| /* |
| * PowerPC emulation helpers for qemu. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "exec.h" |
| #include "host-utils.h" |
| |
| #include "helper_regs.h" |
| #include "op_helper.h" |
| |
| #define MEMSUFFIX _raw |
| #include "op_helper.h" |
| #include "op_helper_mem.h" |
| #if !defined(CONFIG_USER_ONLY) |
| #define MEMSUFFIX _user |
| #include "op_helper.h" |
| #include "op_helper_mem.h" |
| #define MEMSUFFIX _kernel |
| #include "op_helper.h" |
| #include "op_helper_mem.h" |
| #define MEMSUFFIX _hypv |
| #include "op_helper.h" |
| #include "op_helper_mem.h" |
| #endif |
| |
| //#define DEBUG_OP |
| //#define DEBUG_EXCEPTIONS |
| //#define DEBUG_SOFTWARE_TLB |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| |
| void do_raise_exception_err (uint32_t exception, int error_code) |
| { |
| #if 0 |
| printf("Raise exception %3x code : %d\n", exception, error_code); |
| #endif |
| env->exception_index = exception; |
| env->error_code = error_code; |
| cpu_loop_exit(); |
| } |
| |
| void do_raise_exception (uint32_t exception) |
| { |
| do_raise_exception_err(exception, 0); |
| } |
| |
| void cpu_dump_EA (target_ulong EA); |
| void do_print_mem_EA (target_ulong EA) |
| { |
| cpu_dump_EA(EA); |
| } |
| |
| /*****************************************************************************/ |
| /* Registers load and stores */ |
| void do_load_cr (void) |
| { |
| T0 = (env->crf[0] << 28) | |
| (env->crf[1] << 24) | |
| (env->crf[2] << 20) | |
| (env->crf[3] << 16) | |
| (env->crf[4] << 12) | |
| (env->crf[5] << 8) | |
| (env->crf[6] << 4) | |
| (env->crf[7] << 0); |
| } |
| |
| void do_store_cr (uint32_t mask) |
| { |
| int i, sh; |
| |
| for (i = 0, sh = 7; i < 8; i++, sh--) { |
| if (mask & (1 << sh)) |
| env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_store_pri (int prio) |
| { |
| env->spr[SPR_PPR] &= ~0x001C000000000000ULL; |
| env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; |
| } |
| #endif |
| |
| target_ulong ppc_load_dump_spr (int sprn) |
| { |
| if (loglevel != 0) { |
| fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
| sprn, sprn, env->spr[sprn]); |
| } |
| |
| return env->spr[sprn]; |
| } |
| |
| void ppc_store_dump_spr (int sprn, target_ulong val) |
| { |
| if (loglevel != 0) { |
| fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", |
| sprn, sprn, env->spr[sprn], val); |
| } |
| env->spr[sprn] = val; |
| } |
| |
| /*****************************************************************************/ |
| /* Fixed point operations helpers */ |
| void do_adde (void) |
| { |
| T2 = T0; |
| T0 += T1 + xer_ca; |
| if (likely(!((uint32_t)T0 < (uint32_t)T2 || |
| (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_adde_64 (void) |
| { |
| T2 = T0; |
| T0 += T1 + xer_ca; |
| if (likely(!((uint64_t)T0 < (uint64_t)T2 || |
| (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| #endif |
| |
| void do_addmeo (void) |
| { |
| T1 = T0; |
| T0 += xer_ca + (-1); |
| xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31; |
| xer_so |= xer_ov; |
| if (likely(T1 != 0)) |
| xer_ca = 1; |
| else |
| xer_ca = 0; |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_addmeo_64 (void) |
| { |
| T1 = T0; |
| T0 += xer_ca + (-1); |
| xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63; |
| xer_so |= xer_ov; |
| if (likely(T1 != 0)) |
| xer_ca = 1; |
| else |
| xer_ca = 0; |
| } |
| #endif |
| |
| void do_divwo (void) |
| { |
| if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
| (int32_t)T1 == 0))) { |
| xer_ov = 0; |
| T0 = (int32_t)T0 / (int32_t)T1; |
| } else { |
| xer_ov = 1; |
| T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
| } |
| xer_so |= xer_ov; |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_divdo (void) |
| { |
| if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) || |
| (int64_t)T1 == 0))) { |
| xer_ov = 0; |
| T0 = (int64_t)T0 / (int64_t)T1; |
| } else { |
| xer_ov = 1; |
| T0 = UINT64_MAX * ((uint64_t)T0 >> 63); |
| } |
| xer_so |= xer_ov; |
| } |
| #endif |
| |
| void do_divwuo (void) |
| { |
| if (likely((uint32_t)T1 != 0)) { |
| xer_ov = 0; |
| T0 = (uint32_t)T0 / (uint32_t)T1; |
| } else { |
| xer_ov = 1; |
| xer_so = 1; |
| T0 = 0; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_divduo (void) |
| { |
| if (likely((uint64_t)T1 != 0)) { |
| xer_ov = 0; |
| T0 = (uint64_t)T0 / (uint64_t)T1; |
| } else { |
| xer_ov = 1; |
| xer_so = 1; |
| T0 = 0; |
| } |
| } |
| #endif |
| |
| void do_mullwo (void) |
| { |
| int64_t res = (int64_t)T0 * (int64_t)T1; |
| |
| if (likely((int32_t)res == res)) { |
| xer_ov = 0; |
| } else { |
| xer_ov = 1; |
| xer_so = 1; |
| } |
| T0 = (int32_t)res; |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_mulldo (void) |
| { |
| int64_t th; |
| uint64_t tl; |
| |
| muls64(&tl, &th, T0, T1); |
| T0 = (int64_t)tl; |
| /* If th != 0 && th != -1, then we had an overflow */ |
| if (likely((uint64_t)(th + 1) <= 1)) { |
| xer_ov = 0; |
| } else { |
| xer_ov = 1; |
| } |
| xer_so |= xer_ov; |
| } |
| #endif |
| |
| void do_nego (void) |
| { |
| if (likely((int32_t)T0 != INT32_MIN)) { |
| xer_ov = 0; |
| T0 = -(int32_t)T0; |
| } else { |
| xer_ov = 1; |
| xer_so = 1; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_nego_64 (void) |
| { |
| if (likely((int64_t)T0 != INT64_MIN)) { |
| xer_ov = 0; |
| T0 = -(int64_t)T0; |
| } else { |
| xer_ov = 1; |
| xer_so = 1; |
| } |
| } |
| #endif |
| |
| void do_subfe (void) |
| { |
| T0 = T1 + ~T0 + xer_ca; |
| if (likely((uint32_t)T0 >= (uint32_t)T1 && |
| (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_subfe_64 (void) |
| { |
| T0 = T1 + ~T0 + xer_ca; |
| if (likely((uint64_t)T0 >= (uint64_t)T1 && |
| (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| #endif |
| |
| void do_subfmeo (void) |
| { |
| T1 = T0; |
| T0 = ~T0 + xer_ca - 1; |
| xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31; |
| xer_so |= xer_ov; |
| if (likely((uint32_t)T1 != UINT32_MAX)) |
| xer_ca = 1; |
| else |
| xer_ca = 0; |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_subfmeo_64 (void) |
| { |
| T1 = T0; |
| T0 = ~T0 + xer_ca - 1; |
| xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63; |
| xer_so |= xer_ov; |
| if (likely((uint64_t)T1 != UINT64_MAX)) |
| xer_ca = 1; |
| else |
| xer_ca = 0; |
| } |
| #endif |
| |
| void do_subfzeo (void) |
| { |
| T1 = T0; |
| T0 = ~T0 + xer_ca; |
| xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) & |
| ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31; |
| xer_so |= xer_ov; |
| if (likely((uint32_t)T0 >= (uint32_t)~T1)) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_subfzeo_64 (void) |
| { |
| T1 = T0; |
| T0 = ~T0 + xer_ca; |
| xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) & |
| ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63; |
| xer_so |= xer_ov; |
| if (likely((uint64_t)T0 >= (uint64_t)~T1)) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| #endif |
| |
| void do_cntlzw (void) |
| { |
| T0 = clz32(T0); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_cntlzd (void) |
| { |
| T0 = clz64(T0); |
| } |
| #endif |
| |
| /* shift right arithmetic helper */ |
| void do_sraw (void) |
| { |
| int32_t ret; |
| |
| if (likely(!(T1 & 0x20UL))) { |
| if (likely((uint32_t)T1 != 0)) { |
| ret = (int32_t)T0 >> (T1 & 0x1fUL); |
| if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } else { |
| ret = T0; |
| xer_ca = 0; |
| } |
| } else { |
| ret = UINT32_MAX * ((uint32_t)T0 >> 31); |
| if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| T0 = ret; |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_srad (void) |
| { |
| int64_t ret; |
| |
| if (likely(!(T1 & 0x40UL))) { |
| if (likely((uint64_t)T1 != 0)) { |
| ret = (int64_t)T0 >> (T1 & 0x3FUL); |
| if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } else { |
| ret = T0; |
| xer_ca = 0; |
| } |
| } else { |
| ret = UINT64_MAX * ((uint64_t)T0 >> 63); |
| if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { |
| xer_ca = 0; |
| } else { |
| xer_ca = 1; |
| } |
| } |
| T0 = ret; |
