
void helper_raise_exception_debug(CPUMIPSState *env)
{
do_raise_exception(env, EXCP_DEBUG, 0);
}
static void raise_exception(CPUMIPSState *env, uint32_t exception)
{
do_raise_exception(env, exception, 0);
}
/* 64 bits arithmetic for 32 bits hosts */
static inline uint64_t get_HILO(CPUMIPSState *env)
{
return ((uint64_t)(env->active_tc.HI[0]) << 32) |
(uint32_t)env->active_tc.LO[0];
}
static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
{
env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
{
target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
return tmp;
}
/* Multiplication variants of the vr54xx. */
target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2));
}
target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
}
target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
static inline target_ulong bitswap(target_ulong v)
{
v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
((v & (target_ulong)0x5555555555555555ULL) << 1);
v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
((v & (target_ulong)0x3333333333333333ULL) << 2);
v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
return v;
}
#ifdef TARGET_MIPS64
target_ulong helper_dbitswap(target_ulong rt)
{
return bitswap(rt);
}
#endif
target_ulong helper_bitswap(target_ulong rt)
{
return (int32_t)bitswap(rt);
}
target_ulong helper_rotx(target_ulong rs, uint32_t shift, uint32_t shiftx,
uint32_t stripe)
{
int i;
uint64_t tmp0 = ((uint64_t)rs) << 32 | ((uint64_t)rs & 0xffffffff);
uint64_t tmp1 = tmp0;
for (i = 0; i <= 46; i++) {
int s;
if (i & 0x8) {
s = shift;
} else {
s = shiftx;
}
if (stripe != 0 && !(i & 0x4)) {
s = ~s;
}
if (s & 0x10) {
if (tmp0 & (1LL << (i + 16))) {
tmp1 |= 1LL << i;
} else {
tmp1 &= ~(1LL << i);
}
}
}
uint64_t tmp2 = tmp1;
for (i = 0; i <= 38; i++) {
int s;
if (i & 0x4) {
s = shift;
} else {
s = shiftx;
}
if (s & 0x8) {
if (tmp1 & (1LL << (i + 8))) {
tmp2 |= 1LL << i;
} else {
tmp2 &= ~(1LL << i);
}
}
}
uint64_t tmp3 = tmp2;
for (i = 0; i <= 34; i++) {
int s;
if (i & 0x2) {
s = shift;
} else {
s = shiftx;
}
if (s & 0x4) {
if (tmp2 & (1LL << (i + 4))) {
tmp3 |= 1LL << i;
} else {
tmp3 &= ~(1LL << i);
}
}
}
uint64_t tmp4 = tmp3;
for (i = 0; i <= 32; i++) {
int s;
if (i & 0x1) {
s = shift;
} else {
s = shiftx;
}
if (s & 0x2) {
if (tmp3 & (1LL << (i + 2))) {
tmp4 |= 1LL << i;
} else {
tmp4 &= ~(1LL << i);
}
}
}
uint64_t tmp5 = tmp4;
for (i = 0; i <= 31; i++) {
int s;
s = shift;
if (s & 0x1) {
if (tmp4 & (1LL << (i + 1))) {
tmp5 |= 1LL << i;
} else {
tmp5 &= ~(1LL << i);
}
}
}
return (int64_t)(int32_t)(uint32_t)tmp5;
}
#ifndef CONFIG_USER_ONLY
static inline hwaddr do_translate_address(CPUMIPSState *env,
target_ulong address,
int rw, uintptr_t retaddr)
{
hwaddr paddr;
CPUState *cs = env_cpu(env);
paddr = cpu_mips_translate_address(env, address, rw);
if (paddr == -1LL) {
cpu_loop_exit_restore(cs, retaddr);
} else {
return paddr;
}
}
#define HELPER_LD_ATOMIC(name, insn, almask, do_cast) \
target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
{ \
if (arg & almask) { \
if (!(env->hflags & MIPS_HFLAG_DM)) { \
env->CP0_BadVAddr = arg; \
} \
do_raise_exception(env, EXCP_AdEL, GETPC()); \
} \
env->CP0_LLAddr = do_translate_address(env, arg, 0, GETPC()); \
env->lladdr = arg; \
env->llval = do_cast cpu_##insn##_mmuidx_ra(env, arg, mem_idx, GETPC()); \
return env->llval; \
}
HELPER_LD_ATOMIC(ll, ldl, 0x3, (target_long)(int32_t))
#ifdef TARGET_MIPS64
HELPER_LD_ATOMIC(lld, ldq, 0x7, (target_ulong))
#endif
#undef HELPER_LD_ATOMIC
#endif
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK(v) ((v) & 3)
#define GET_OFFSET(addr, offset) (addr + (offset))
#else
#define GET_LMASK(v) (((v) & 3) ^ 3)
#define GET_OFFSET(addr, offset) (addr - (offset))
#endif
void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