| } |
| #endif |
| |
| void do_popcntb (void) |
| { |
| uint32_t ret; |
| int i; |
| |
| ret = 0; |
| for (i = 0; i < 32; i += 8) |
| ret |= ctpop8((T0 >> i) & 0xFF) << i; |
| T0 = ret; |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_popcntb_64 (void) |
| { |
| uint64_t ret; |
| int i; |
| |
| ret = 0; |
| for (i = 0; i < 64; i += 8) |
| ret |= ctpop8((T0 >> i) & 0xFF) << i; |
| T0 = ret; |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Floating point operations helpers */ |
| static always_inline int fpisneg (float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return u.ll >> 63 != 0; |
| } |
| |
| static always_inline int isden (float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return ((u.ll >> 52) & 0x7FF) == 0; |
| } |
| |
| static always_inline int iszero (float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return (u.ll & ~0x8000000000000000ULL) == 0; |
| } |
| |
| static always_inline int isinfinity (float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return ((u.ll >> 52) & 0x7FF) == 0x7FF && |
| (u.ll & 0x000FFFFFFFFFFFFFULL) == 0; |
| } |
| |
| #ifdef CONFIG_SOFTFLOAT |
| static always_inline int isfinite (float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return (((u.ll >> 52) & 0x7FF) != 0x7FF); |
| } |
| |
| static always_inline int isnormal (float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| uint32_t exp = (u.ll >> 52) & 0x7FF; |
| return ((0 < exp) && (exp < 0x7FF)); |
| } |
| #endif |
| |
| void do_compute_fprf (int set_fprf) |
| { |
| int isneg; |
| |
| isneg = fpisneg(FT0); |
| if (unlikely(float64_is_nan(FT0))) { |
| if (float64_is_signaling_nan(FT0)) { |
| /* Signaling NaN: flags are undefined */ |
| T0 = 0x00; |
| } else { |
| /* Quiet NaN */ |
| T0 = 0x11; |
| } |
| } else if (unlikely(isinfinity(FT0))) { |
| /* +/- infinity */ |
| if (isneg) |
| T0 = 0x09; |
| else |
| T0 = 0x05; |
| } else { |
| if (iszero(FT0)) { |
| /* +/- zero */ |
| if (isneg) |
| T0 = 0x12; |
| else |
| T0 = 0x02; |
| } else { |
| if (isden(FT0)) { |
| /* Denormalized numbers */ |
| T0 = 0x10; |
| } else { |
| /* Normalized numbers */ |
| T0 = 0x00; |
| } |
| if (isneg) { |
| T0 |= 0x08; |
| } else { |
| T0 |= 0x04; |
| } |
| } |
| } |
| if (set_fprf) { |
| /* We update FPSCR_FPRF */ |
| env->fpscr &= ~(0x1F << FPSCR_FPRF); |
| env->fpscr |= T0 << FPSCR_FPRF; |
| } |
| /* We just need fpcc to update Rc1 */ |
| T0 &= 0xF; |
| } |
| |
| /* Floating-point invalid operations exception */ |
| static always_inline void fload_invalid_op_excp (int op) |
| { |
| int ve; |
| |
| ve = fpscr_ve; |
| if (op & POWERPC_EXCP_FP_VXSNAN) { |
| /* Operation on signaling NaN */ |
| env->fpscr |= 1 << FPSCR_VXSNAN; |
| } |
| if (op & POWERPC_EXCP_FP_VXSOFT) { |
| /* Software-defined condition */ |
| env->fpscr |= 1 << FPSCR_VXSOFT; |
| } |
| switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { |
| case POWERPC_EXCP_FP_VXISI: |
| /* Magnitude subtraction of infinities */ |
| env->fpscr |= 1 << FPSCR_VXISI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIDI: |
| /* Division of infinity by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIDI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXZDZ: |
| /* Division of zero by zero */ |
| env->fpscr |= 1 << FPSCR_VXZDZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIMZ: |
| /* Multiplication of zero by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIMZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXVC: |
| /* Ordered comparison of NaN */ |
| env->fpscr |= 1 << FPSCR_VXVC; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| /* We must update the target FPR before raising the exception */ |
| if (ve != 0) { |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* Exception is differed */ |
| ve = 0; |
| } |
| break; |
| case POWERPC_EXCP_FP_VXSQRT: |
| /* Square root of a negative number */ |
| env->fpscr |= 1 << FPSCR_VXSQRT; |
| update_arith: |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| FT0 = UINT64_MAX; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| break; |
| case POWERPC_EXCP_FP_VXCVI: |
| /* Invalid conversion */ |
| env->fpscr |= 1 << FPSCR_VXCVI; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| FT0 = UINT64_MAX; |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| break; |
| } |
| /* Update the floating-point invalid operation summary */ |
| env->fpscr |= 1 << FPSCR_VX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (ve != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); |
| } |
| } |
| |
| static always_inline void float_zero_divide_excp (void) |
| { |
| CPU_DoubleU u0, u1; |
| |
| env->fpscr |= 1 << FPSCR_ZX; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); |
| } |
| } else { |
| /* Set the result to infinity */ |
| u0.d = FT0; |
| u1.d = FT1; |
| u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL); |
| u0.ll |= 0x7FFULL << 52; |
| FT0 = u0.d; |
| } |
| } |
| |
| static always_inline void float_overflow_excp (void) |
| { |
| env->fpscr |= 1 << FPSCR_OX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| } else { |
| env->fpscr |= 1 << FPSCR_XX; |
| env->fpscr |= 1 << FPSCR_FI; |
| } |
| } |
| |
| static always_inline void float_underflow_excp (void) |
| { |
| env->fpscr |= 1 << FPSCR_UX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| } |
| } |
| |
| static always_inline void float_inexact_excp (void) |
| { |
| env->fpscr |= 1 << FPSCR_XX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| } |
| } |
| |
| static always_inline void fpscr_set_rounding_mode (void) |
| { |
| int rnd_type; |
| |
| /* Set rounding mode */ |
| switch (fpscr_rn) { |
| case 0: |
| /* Best approximation (round to nearest) */ |
| rnd_type = float_round_nearest_even; |
| break; |
| case 1: |
| /* Smaller magnitude (round toward zero) */ |
| rnd_type = float_round_to_zero; |
| break; |
| case 2: |
| /* Round toward +infinite */ |
| rnd_type = float_round_up; |
| break; |
| default: |
| case 3: |
| /* Round toward -infinite */ |
| rnd_type = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_type, &env->fp_status); |
| } |
| |
| void do_fpscr_setbit (int bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr |= 1 << bit; |
| if (prev == 0) { |
| switch (bit) { |
| case FPSCR_VX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve) |
| goto raise_ve; |
| case FPSCR_OX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe) |
| goto raise_oe; |
| break; |
| case FPSCR_UX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue) |
| goto raise_ue; |
| break; |
| case FPSCR_ZX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze) |
| goto raise_ze; |
| break; |
| case FPSCR_XX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe) |
| goto raise_xe; |
| break; |
| case FPSCR_VXSNAN: |
| case FPSCR_VXISI: |
| case FPSCR_VXIDI: |
| case FPSCR_VXZDZ: |
| case FPSCR_VXIMZ: |
| case FPSCR_VXVC: |
| case FPSCR_VXSOFT: |
| case FPSCR_VXSQRT: |
| case FPSCR_VXCVI: |
| env->fpscr |= 1 << FPSCR_VX; |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve != 0) |
| goto raise_ve; |
| break; |
| case FPSCR_VE: |
| if (fpscr_vx != 0) { |
| raise_ve: |
| env->error_code = POWERPC_EXCP_FP; |
| if (fpscr_vxsnan) |
| env->error_code |= POWERPC_EXCP_FP_VXSNAN; |
| if (fpscr_vxisi) |
| env->error_code |= POWERPC_EXCP_FP_VXISI; |
| if (fpscr_vxidi) |
| env->error_code |= POWERPC_EXCP_FP_VXIDI; |
| if (fpscr_vxzdz) |
| env->error_code |= POWERPC_EXCP_FP_VXZDZ; |
| if (fpscr_vximz) |
| env->error_code |= POWERPC_EXCP_FP_VXIMZ; |
| if (fpscr_vxvc) |
| env->error_code |= POWERPC_EXCP_FP_VXVC; |
| if (fpscr_vxsoft) |
| env->error_code |= POWERPC_EXCP_FP_VXSOFT; |
| if (fpscr_vxsqrt) |
| env->error_code |= POWERPC_EXCP_FP_VXSQRT; |
| if (fpscr_vxcvi) |
| env->error_code |= POWERPC_EXCP_FP_VXCVI; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_OE: |
| if (fpscr_ox != 0) { |
| raise_oe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_UE: |
| if (fpscr_ux != 0) { |
| raise_ue: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_ZE: |
| if (fpscr_zx != 0) { |
| raise_ze: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_XE: |
| if (fpscr_xx != 0) { |
| raise_xe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_RN1: |
| case FPSCR_RN: |
| fpscr_set_rounding_mode(); |
| break; |
| default: |
| break; |
| raise_excp: |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We have to update Rc1 before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| break; |
| } |
| } |
| } |
| |
| #if defined(WORDS_BIGENDIAN) |
| #define WORD0 0 |
| #define WORD1 1 |
| #else |
| #define WORD0 1 |
| #define WORD1 0 |
| #endif |
| void do_store_fpscr (uint32_t mask) |
| { |
| /* |
| * We use only the 32 LSB of the incoming fpr |
| */ |
| CPU_DoubleU u; |
| uint32_t prev, new; |
| int i; |
| |
| u.d = FT0; |
| prev = env->fpscr; |
| new = u.l.lower; |
| new &= ~0x90000000; |
| new |= prev & 0x90000000; |
| for (i = 0; i < 7; i++) { |
| if (mask & (1 << i)) { |
| env->fpscr &= ~(0xF << (4 * i)); |
| env->fpscr |= new & (0xF << (4 * i)); |
| } |
| } |
| /* Update VX and FEX */ |
| if (fpscr_ix != 0) |
| env->fpscr |= 1 << FPSCR_VX; |
| else |
| env->fpscr &= ~(1 << FPSCR_VX); |
| if ((fpscr_ex & fpscr_eex) != 0) { |
| env->fpscr |= 1 << FPSCR_FEX; |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| /* XXX: we should compute it properly */ |
| env->error_code = POWERPC_EXCP_FP; |
| } |
| else |
| env->fpscr &= ~(1 << FPSCR_FEX); |
| fpscr_set_rounding_mode(); |
| } |
| #undef WORD0 |
| #undef WORD1 |
| |
| #ifdef CONFIG_SOFTFLOAT |
| void do_float_check_status (void) |
| { |
| if (env->exception_index == POWERPC_EXCP_PROGRAM && |
| (env->error_code & POWERPC_EXCP_FP)) { |
| /* Differred floating-point exception after target FPR update */ |
| if (msr_fe0 != 0 || msr_fe1 != 0) |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } else if (env->fp_status.float_exception_flags & float_flag_overflow) { |
| float_overflow_excp(); |
| } else if (env->fp_status.float_exception_flags & float_flag_underflow) { |
| float_underflow_excp(); |
| } else if (env->fp_status.float_exception_flags & float_flag_inexact) { |
| float_inexact_excp(); |
| } |
| } |
| #endif |
| |
| #if USE_PRECISE_EMULATION |
| void do_fadd (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1))) { |
| /* sNaN addition */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (likely(isfinite(FT0) || isfinite(FT1) || |
| fpisneg(FT0) == fpisneg(FT1))) { |
| FT0 = float64_add(FT0, FT1, &env->fp_status); |
| } else { |
| /* Magnitude subtraction of infinities */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } |
| } |
| |
| void do_fsub (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1))) { |
| /* sNaN subtraction */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (likely(isfinite(FT0) || isfinite(FT1) || |
| fpisneg(FT0) != fpisneg(FT1))) { |
| FT0 = float64_sub(FT0, FT1, &env->fp_status); |
| } else { |
| /* Magnitude subtraction of infinities */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
| } |
| } |
| |
| void do_fmul (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1))) { |
| /* sNaN multiplication */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely((isinfinity(FT0) && iszero(FT1)) || |
| (iszero(FT0) && isinfinity(FT1)))) { |
| /* Multiplication of zero by infinity */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
| } else { |
| FT0 = float64_mul(FT0, FT1, &env->fp_status); |
| } |
| } |
| |
| void do_fdiv (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1))) { |
| /* sNaN division */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { |
| /* Division of infinity by infinity */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); |
| } else if (unlikely(iszero(FT1))) { |
| if (iszero(FT0)) { |
| /* Division of zero by zero */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); |
| } else { |
| /* Division by zero */ |
| float_zero_divide_excp(); |
| } |
| } else { |
| FT0 = float64_div(FT0, FT1, &env->fp_status); |
| } |
| } |
| #endif /* USE_PRECISE_EMULATION */ |
| |
| void do_fctiw (void) |
| { |
| CPU_DoubleU p; |
| |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
| /* qNan / infinity conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| p.ll = float64_to_int32(FT0, &env->fp_status); |
| #if USE_PRECISE_EMULATION |
| /* XXX: higher bits are not supposed to be significant. |
| * to make tests easier, return the same as a real PowerPC 750 |
| */ |
| p.ll |= 0xFFF80000ULL << 32; |
| #endif |
| FT0 = p.d; |
| } |
| } |
| |
| void do_fctiwz (void) |
| { |
| CPU_DoubleU p; |
| |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
| /* qNan / infinity conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status); |
| #if USE_PRECISE_EMULATION |
| /* XXX: higher bits are not supposed to be significant. |
| * to make tests easier, return the same as a real PowerPC 750 |
| */ |
| p.ll |= 0xFFF80000ULL << 32; |
| #endif |
| FT0 = p.d; |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_fcfid (void) |
| { |
| CPU_DoubleU p; |
| |
| p.d = FT0; |
| FT0 = int64_to_float64(p.ll, &env->fp_status); |
| } |
| |
| void do_fctid (void) |
| { |
| CPU_DoubleU p; |
| |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
| /* qNan / infinity conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| p.ll = float64_to_int64(FT0, &env->fp_status); |
| FT0 = p.d; |
| } |
| } |
| |
| void do_fctidz (void) |
| { |
| CPU_DoubleU p; |
| |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
| /* qNan / infinity conversion */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status); |
| FT0 = p.d; |
| } |
| } |
| |
| #endif |
| |
| static always_inline void do_fri (int rounding_mode) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN round */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
| } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
| /* qNan / infinity round */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
| } else { |
| set_float_rounding_mode(rounding_mode, &env->fp_status); |
| FT0 = float64_round_to_int(FT0, &env->fp_status); |
| /* Restore rounding mode from FPSCR */ |
| fpscr_set_rounding_mode(); |
| } |
| } |
| |
| void do_frin (void) |
| { |
| do_fri(float_round_nearest_even); |
| } |
| |
| void do_friz (void) |
| { |
| do_fri(float_round_to_zero); |
| } |
| |
| void do_frip (void) |
| { |
| do_fri(float_round_up); |
| } |
| |
| void do_frim (void) |
| { |
| do_fri(float_round_down); |
| } |
| |
| #if USE_PRECISE_EMULATION |
| void do_fmadd (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1) || |
| float64_is_signaling_nan(FT2))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(FT0, &env->fp_status); |
| ft1_128 = float64_to_float128(FT1, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| ft1_128 = float64_to_float128(FT2, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| FT0 = float128_to_float64(ft0_128, &env->fp_status); |
| #else |
| /* This is OK on x86 hosts */ |
| FT0 = (FT0 * FT1) + FT2; |
| #endif |
| } |
| } |
| |
| void do_fmsub (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1) || |
| float64_is_signaling_nan(FT2))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(FT0, &env->fp_status); |
| ft1_128 = float64_to_float128(FT1, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| ft1_128 = float64_to_float128(FT2, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| FT0 = float128_to_float64(ft0_128, &env->fp_status); |
| #else |
| /* This is OK on x86 hosts */ |
| FT0 = (FT0 * FT1) - FT2; |
| #endif |
| } |
| } |
| #endif /* USE_PRECISE_EMULATION */ |
| |
| void do_fnmadd (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1) || |
| float64_is_signaling_nan(FT2))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| #if USE_PRECISE_EMULATION |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(FT0, &env->fp_status); |
| ft1_128 = float64_to_float128(FT1, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| ft1_128 = float64_to_float128(FT2, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| FT0 = float128_to_float64(ft0_128, &env->fp_status); |