if (GET_LMASK(arg2) <= 2) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (GET_LMASK(arg2) <= 1) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (GET_LMASK(arg2) == 0) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 3), (uint8_t)arg1,
mem_idx, GETPC());
}
}
void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
if (GET_LMASK(arg2) >= 1) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (GET_LMASK(arg2) >= 2) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (GET_LMASK(arg2) == 3) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24),
mem_idx, GETPC());
}
}
#if defined(TARGET_MIPS64)
/*
* "half" load and stores. We must do the memory access inline,
* or fault handling won't work.
*/
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK64(v) ((v) & 7)
#else
#define GET_LMASK64(v) (((v) & 7) ^ 7)
#endif
void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
if (GET_LMASK64(arg2) <= 6) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) <= 5) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) <= 4) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) <= 3) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) <= 2) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) <= 1) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) <= 0) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 7), (uint8_t)arg1,
mem_idx, GETPC());
}
}
void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
if (GET_LMASK64(arg2) >= 1) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) >= 2) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) >= 3) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) >= 4) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) >= 5) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) >= 6) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48),
mem_idx, GETPC());
}
if (GET_LMASK64(arg2) == 7) {
cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56),
mem_idx, GETPC());
}
}
#endif /* TARGET_MIPS64 */
static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] =
(target_long)cpu_ldl_mmuidx_ra(env, addr, mem_idx, GETPC());
addr += 4;
}
}
if (do_r31) {
env->active_tc.gpr[31] =
(target_long)cpu_ldl_mmuidx_ra(env, addr, mem_idx, GETPC());
}
}
void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
cpu_stw_mmuidx_ra(env, addr, env->active_tc.gpr[multiple_regs[i]],
mem_idx, GETPC());
addr += 4;
}
}
if (do_r31) {
cpu_stw_mmuidx_ra(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
}
}
#if defined(TARGET_MIPS64)
void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] =
cpu_ldq_mmuidx_ra(env, addr, mem_idx, GETPC());
addr += 8;
}
}
if (do_r31) {
env->active_tc.gpr[31] =
cpu_ldq_mmuidx_ra(env, addr, mem_idx, GETPC());
}
}
void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
cpu_stq_mmuidx_ra(env, addr, env->active_tc.gpr[multiple_regs[i]],
mem_idx, GETPC());
addr += 8;
}
}
if (do_r31) {
cpu_stq_mmuidx_ra(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
}
}
#endif
void helper_fork(target_ulong arg1, target_ulong arg2)
{
/*
* arg1 = rt, arg2 = rs
* TODO: store to TC register
*/
}
target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
{
target_long arg1 = arg;
if (arg1 < 0) {
/* No scheduling policy implemented. */
if (arg1 != -2) {
if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
do_raise_exception(env, EXCP_THREAD, GETPC());
}
}
} else if (arg1 == 0) {
if (0) {
/* TODO: TC underflow */
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
do_raise_exception(env, EXCP_THREAD, GETPC());
} else {
/* TODO: Deallocate TC */
}
} else if (arg1 > 0) {
/* Yield qualifier inputs not implemented. */
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
do_raise_exception(env, EXCP_THREAD, GETPC());
}
return env->CP0_YQMask;
}
#ifndef CONFIG_USER_ONLY
/* TLB management */
static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
{
/* Discard entries from env->tlb[first] onwards. */
while (env->tlb->tlb_in_use > first) {
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
}
}
static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
{
#if defined(TARGET_MIPS64)
return extract64(entrylo, 6, 54);
#else
return extract64(entrylo, 6, 24) | /* PFN */
(extract64(entrylo, 32, 32) << 24); /* PFNX */
#endif
}
static void r4k_fill_tlb(CPUMIPSState *env, int idx)
{
r4k_tlb_t *tlb;
uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
tlb = &env->tlb->mmu.r4k.tlb[idx];
if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
tlb->EHINV = 1;
return;
}
tlb->EHINV = 0;
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
tlb->VPN &= env->SEGMask;
#endif
tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
tlb->MMID = env->CP0_MemoryMapID;
tlb->PageMask = env->CP0_PageMask;
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
}
void r4k_helper_tlbinv(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
r4k_tlb_t *tlb;
int idx;
MMID = mi ? MMID : (uint32_t) ASID;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
tlb = &env->tlb->mmu.r4k.tlb[idx];
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
if (!tlb->G && tlb_mmid == MMID) {
tlb->EHINV = 1;
}
}
cpu_mips_tlb_flush(env);
}
void r4k_helper_tlbinvf(CPUMIPSState *env)
{
int idx;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
}
cpu_mips_tlb_flush(env);
}
void r4k_helper_tlbwi(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
target_ulong VPN;
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
r4k_tlb_t *tlb;
int idx;
MMID = mi ? MMID : (uint32_t) ASID;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
VPN &= env->SEGMask;
#endif
EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
V0 = (env->CP0_EntryLo0 & 2) != 0;
D0 = (env->CP0_EntryLo0 & 4) != 0;
XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
V1 = (env->CP0_EntryLo1 & 2) != 0;
D1 = (env->CP0_EntryLo1 & 4) != 0;
XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/*
* Discard cached TLB entries, unless tlbwi is just upgrading access
* permissions on the current entry.
*/
if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
(!tlb->EHINV && EHINV) ||
(tlb->V0 && !V0) || (tlb->D0 && !D0) ||
(!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
(tlb->V1 && !V1) || (tlb->D1 && !D1) ||
(!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
}
r4k_invalidate_tlb(env, idx, 0);
r4k_fill_tlb(env, idx);
}
void r4k_helper_tlbwr(CPUMIPSState *env)
{
int r = cpu_mips_get_random(env);
r4k_invalidate_tlb(env, r, 1);
r4k_fill_tlb(env, r);
}
void r4k_helper_tlbp(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
r4k_tlb_t *tlb;
target_ulong mask;
target_ulong tag;
target_ulong VPN;
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
int i;
MMID = mi ? MMID : (uint32_t) ASID;
for (i = 0; i < env->tlb->nb_tlb; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/* Check ASID/MMID, virtual page number & size */
if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
/* TLB match */
env->CP0_Index = i;
break;
}
}
if (i == env->tlb->nb_tlb) {
/* No match. Discard any shadow entries, if any of them match. */
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/* Check ASID/MMID, virtual page number & size */
if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
r4k_mips_tlb_flush_extra(env, i);
break;
}
}
env->CP0_Index |= 0x80000000;
}
}
static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
{
#if defined(TARGET_MIPS64)
return tlb_pfn << 6;
#else
return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
(extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
#endif
}
void r4k_helper_tlbr(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
r4k_tlb_t *tlb;
int idx;