| #else |
| /* This is OK on x86 hosts */ |
| FT0 = (FT0 * FT1) + FT2; |
| #endif |
| #else |
| FT0 = float64_mul(FT0, FT1, &env->fp_status); |
| FT0 = float64_add(FT0, FT2, &env->fp_status); |
| #endif |
| if (likely(!isnan(FT0))) |
| FT0 = float64_chs(FT0); |
| } |
| } |
| |
| void do_fnmsub (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1) || |
| float64_is_signaling_nan(FT2))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| #if USE_PRECISE_EMULATION |
| #ifdef FLOAT128 |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(FT0, &env->fp_status); |
| ft1_128 = float64_to_float128(FT1, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| ft1_128 = float64_to_float128(FT2, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| FT0 = float128_to_float64(ft0_128, &env->fp_status); |
| #else |
| /* This is OK on x86 hosts */ |
| FT0 = (FT0 * FT1) - FT2; |
| #endif |
| #else |
| FT0 = float64_mul(FT0, FT1, &env->fp_status); |
| FT0 = float64_sub(FT0, FT2, &env->fp_status); |
| #endif |
| if (likely(!isnan(FT0))) |
| FT0 = float64_chs(FT0); |
| } |
| } |
| |
| #if USE_PRECISE_EMULATION |
| void do_frsp (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN square root */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| FT0 = float64_to_float32(FT0, &env->fp_status); |
| } |
| } |
| #endif /* USE_PRECISE_EMULATION */ |
| |
| void do_fsqrt (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN square root */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { |
| /* Square root of a negative nonzero number */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
| } else { |
| FT0 = float64_sqrt(FT0, &env->fp_status); |
| } |
| } |
| |
| void do_fre (void) |
| { |
| CPU_DoubleU p; |
| |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN reciprocal */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(iszero(FT0))) { |
| /* Zero reciprocal */ |
| float_zero_divide_excp(); |
| } else if (likely(isnormal(FT0))) { |
| FT0 = float64_div(1.0, FT0, &env->fp_status); |
| } else { |
| p.d = FT0; |
| if (p.ll == 0x8000000000000000ULL) { |
| p.ll = 0xFFF0000000000000ULL; |
| } else if (p.ll == 0x0000000000000000ULL) { |
| p.ll = 0x7FF0000000000000ULL; |
| } else if (isnan(FT0)) { |
| p.ll = 0x7FF8000000000000ULL; |
| } else if (fpisneg(FT0)) { |
| p.ll = 0x8000000000000000ULL; |
| } else { |
| p.ll = 0x0000000000000000ULL; |
| } |
| FT0 = p.d; |
| } |
| } |
| |
| void do_fres (void) |
| { |
| CPU_DoubleU p; |
| |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN reciprocal */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(iszero(FT0))) { |
| /* Zero reciprocal */ |
| float_zero_divide_excp(); |
| } else if (likely(isnormal(FT0))) { |
| #if USE_PRECISE_EMULATION |
| FT0 = float64_div(1.0, FT0, &env->fp_status); |
| FT0 = float64_to_float32(FT0, &env->fp_status); |
| #else |
| FT0 = float32_div(1.0, FT0, &env->fp_status); |
| #endif |
| } else { |
| p.d = FT0; |
| if (p.ll == 0x8000000000000000ULL) { |
| p.ll = 0xFFF0000000000000ULL; |
| } else if (p.ll == 0x0000000000000000ULL) { |
| p.ll = 0x7FF0000000000000ULL; |
| } else if (isnan(FT0)) { |
| p.ll = 0x7FF8000000000000ULL; |
| } else if (fpisneg(FT0)) { |
| p.ll = 0x8000000000000000ULL; |
| } else { |
| p.ll = 0x0000000000000000ULL; |
| } |
| FT0 = p.d; |
| } |
| } |
| |
| void do_frsqrte (void) |
| { |
| CPU_DoubleU p; |
| |
| if (unlikely(float64_is_signaling_nan(FT0))) { |
| /* sNaN reciprocal square root */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { |
| /* Reciprocal square root of a negative nonzero number */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
| } else if (likely(isnormal(FT0))) { |
| FT0 = float64_sqrt(FT0, &env->fp_status); |
| FT0 = float32_div(1.0, FT0, &env->fp_status); |
| } else { |
| p.d = FT0; |
| if (p.ll == 0x8000000000000000ULL) { |
| p.ll = 0xFFF0000000000000ULL; |
| } else if (p.ll == 0x0000000000000000ULL) { |
| p.ll = 0x7FF0000000000000ULL; |
| } else if (isnan(FT0)) { |
| p.ll |= 0x000FFFFFFFFFFFFFULL; |
| } else if (fpisneg(FT0)) { |
| p.ll = 0x7FF8000000000000ULL; |
| } else { |
| p.ll = 0x0000000000000000ULL; |
| } |
| FT0 = p.d; |
| } |
| } |
| |
| void do_fsel (void) |
| { |
| if (!fpisneg(FT0) || iszero(FT0)) |
| FT0 = FT1; |
| else |
| FT0 = FT2; |
| } |
| |
| void do_fcmpu (void) |
| { |
| if (unlikely(float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1))) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
| } else { |
| if (float64_lt(FT0, FT1, &env->fp_status)) { |
| T0 = 0x08UL; |
| } else if (!float64_le(FT0, FT1, &env->fp_status)) { |
| T0 = 0x04UL; |
| } else { |
| T0 = 0x02UL; |
| } |
| } |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= T0 << FPSCR_FPRF; |
| } |
| |
| void do_fcmpo (void) |
| { |
| if (unlikely(float64_is_nan(FT0) || |
| float64_is_nan(FT1))) { |
| if (float64_is_signaling_nan(FT0) || |
| float64_is_signaling_nan(FT1)) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXVC); |
| } else { |
| /* qNaN comparison */ |
| fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); |
| } |
| } else { |
| if (float64_lt(FT0, FT1, &env->fp_status)) { |
| T0 = 0x08UL; |
| } else if (!float64_le(FT0, FT1, &env->fp_status)) { |
| T0 = 0x04UL; |
| } else { |
| T0 = 0x02UL; |
| } |
| } |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= T0 << FPSCR_FPRF; |
| } |
| |
| #if !defined (CONFIG_USER_ONLY) |
| void cpu_dump_rfi (target_ulong RA, target_ulong msr); |
| |
| void do_store_msr (void) |
| { |
| T0 = hreg_store_msr(env, T0, 0); |
| if (T0 != 0) { |
| env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| do_raise_exception(T0); |
| } |
| } |
| |
| static always_inline void __do_rfi (target_ulong nip, target_ulong msr, |
| target_ulong msrm, int keep_msrh) |
| { |
| #if defined(TARGET_PPC64) |
| if (msr & (1ULL << MSR_SF)) { |
| nip = (uint64_t)nip; |
| msr &= (uint64_t)msrm; |
| } else { |
| nip = (uint32_t)nip; |
| msr = (uint32_t)(msr & msrm); |
| if (keep_msrh) |
| msr |= env->msr & ~((uint64_t)0xFFFFFFFF); |
| } |
| #else |
| nip = (uint32_t)nip; |
| msr &= (uint32_t)msrm; |
| #endif |
| /* XXX: beware: this is false if VLE is supported */ |
| env->nip = nip & ~((target_ulong)0x00000003); |
| hreg_store_msr(env, msr, 1); |
| #if defined (DEBUG_OP) |
| cpu_dump_rfi(env->nip, env->msr); |
| #endif |
| /* No need to raise an exception here, |
| * as rfi is always the last insn of a TB |
| */ |
| env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| |
| void do_rfi (void) |
| { |
| __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
| ~((target_ulong)0xFFFF0000), 1); |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_rfid (void) |
| { |
| __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
| ~((target_ulong)0xFFFF0000), 0); |
| } |
| |
| void do_hrfid (void) |
| { |
| __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
| ~((target_ulong)0xFFFF0000), 0); |
| } |
| #endif |
| #endif |
| |
| void do_tw (int flags) |
| { |
| if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || |
| ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) || |
| ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) || |
| ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) || |
| ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) { |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
| } |
| } |
| |
| #if defined(TARGET_PPC64) |
| void do_td (int flags) |
| { |
| if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || |
| ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) || |
| ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) || |
| ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) || |
| ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01))))) |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* PowerPC 601 specific instructions (POWER bridge) */ |
| void do_POWER_abso (void) |
| { |
| if ((int32_t)T0 == INT32_MIN) { |
| T0 = INT32_MAX; |
| xer_ov = 1; |
| } else if ((int32_t)T0 < 0) { |
| T0 = -T0; |
| xer_ov = 0; |
| } else { |
| xer_ov = 0; |
| } |
| xer_so |= xer_ov; |
| } |
| |
| void do_POWER_clcs (void) |
| { |
| switch (T0) { |
| case 0x0CUL: |
| /* Instruction cache line size */ |
| T0 = env->icache_line_size; |
| break; |
| case 0x0DUL: |
| /* Data cache line size */ |
| T0 = env->dcache_line_size; |
| break; |
| case 0x0EUL: |
| /* Minimum cache line size */ |
| T0 = env->icache_line_size < env->dcache_line_size ? |
| env->icache_line_size : env->dcache_line_size; |
| break; |
| case 0x0FUL: |
| /* Maximum cache line size */ |
| T0 = env->icache_line_size > env->dcache_line_size ? |
| env->icache_line_size : env->dcache_line_size; |
| break; |
| default: |
| /* Undefined */ |
| break; |
| } |
| } |
| |
| void do_POWER_div (void) |
| { |
| uint64_t tmp; |
| |
| if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
| (int32_t)T1 == 0) { |
| T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
| env->spr[SPR_MQ] = 0; |
| } else { |
| tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; |
| env->spr[SPR_MQ] = tmp % T1; |
| T0 = tmp / (int32_t)T1; |
| } |
| } |
| |
| void do_POWER_divo (void) |
| { |
| int64_t tmp; |
| |
| if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
| (int32_t)T1 == 0) { |
| T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
| env->spr[SPR_MQ] = 0; |
| xer_ov = 1; |
| } else { |
| tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; |
| env->spr[SPR_MQ] = tmp % T1; |
| tmp /= (int32_t)T1; |
| if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { |
| xer_ov = 1; |
| } else { |
| xer_ov = 0; |
| } |
| T0 = tmp; |
| } |
| xer_so |= xer_ov; |
| } |
| |
| void do_POWER_divs (void) |
| { |
| if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
| (int32_t)T1 == 0) { |
| T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
| env->spr[SPR_MQ] = 0; |
| } else { |
| env->spr[SPR_MQ] = T0 % T1; |
| T0 = (int32_t)T0 / (int32_t)T1; |
| } |
| } |
| |
| void do_POWER_divso (void) |
| { |
| if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || |
| (int32_t)T1 == 0) { |
| T0 = UINT32_MAX * ((uint32_t)T0 >> 31); |
| env->spr[SPR_MQ] = 0; |
| xer_ov = 1; |
| } else { |
| T0 = (int32_t)T0 / (int32_t)T1; |
| env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; |
| xer_ov = 0; |
| } |
| xer_so |= xer_ov; |
| } |
| |
| void do_POWER_dozo (void) |
| { |
| if ((int32_t)T1 > (int32_t)T0) { |
| T2 = T0; |
| T0 = T1 - T0; |
| if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & |
| ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { |
| xer_ov = 1; |
| xer_so = 1; |
| } else { |
| xer_ov = 0; |
| } |
| } else { |
| T0 = 0; |
| xer_ov = 0; |
| } |
| } |
| |
| void do_POWER_maskg (void) |
| { |
| uint32_t ret; |
| |
| if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { |
| ret = UINT32_MAX; |
| } else { |
| ret = (UINT32_MAX >> ((uint32_t)T0)) ^ |
| ((UINT32_MAX >> ((uint32_t)T1)) >> 1); |
| if ((uint32_t)T0 > (uint32_t)T1) |
| ret = ~ret; |
| } |
| T0 = ret; |
| } |
| |
| void do_POWER_mulo (void) |
| { |
| uint64_t tmp; |
| |
| tmp = (uint64_t)T0 * (uint64_t)T1; |
| env->spr[SPR_MQ] = tmp >> 32; |
| T0 = tmp; |
| if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { |
| xer_ov = 1; |
| xer_so = 1; |
| } else { |
| xer_ov = 0; |
| } |
| } |
| |
| #if !defined (CONFIG_USER_ONLY) |
| void do_POWER_rac (void) |
| { |
| mmu_ctx_t ctx; |
| int nb_BATs; |
| |
| /* We don't have to generate many instances of this instruction, |
| * as rac is supervisor only. |
| */ |
| /* XXX: FIX THIS: Pretend we have no BAT */ |
| nb_BATs = env->nb_BATs; |
| env->nb_BATs = 0; |
| if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0) |
| T0 = ctx.raddr; |
| env->nb_BATs = nb_BATs; |
| } |
| |
| void do_POWER_rfsvc (void) |
| { |
| __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
| } |
| |
| void do_store_hid0_601 (void) |
| { |
| uint32_t hid0; |
| |
| hid0 = env->spr[SPR_HID0]; |
| if ((T0 ^ hid0) & 0x00000008) { |
| /* Change current endianness */ |
| env->hflags &= ~(1 << MSR_LE); |
| env->hflags_nmsr &= ~(1 << MSR_LE); |
| env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE); |
| env->hflags |= env->hflags_nmsr; |
| if (loglevel != 0) { |
| fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", |
| __func__, T0 & 0x8 ? 'l' : 'b', env->hflags); |
| } |
| } |
| env->spr[SPR_HID0] = T0; |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* 602 specific instructions */ |
| /* mfrom is the most crazy instruction ever seen, imho ! */ |
| /* Real implementation uses a ROM table. Do the same */ |
| #define USE_MFROM_ROM_TABLE |
| void do_op_602_mfrom (void) |
| { |
| if (likely(T0 < 602)) { |
| #if defined(USE_MFROM_ROM_TABLE) |
| #include "mfrom_table.c" |
| T0 = mfrom_ROM_table[T0]; |
| #else |
| double d; |
| /* Extremly decomposed: |
| * -T0 / 256 |
| * T0 = 256 * log10(10 + 1.0) + 0.5 |
| */ |
| d = T0; |
| d = float64_div(d, 256, &env->fp_status); |
| d = float64_chs(d); |
| d = exp10(d); // XXX: use float emulation function |
| d = float64_add(d, 1.0, &env->fp_status); |
| d = log10(d); // XXX: use float emulation function |
| d = float64_mul(d, 256, &env->fp_status); |
| d = float64_add(d, 0.5, &env->fp_status); |
| T0 = float64_round_to_int(d, &env->fp_status); |
| #endif |
| } else { |
| T0 = 0; |
| } |
| } |
| |
| /*****************************************************************************/ |
| /* Embedded PowerPC specific helpers */ |
| void do_405_check_sat (void) |
| { |
| if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
| !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { |
| /* Saturate result */ |
| if (T2 >> 31) { |
| T0 = INT32_MIN; |
| } else { |
| T0 = INT32_MAX; |
| } |
| } |
| } |
| |
| /* XXX: to be improved to check access rights when in user-mode */ |
| void do_load_dcr (void) |
| { |
| target_ulong val; |
| |
| if (unlikely(env->dcr_env == NULL)) { |
| if (loglevel != 0) { |
| fprintf(logfile, "No DCR environment\n"); |
| } |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
| } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { |
| if (loglevel != 0) { |
| fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); |
| } |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
| } else { |
| T0 = val; |
| } |
| } |
| |
| void do_store_dcr (void) |
| { |
| if (unlikely(env->dcr_env == NULL)) { |
| if (loglevel != 0) { |
| fprintf(logfile, "No DCR environment\n"); |
| } |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
| } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { |
| if (loglevel != 0) { |
| fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); |
| } |
| do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
| } |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void do_40x_rfci (void) |
| { |
| __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
| ~((target_ulong)0xFFFF0000), 0); |
| } |
| |
| void do_rfci (void) |
| { |
| __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
| ~((target_ulong)0x3FFF0000), 0); |
| } |
| |
| void do_rfdi (void) |
| { |
| __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
| ~((target_ulong)0x3FFF0000), 0); |
| } |
| |
| void do_rfmci (void) |
| { |
| __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
| ~((target_ulong)0x3FFF0000), 0); |
| } |
| |
| void do_load_403_pb (int num) |
| { |
| T0 = env->pb[num]; |
| } |
| |
| void do_store_403_pb (int num) |
| { |
| if (likely(env->pb[num] != T0)) { |
| env->pb[num] = T0; |
| /* Should be optimized */ |
| tlb_flush(env, 1); |
| } |
| } |
| #endif |
| |
| /* 440 specific */ |
| void do_440_dlmzb (void) |
| { |
| target_ulong mask; |
| int i; |
| |
| i = 1; |
| for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
| if ((T0 & mask) == 0) |
| goto done; |
| i++; |
| } |
| for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
| if ((T1 & mask) == 0) |
| break; |
| i++; |
| } |
| done: |
| T0 = i; |
| } |
| |
| /* SPE extension helpers */ |
| /* Use a table to make this quicker */ |
| static uint8_t hbrev[16] = { |
| 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, |