MMID = mi ? MMID : (uint32_t) ASID;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/* If this will change the current ASID/MMID, flush qemu's TLB. */
if (MMID != tlb_mmid) {
cpu_mips_tlb_flush(env);
}
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
if (tlb->EHINV) {
env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
env->CP0_PageMask = 0;
env->CP0_EntryLo0 = 0;
env->CP0_EntryLo1 = 0;
} else {
env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
env->CP0_MemoryMapID = tlb->MMID;
env->CP0_PageMask = tlb->PageMask;
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
((uint64_t)tlb->RI0 << CP0EnLo_RI) |
((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
((uint64_t)tlb->RI1 << CP0EnLo_RI) |
((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
}
}
void helper_tlbwi(CPUMIPSState *env)
{
env->tlb->helper_tlbwi(env);
}
void helper_tlbwr(CPUMIPSState *env)
{
env->tlb->helper_tlbwr(env);
}
void helper_tlbp(CPUMIPSState *env)
{
env->tlb->helper_tlbp(env);
}
void helper_tlbr(CPUMIPSState *env)
{
env->tlb->helper_tlbr(env);
}
void helper_tlbinv(CPUMIPSState *env)
{
env->tlb->helper_tlbinv(env);
}
void helper_tlbinvf(CPUMIPSState *env)
{
env->tlb->helper_tlbinvf(env);
}
static void global_invalidate_tlb(CPUMIPSState *env,
uint32_t invMsgVPN2,
uint8_t invMsgR,
uint32_t invMsgMMid,
bool invAll,
bool invVAMMid,
bool invMMid,
bool invVA)
{
int idx;
r4k_tlb_t *tlb;
bool VAMatch;
bool MMidMatch;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
tlb = &env->tlb->mmu.r4k.tlb[idx];
VAMatch =
(((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
#ifdef TARGET_MIPS64
&&
(extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
#endif
);
MMidMatch = tlb->MMID == invMsgMMid;
if ((invAll && (idx > env->CP0_Wired)) ||
(VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
(VAMatch && invVA) ||
(MMidMatch && !(tlb->G) && invMMid)) {
tlb->EHINV = 1;
}
}
cpu_mips_tlb_flush(env);
}
void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
{
bool invAll = type == 0;
bool invVA = type == 1;
bool invMMid = type == 2;
bool invVAMMid = type == 3;
uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
uint8_t invMsgR = 0;
uint32_t invMsgMMid = env->CP0_MemoryMapID;
CPUState *other_cs = first_cpu;
#ifdef TARGET_MIPS64
invMsgR = extract64(arg, 62, 2);
#endif
CPU_FOREACH(other_cs) {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
invAll, invVAMMid, invMMid, invVA);
}
}
/* Specials */
target_ulong helper_di(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 & ~(1 << CP0St_IE);
return t0;
}
target_ulong helper_ei(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 | (1 << CP0St_IE);
return t0;
}
static void debug_pre_eret(CPUMIPSState *env)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL)) {
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
}
if (env->hflags & MIPS_HFLAG_DM) {
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
}
qemu_log("\n");
}
}
static void debug_post_eret(CPUMIPSState *env)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL)) {
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
}
if (env->hflags & MIPS_HFLAG_DM) {
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
}
switch (cpu_mmu_index(env, false)) {
case 3:
qemu_log(", ERL\n");
break;
case MIPS_HFLAG_UM:
qemu_log(", UM\n");
break;
case MIPS_HFLAG_SM:
qemu_log(", SM\n");
break;
case MIPS_HFLAG_KM:
qemu_log("\n");
break;
default:
cpu_abort(env_cpu(env), "Invalid MMU mode!\n");
break;
}
}
}
static void set_pc(CPUMIPSState *env, target_ulong error_pc)
{
env->active_tc.PC = error_pc & ~(target_ulong)1;
if (error_pc & 1) {
env->hflags |= MIPS_HFLAG_M16;
} else {
env->hflags &= ~(MIPS_HFLAG_M16);
}
}
static inline void exception_return(CPUMIPSState *env)
{
debug_pre_eret(env);
if (env->CP0_Status & (1 << CP0St_ERL)) {