| 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, |
| }; |
| |
| static always_inline uint8_t byte_reverse (uint8_t val) |
| { |
| return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); |
| } |
| |
| static always_inline uint32_t word_reverse (uint32_t val) |
| { |
| return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | |
| (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); |
| } |
| |
| #define MASKBITS 16 // Random value - to be fixed (implementation dependant) |
| void do_brinc (void) |
| { |
| uint32_t a, b, d, mask; |
| |
| mask = UINT32_MAX >> (32 - MASKBITS); |
| a = T0 & mask; |
| b = T1 & mask; |
| d = word_reverse(1 + word_reverse(a | ~b)); |
| T0 = (T0 & ~mask) | (d & b); |
| } |
| |
| #define DO_SPE_OP2(name) \ |
| void do_ev##name (void) \ |
| { \ |
| T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ |
| (uint64_t)_do_e##name(T0_64, T1_64); \ |
| } |
| |
| #define DO_SPE_OP1(name) \ |
| void do_ev##name (void) \ |
| { \ |
| T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ |
| (uint64_t)_do_e##name(T0_64); \ |
| } |
| |
| /* Fixed-point vector arithmetic */ |
| static always_inline uint32_t _do_eabs (uint32_t val) |
| { |
| if ((val & 0x80000000) && val != 0x80000000) |
| val -= val; |
| |
| return val; |
| } |
| |
| static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2) |
| { |
| return op1 + op2; |
| } |
| |
| static always_inline int _do_ecntlsw (uint32_t val) |
| { |
| if (val & 0x80000000) |
| return clz32(~val); |
| else |
| return clz32(val); |
| } |
| |
| static always_inline int _do_ecntlzw (uint32_t val) |
| { |
| return clz32(val); |
| } |
| |
| static always_inline uint32_t _do_eneg (uint32_t val) |
| { |
| if (val != 0x80000000) |
| val -= val; |
| |
| return val; |
| } |
| |
| static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2) |
| { |
| return rotl32(op1, op2); |
| } |
| |
| static always_inline uint32_t _do_erndw (uint32_t val) |
| { |
| return (val + 0x000080000000) & 0xFFFF0000; |
| } |
| |
| static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2) |
| { |
| /* No error here: 6 bits are used */ |
| return op1 << (op2 & 0x3F); |
| } |
| |
| static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2) |
| { |
| /* No error here: 6 bits are used */ |
| return op1 >> (op2 & 0x3F); |
| } |
| |
| static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2) |
| { |
| /* No error here: 6 bits are used */ |
| return op1 >> (op2 & 0x3F); |
| } |
| |
| static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2) |
| { |
| return op2 - op1; |
| } |
| |
| /* evabs */ |
| DO_SPE_OP1(abs); |
| /* evaddw */ |
| DO_SPE_OP2(addw); |
| /* evcntlsw */ |
| DO_SPE_OP1(cntlsw); |
| /* evcntlzw */ |
| DO_SPE_OP1(cntlzw); |
| /* evneg */ |
| DO_SPE_OP1(neg); |
| /* evrlw */ |
| DO_SPE_OP2(rlw); |
| /* evrnd */ |
| DO_SPE_OP1(rndw); |
| /* evslw */ |
| DO_SPE_OP2(slw); |
| /* evsrws */ |
| DO_SPE_OP2(srws); |
| /* evsrwu */ |
| DO_SPE_OP2(srwu); |
| /* evsubfw */ |
| DO_SPE_OP2(subfw); |
| |
| /* evsel is a little bit more complicated... */ |
| static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) |
| { |
| if (n) |
| return op1; |
| else |
| return op2; |
| } |
| |
| void do_evsel (void) |
| { |
| T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | |
| (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); |
| } |
| |
| /* Fixed-point vector comparisons */ |
| #define DO_SPE_CMP(name) \ |
| void do_ev##name (void) \ |
| { \ |
| T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ |
| T1_64 >> 32) << 32, \ |
| _do_e##name(T0_64, T1_64)); \ |
| } |
| |
| static always_inline uint32_t _do_evcmp_merge (int t0, int t1) |
| { |
| return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); |
| } |
| static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) |
| { |
| return op1 == op2 ? 1 : 0; |
| } |
| |
| static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) |
| { |
| return op1 > op2 ? 1 : 0; |
| } |
| |
| static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) |
| { |
| return op1 > op2 ? 1 : 0; |
| } |
| |
| static always_inline int _do_ecmplts (int32_t op1, int32_t op2) |
| { |
| return op1 < op2 ? 1 : 0; |
| } |
| |
| static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) |
| { |
| return op1 < op2 ? 1 : 0; |
| } |
| |
| /* evcmpeq */ |
| DO_SPE_CMP(cmpeq); |
| /* evcmpgts */ |
| DO_SPE_CMP(cmpgts); |
| /* evcmpgtu */ |
| DO_SPE_CMP(cmpgtu); |
| /* evcmplts */ |
| DO_SPE_CMP(cmplts); |
| /* evcmpltu */ |
| DO_SPE_CMP(cmpltu); |
| |
| /* Single precision floating-point conversions from/to integer */ |
| static always_inline uint32_t _do_efscfsi (int32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = int32_to_float32(val, &env->spe_status); |
| |
| return u.l; |
| } |
| |
| static always_inline uint32_t _do_efscfui (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = uint32_to_float32(val, &env->spe_status); |
| |
| return u.l; |
| } |
| |
| static always_inline int32_t _do_efsctsi (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| |
| return float32_to_int32(u.f, &env->spe_status); |
| } |
| |
| static always_inline uint32_t _do_efsctui (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| |
| return float32_to_uint32(u.f, &env->spe_status); |
| } |
| |
| static always_inline int32_t _do_efsctsiz (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| |
| return float32_to_int32_round_to_zero(u.f, &env->spe_status); |
| } |
| |
| static always_inline uint32_t _do_efsctuiz (uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| |
| return float32_to_uint32_round_to_zero(u.f, &env->spe_status); |
| } |
| |
| void do_efscfsi (void) |
| { |
| T0_64 = _do_efscfsi(T0_64); |
| } |
| |
| void do_efscfui (void) |
| { |
| T0_64 = _do_efscfui(T0_64); |
| } |
| |
| void do_efsctsi (void) |
| { |
| T0_64 = _do_efsctsi(T0_64); |
| } |
| |
| void do_efsctui (void) |
| { |
| T0_64 = _do_efsctui(T0_64); |
| } |
| |
| void do_efsctsiz (void) |
| { |
| T0_64 = _do_efsctsiz(T0_64); |
| } |
| |
| void do_efsctuiz (void) |
| { |
| T0_64 = _do_efsctuiz(T0_64); |
| } |
| |
| /* Single precision floating-point conversion to/from fractional */ |
| static always_inline uint32_t _do_efscfsf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = int32_to_float32(val, &env->spe_status); |
| tmp = int64_to_float32(1ULL << 32, &env->spe_status); |
| u.f = float32_div(u.f, tmp, &env->spe_status); |
| |
| return u.l; |
| } |
| |
| static always_inline uint32_t _do_efscfuf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = uint32_to_float32(val, &env->spe_status); |
| tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
| u.f = float32_div(u.f, tmp, &env->spe_status); |
| |
| return u.l; |
| } |
| |
| static always_inline int32_t _do_efsctsf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
| u.f = float32_mul(u.f, tmp, &env->spe_status); |
| |
| return float32_to_int32(u.f, &env->spe_status); |
| } |
| |
| static always_inline uint32_t _do_efsctuf (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
| u.f = float32_mul(u.f, tmp, &env->spe_status); |
| |
| return float32_to_uint32(u.f, &env->spe_status); |
| } |
| |
| static always_inline int32_t _do_efsctsfz (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
| u.f = float32_mul(u.f, tmp, &env->spe_status); |
| |
| return float32_to_int32_round_to_zero(u.f, &env->spe_status); |
| } |
| |
| static always_inline uint32_t _do_efsctufz (uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.f))) |
| return 0; |
| tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
| u.f = float32_mul(u.f, tmp, &env->spe_status); |
| |
| return float32_to_uint32_round_to_zero(u.f, &env->spe_status); |
| } |
| |
| void do_efscfsf (void) |
| { |
| T0_64 = _do_efscfsf(T0_64); |
| } |
| |
| void do_efscfuf (void) |
| { |
| T0_64 = _do_efscfuf(T0_64); |
| } |
| |
| void do_efsctsf (void) |
| { |
| T0_64 = _do_efsctsf(T0_64); |
| } |
| |
| void do_efsctuf (void) |
| { |
| T0_64 = _do_efsctuf(T0_64); |
| } |
| |
| void do_efsctsfz (void) |
| { |
| T0_64 = _do_efsctsfz(T0_64); |
| } |
| |
| void do_efsctufz (void) |
| { |
| T0_64 = _do_efsctufz(T0_64); |
| } |
| |
| /* Double precision floating point helpers */ |
| static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return _do_efdtstlt(op1, op2); |
| } |
| |
| static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return _do_efdtstgt(op1, op2); |
| } |
| |
| static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return _do_efdtsteq(op1, op2); |
| } |
| |
| void do_efdcmplt (void) |
| { |
| T0 = _do_efdcmplt(T0_64, T1_64); |
| } |
| |
| void do_efdcmpgt (void) |
| { |
| T0 = _do_efdcmpgt(T0_64, T1_64); |
| } |
| |
| void do_efdcmpeq (void) |
| { |
| T0 = _do_efdcmpeq(T0_64, T1_64); |
| } |
| |
| /* Double precision floating-point conversion to/from integer */ |
| static always_inline uint64_t _do_efdcfsi (int64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int64_to_float64(val, &env->spe_status); |
| |
| return u.ll; |
| } |
| |
| static always_inline uint64_t _do_efdcfui (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint64_to_float64(val, &env->spe_status); |
| |
| return u.ll; |
| } |
| |
| static always_inline int64_t _do_efdctsi (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| |
| return float64_to_int64(u.d, &env->spe_status); |
| } |
| |
| static always_inline uint64_t _do_efdctui (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| |
| return float64_to_uint64(u.d, &env->spe_status); |
| } |
| |
| static always_inline int64_t _do_efdctsiz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| |
| return float64_to_int64_round_to_zero(u.d, &env->spe_status); |
| } |
| |
| static always_inline uint64_t _do_efdctuiz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| |
| return float64_to_uint64_round_to_zero(u.d, &env->spe_status); |
| } |
| |
| void do_efdcfsi (void) |
| { |
| T0_64 = _do_efdcfsi(T0_64); |
| } |
| |
| void do_efdcfui (void) |
| { |
| T0_64 = _do_efdcfui(T0_64); |
| } |
| |
| void do_efdctsi (void) |
| { |
| T0_64 = _do_efdctsi(T0_64); |
| } |
| |
| void do_efdctui (void) |
| { |
| T0_64 = _do_efdctui(T0_64); |
| } |
| |
| void do_efdctsiz (void) |
| { |
| T0_64 = _do_efdctsiz(T0_64); |
| } |
| |
| void do_efdctuiz (void) |
| { |
| T0_64 = _do_efdctuiz(T0_64); |
| } |
| |
| /* Double precision floating-point conversion to/from fractional */ |
| static always_inline uint64_t _do_efdcfsf (int64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = int32_to_float64(val, &env->spe_status); |
| tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
| u.d = float64_div(u.d, tmp, &env->spe_status); |
| |
| return u.ll; |
| } |
| |
| static always_inline uint64_t _do_efdcfuf (uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = uint32_to_float64(val, &env->spe_status); |
| tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
| u.d = float64_div(u.d, tmp, &env->spe_status); |
| |
| return u.ll; |
| } |
| |
| static always_inline int64_t _do_efdctsf (uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
| u.d = float64_mul(u.d, tmp, &env->spe_status); |
| |
| return float64_to_int32(u.d, &env->spe_status); |
| } |
| |
| static always_inline uint64_t _do_efdctuf (uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
| u.d = float64_mul(u.d, tmp, &env->spe_status); |
| |
| return float64_to_uint32(u.d, &env->spe_status); |
| } |
| |
| static always_inline int64_t _do_efdctsfz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
| u.d = float64_mul(u.d, tmp, &env->spe_status); |
| |
| return float64_to_int32_round_to_zero(u.d, &env->spe_status); |
| } |
| |
| static always_inline uint64_t _do_efdctufz (uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(isnan(u.d))) |
| return 0; |
| tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
| u.d = float64_mul(u.d, tmp, &env->spe_status); |
| |
| return float64_to_uint32_round_to_zero(u.d, &env->spe_status); |
| } |
| |
| void do_efdcfsf (void) |
| { |
| T0_64 = _do_efdcfsf(T0_64); |
| } |
| |
| void do_efdcfuf (void) |
| { |
| T0_64 = _do_efdcfuf(T0_64); |
| } |
| |
| void do_efdctsf (void) |
| { |
| T0_64 = _do_efdctsf(T0_64); |
| } |
| |
| void do_efdctuf (void) |
| { |
| T0_64 = _do_efdctuf(T0_64); |
| } |
| |
| void do_efdctsfz (void) |
| { |
| T0_64 = _do_efdctsfz(T0_64); |
| } |
| |
| void do_efdctufz (void) |
| { |
| T0_64 = _do_efdctufz(T0_64); |
| } |
| |
| /* Floating point conversion between single and double precision */ |
| static always_inline uint32_t _do_efscfd (uint64_t val) |
| { |
| CPU_DoubleU u1; |
| CPU_FloatU u2; |
| |
| u1.ll = val; |
| u2.f = float64_to_float32(u1.d, &env->spe_status); |
| |
| return u2.l; |
| } |
| |
| static always_inline uint64_t _do_efdcfs (uint32_t val) |
| { |
| CPU_DoubleU u2; |
| CPU_FloatU u1; |
| |
| u1.l = val; |
| u2.d = float32_to_float64(u1.f, &env->spe_status); |
| |
| return u2.ll; |
| } |
| |
| void do_efscfd (void) |
| { |
| T0_64 = _do_efscfd(T0_64); |
| } |
| |
| void do_efdcfs (void) |
| { |
| T0_64 = _do_efdcfs(T0_64); |
| } |
| |
| /* Single precision fixed-point vector arithmetic */ |
| /* evfsabs */ |
| DO_SPE_OP1(fsabs); |
| /* evfsnabs */ |
| DO_SPE_OP1(fsnabs); |
| /* evfsneg */ |
| DO_SPE_OP1(fsneg); |
| /* evfsadd */ |
| DO_SPE_OP2(fsadd); |
| /* evfssub */ |
| DO_SPE_OP2(fssub); |
| /* evfsmul */ |
| DO_SPE_OP2(fsmul); |
| /* evfsdiv */ |
| DO_SPE_OP2(fsdiv); |
| |
| /* Single-precision floating-point comparisons */ |
| static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return _do_efststlt(op1, op2); |
| } |
| |
| static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return _do_efststgt(op1, op2); |
| } |
| |
| static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return _do_efststeq(op1, op2); |
| } |
| |
| void do_efscmplt (void) |
| { |
| T0 = _do_efscmplt(T0_64, T1_64); |
| } |
| |
| void do_efscmpgt (void) |
| { |
| T0 = _do_efscmpgt(T0_64, T1_64); |
| } |
| |
| void do_efscmpeq (void) |
| { |
| T0 = _do_efscmpeq(T0_64, T1_64); |
| } |
| |
| /* Single-precision floating-point vector comparisons */ |
| /* evfscmplt */ |
| DO_SPE_CMP(fscmplt); |
| /* evfscmpgt */ |
| DO_SPE_CMP(fscmpgt); |
| /* evfscmpeq */ |
| DO_SPE_CMP(fscmpeq); |
| /* evfststlt */ |
| DO_SPE_CMP(fststlt); |
| /* evfststgt */ |
| DO_SPE_CMP(fststgt); |
| /* evfststeq */ |
| DO_SPE_CMP(fststeq); |
| |
| /* Single-precision floating-point vector conversions */ |
| /* evfscfsi */ |
| DO_SPE_OP1(fscfsi); |
| /* evfscfui */ |
| DO_SPE_OP1(fscfui); |
| /* evfscfuf */ |
| DO_SPE_OP1(fscfuf); |
| /* evfscfsf */ |
| DO_SPE_OP1(fscfsf); |
| /* evfsctsi */ |
| DO_SPE_OP1(fsctsi); |
| /* evfsctui */ |
| DO_SPE_OP1(fsctui); |
| /* evfsctsiz */ |
| DO_SPE_OP1(fsctsiz); |
| /* evfsctuiz */ |
| DO_SPE_OP1(fsctuiz); |
| /* evfsctsf */ |
| DO_SPE_OP1(fsctsf); |
| /* evfsctuf */ |
| DO_SPE_OP1(fsctuf); |
| |
| /*****************************************************************************/ |
| /* Softmmu support */ |
| #if !defined (CONFIG_USER_ONLY) |
| |
| #define MMUSUFFIX _mmu |
| #ifdef __s390__ |
| # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) |
| #else |
| # define GETPC() (__builtin_return_address(0)) |
| #endif |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| CPUState *saved_env; |
| unsigned long pc; |
| int ret; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (unlikely(ret != 0)) { |
| if (likely(retaddr)) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (likely(tb)) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, NULL); |
| } |
| } |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } |
| env = saved_env; |
| } |
| |
| /* Software driven TLBs management */ |
| /* PowerPC 602/603 software TLB load instructions helpers */ |
| void do_load_6xx_tlb (int is_code) |
| { |
| target_ulong RPN, CMP, EPN; |
| int way; |
| |
| RPN = env->spr[SPR_RPA]; |
| if (is_code) { |
| CMP = env->spr[SPR_ICMP]; |
| EPN = env->spr[SPR_IMISS]; |
| } else { |
| CMP = env->spr[SPR_DCMP]; |
| EPN = env->spr[SPR_DMISS]; |
| } |