set_pc(env, env->CP0_ErrorEPC);
env->CP0_Status &= ~(1 << CP0St_ERL);
} else {
set_pc(env, env->CP0_EPC);
env->CP0_Status &= ~(1 << CP0St_EXL);
}
compute_hflags(env);
debug_post_eret(env);
}
void helper_eret(CPUMIPSState *env)
{
exception_return(env);
env->CP0_LLAddr = 1;
env->lladdr = 1;
}
void helper_eretnc(CPUMIPSState *env)
{
exception_return(env);
}
void helper_deret(CPUMIPSState *env)
{
debug_pre_eret(env);
env->hflags &= ~MIPS_HFLAG_DM;
compute_hflags(env);
set_pc(env, env->CP0_DEPC);
debug_post_eret(env);
}
#endif /* !CONFIG_USER_ONLY */
static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
{
if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
return;
}
do_raise_exception(env, EXCP_RI, pc);
}
target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
{
check_hwrena(env, 0, GETPC());
return env->CP0_EBase & 0x3ff;
}
target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
{
check_hwrena(env, 1, GETPC());
return env->SYNCI_Step;
}
target_ulong helper_rdhwr_cc(CPUMIPSState *env)
{
check_hwrena(env, 2, GETPC());
#ifdef CONFIG_USER_ONLY
return env->CP0_Count;
#else
return (int32_t)cpu_mips_get_count(env);
#endif
}
target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
{
check_hwrena(env, 3, GETPC());
return env->CCRes;
}
target_ulong helper_rdhwr_performance(CPUMIPSState *env)
{
check_hwrena(env, 4, GETPC());
return env->CP0_Performance0;
}
target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
{
check_hwrena(env, 5, GETPC());
return (env->CP0_Config5 >> CP0C5_XNP) & 1;
}
void helper_pmon(CPUMIPSState *env, int function)
{
function /= 2;
switch (function) {
case 2: /* TODO: char inbyte(int waitflag); */
if (env->active_tc.gpr[4] == 0) {
env->active_tc.gpr[2] = -1;
}
/* Fall through */
case 11: /* TODO: char inbyte (void); */
env->active_tc.gpr[2] = -1;
break;
case 3:
case 12:
printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
break;
case 17:
break;
case 158:
{
unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
printf("%s", fmt);
}
break;
}
}
void helper_wait(CPUMIPSState *env)
{
CPUState *cs = env_cpu(env);
cs->halted = 1;
cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
/*
* Last instruction in the block, PC was updated before
* - no need to recover PC and icount.
*/
raise_exception(env, EXCP_HLT);
}
#if !defined(CONFIG_USER_ONLY)
void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int error_code = 0;
int excp;
if (!(env->hflags & MIPS_HFLAG_DM)) {
env->CP0_BadVAddr = addr;
}
if (access_type == MMU_DATA_STORE) {
excp = EXCP_AdES;
} else {
excp = EXCP_AdEL;
if (access_type == MMU_INST_FETCH) {
error_code |= EXCP_INST_NOTAVAIL;
}
}
do_raise_exception_err(env, excp, error_code, retaddr);
}
void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
if (access_type == MMU_INST_FETCH) {
do_raise_exception(env, EXCP_IBE, retaddr);
} else {
do_raise_exception(env, EXCP_DBE, retaddr);
}
}
#endif /* !CONFIG_USER_ONLY */
void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
{
#ifndef CONFIG_USER_ONLY
static const char *const type_name[] = {
"Primary Instruction",
"Primary Data or Unified Primary",
"Tertiary",
"Secondary"
};
uint32_t cache_type = extract32(op, 0, 2);
uint32_t cache_operation = extract32(op, 2, 3);
target_ulong index = addr & 0x1fffffff;
switch (cache_operation) {
case 0b010: /* Index Store Tag */
memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
MO_64, MEMTXATTRS_UNSPECIFIED);
break;
case 0b001: /* Index Load Tag */
memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
MO_64, MEMTXATTRS_UNSPECIFIED);
break;
case 0b000: /* Index Invalidate */
case 0b100: /* Hit Invalidate */
case 0b110: /* Hit Writeback */
/* no-op */
break;
default:
qemu_log_mask(LOG_UNIMP, "cache operation:%u (type: %s cache)\n",
cache_operation, type_name[cache_type]);
break;
}
#endif
}