| way = (env->spr[SPR_SRR1] >> 17) & 1; |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX |
| " PTE1 " ADDRX " way %d\n", |
| __func__, T0, EPN, CMP, RPN, way); |
| } |
| #endif |
| /* Store this TLB */ |
| ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
| way, is_code, CMP, RPN); |
| } |
| |
| void do_load_74xx_tlb (int is_code) |
| { |
| target_ulong RPN, CMP, EPN; |
| int way; |
| |
| RPN = env->spr[SPR_PTELO]; |
| CMP = env->spr[SPR_PTEHI]; |
| EPN = env->spr[SPR_TLBMISS] & ~0x3; |
| way = env->spr[SPR_TLBMISS] & 0x3; |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX |
| " PTE1 " ADDRX " way %d\n", |
| __func__, T0, EPN, CMP, RPN, way); |
| } |
| #endif |
| /* Store this TLB */ |
| ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
| way, is_code, CMP, RPN); |
| } |
| |
| static always_inline target_ulong booke_tlb_to_page_size (int size) |
| { |
| return 1024 << (2 * size); |
| } |
| |
| static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
| { |
| int size; |
| |
| switch (page_size) { |
| case 0x00000400UL: |
| size = 0x0; |
| break; |
| case 0x00001000UL: |
| size = 0x1; |
| break; |
| case 0x00004000UL: |
| size = 0x2; |
| break; |
| case 0x00010000UL: |
| size = 0x3; |
| break; |
| case 0x00040000UL: |
| size = 0x4; |
| break; |
| case 0x00100000UL: |
| size = 0x5; |
| break; |
| case 0x00400000UL: |
| size = 0x6; |
| break; |
| case 0x01000000UL: |
| size = 0x7; |
| break; |
| case 0x04000000UL: |
| size = 0x8; |
| break; |
| case 0x10000000UL: |
| size = 0x9; |
| break; |
| case 0x40000000UL: |
| size = 0xA; |
| break; |
| #if defined (TARGET_PPC64) |
| case 0x000100000000ULL: |
| size = 0xB; |
| break; |
| case 0x000400000000ULL: |
| size = 0xC; |
| break; |
| case 0x001000000000ULL: |
| size = 0xD; |
| break; |
| case 0x004000000000ULL: |
| size = 0xE; |
| break; |
| case 0x010000000000ULL: |
| size = 0xF; |
| break; |
| #endif |
| default: |
| size = -1; |
| break; |
| } |
| |
| return size; |
| } |
| |
| /* Helpers for 4xx TLB management */ |
| void do_4xx_tlbre_lo (void) |
| { |
| ppcemb_tlb_t *tlb; |
| int size; |
| |
| T0 &= 0x3F; |
| tlb = &env->tlb[T0].tlbe; |
| T0 = tlb->EPN; |
| if (tlb->prot & PAGE_VALID) |
| T0 |= 0x400; |
| size = booke_page_size_to_tlb(tlb->size); |
| if (size < 0 || size > 0x7) |
| size = 1; |
| T0 |= size << 7; |
| env->spr[SPR_40x_PID] = tlb->PID; |
| } |
| |
| void do_4xx_tlbre_hi (void) |
| { |
| ppcemb_tlb_t *tlb; |
| |
| T0 &= 0x3F; |
| tlb = &env->tlb[T0].tlbe; |
| T0 = tlb->RPN; |
| if (tlb->prot & PAGE_EXEC) |
| T0 |= 0x200; |
| if (tlb->prot & PAGE_WRITE) |
| T0 |= 0x100; |
| } |
| |
| void do_4xx_tlbwe_hi (void) |
| { |
| ppcemb_tlb_t *tlb; |
| target_ulong page, end; |
| |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); |
| } |
| #endif |
| T0 &= 0x3F; |
| tlb = &env->tlb[T0].tlbe; |
| /* Invalidate previous TLB (if it's valid) */ |
| if (tlb->prot & PAGE_VALID) { |
| end = tlb->EPN + tlb->size; |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX |
| " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); |
| } |
| #endif |
| for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
| tlb_flush_page(env, page); |
| } |
| tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); |
| /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
| * If this ever occurs, one should use the ppcemb target instead |
| * of the ppc or ppc64 one |
| */ |
| if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { |
| cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
| "are not supported (%d)\n", |
| tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); |
| } |
| tlb->EPN = T1 & ~(tlb->size - 1); |
| if (T1 & 0x40) |
| tlb->prot |= PAGE_VALID; |
| else |
| tlb->prot &= ~PAGE_VALID; |
| if (T1 & 0x20) { |
| /* XXX: TO BE FIXED */ |
| cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); |
| } |
| tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
| tlb->attr = T1 & 0xFF; |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
| " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
| (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
| tlb->prot & PAGE_READ ? 'r' : '-', |
| tlb->prot & PAGE_WRITE ? 'w' : '-', |
| tlb->prot & PAGE_EXEC ? 'x' : '-', |
| tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
| } |
| #endif |
| /* Invalidate new TLB (if valid) */ |
| if (tlb->prot & PAGE_VALID) { |
| end = tlb->EPN + tlb->size; |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s: invalidate TLB %d start " ADDRX |
| " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); |
| } |
| #endif |
| for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
| tlb_flush_page(env, page); |
| } |
| } |
| |
| void do_4xx_tlbwe_lo (void) |
| { |
| ppcemb_tlb_t *tlb; |
| |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1); |
| } |
| #endif |
| T0 &= 0x3F; |
| tlb = &env->tlb[T0].tlbe; |
| tlb->RPN = T1 & 0xFFFFFC00; |
| tlb->prot = PAGE_READ; |
| if (T1 & 0x200) |
| tlb->prot |= PAGE_EXEC; |
| if (T1 & 0x100) |
| tlb->prot |= PAGE_WRITE; |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
| " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
| (int)T0, tlb->RPN, tlb->EPN, tlb->size, |
| tlb->prot & PAGE_READ ? 'r' : '-', |
| tlb->prot & PAGE_WRITE ? 'w' : '-', |
| tlb->prot & PAGE_EXEC ? 'x' : '-', |
| tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
| } |
| #endif |
| } |
| |
| /* PowerPC 440 TLB management */ |
| void do_440_tlbwe (int word) |
| { |
| ppcemb_tlb_t *tlb; |
| target_ulong EPN, RPN, size; |
| int do_flush_tlbs; |
| |
| #if defined (DEBUG_SOFTWARE_TLB) |
| if (loglevel != 0) { |
| fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n", |
| __func__, word, T0, T1); |
| } |
| #endif |
| do_flush_tlbs = 0; |
| T0 &= 0x3F; |
| tlb = &env->tlb[T0].tlbe; |
| switch (word) { |
| default: |
| /* Just here to please gcc */ |
| case 0: |
| EPN = T1 & 0xFFFFFC00; |
| if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) |
| do_flush_tlbs = 1; |
| tlb->EPN = EPN; |
| size = booke_tlb_to_page_size((T1 >> 4) & 0xF); |
| if ((tlb->prot & PAGE_VALID) && tlb->size < size) |
| do_flush_tlbs = 1; |
| tlb->size = size; |
| tlb->attr &= ~0x1; |
| tlb->attr |= (T1 >> 8) & 1; |
| if (T1 & 0x200) { |
| tlb->prot |= PAGE_VALID; |
| } else { |
| if (tlb->prot & PAGE_VALID) { |
| tlb->prot &= ~PAGE_VALID; |
| do_flush_tlbs = 1; |
| } |
| } |
| tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
| if (do_flush_tlbs) |
| tlb_flush(env, 1); |
| break; |
| case 1: |
| RPN = T1 & 0xFFFFFC0F; |
| if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) |
| tlb_flush(env, 1); |
| tlb->RPN = RPN; |
| break; |
| case 2: |
| tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); |
| tlb->prot = tlb->prot & PAGE_VALID; |
| if (T1 & 0x1) |
| tlb->prot |= PAGE_READ << 4; |
| if (T1 & 0x2) |
| tlb->prot |= PAGE_WRITE << 4; |
| if (T1 & 0x4) |
| tlb->prot |= PAGE_EXEC << 4; |
| if (T1 & 0x8) |
| tlb->prot |= PAGE_READ; |
| if (T1 & 0x10) |
| tlb->prot |= PAGE_WRITE; |
| if (T1 & 0x20) |
| tlb->prot |= PAGE_EXEC; |
| break; |
| } |
| } |
| |
| void do_440_tlbre (int word) |
| { |
| ppcemb_tlb_t *tlb; |
| int size; |
| |
| T0 &= 0x3F; |
| tlb = &env->tlb[T0].tlbe; |
| switch (word) { |
| default: |
| /* Just here to please gcc */ |
| case 0: |
| T0 = tlb->EPN; |
| size = booke_page_size_to_tlb(tlb->size); |
| if (size < 0 || size > 0xF) |
| size = 1; |
| T0 |= size << 4; |
| if (tlb->attr & 0x1) |
| T0 |= 0x100; |
| if (tlb->prot & PAGE_VALID) |
| T0 |= 0x200; |
| env->spr[SPR_440_MMUCR] &= ~0x000000FF; |
| env->spr[SPR_440_MMUCR] |= tlb->PID; |
| break; |
| case 1: |
| T0 = tlb->RPN; |
| break; |
| case 2: |
| T0 = tlb->attr & ~0x1; |
| if (tlb->prot & (PAGE_READ << 4)) |
| T0 |= 0x1; |
| if (tlb->prot & (PAGE_WRITE << 4)) |
| T0 |= 0x2; |
| if (tlb->prot & (PAGE_EXEC << 4)) |
| T0 |= 0x4; |
| if (tlb->prot & PAGE_READ) |
| T0 |= 0x8; |
| if (tlb->prot & PAGE_WRITE) |
| T0 |= 0x10; |
| if (tlb->prot & PAGE_EXEC) |
| T0 |= 0x20; |
| break; |
| } |
| } |
| #endif /* !CONFIG_USER_ONLY */ |