| /* |
| * Sparc MMU helpers |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "qemu/qemu-print.h" |
| #include "trace.h" |
| |
| /* Sparc MMU emulation */ |
| |
| #ifndef TARGET_SPARC64 |
| /* |
| * Sparc V8 Reference MMU (SRMMU) |
| */ |
| static const int access_table[8][8] = { |
| { 0, 0, 0, 0, 8, 0, 12, 12 }, |
| { 0, 0, 0, 0, 8, 0, 0, 0 }, |
| { 8, 8, 0, 0, 0, 8, 12, 12 }, |
| { 8, 8, 0, 0, 0, 8, 0, 0 }, |
| { 8, 0, 8, 0, 8, 8, 12, 12 }, |
| { 8, 0, 8, 0, 8, 0, 8, 0 }, |
| { 8, 8, 8, 0, 8, 8, 12, 12 }, |
| { 8, 8, 8, 0, 8, 8, 8, 0 } |
| }; |
| |
| static const int perm_table[2][8] = { |
| { |
| PAGE_READ, |
| PAGE_READ | PAGE_WRITE, |
| PAGE_READ | PAGE_EXEC, |
| PAGE_READ | PAGE_WRITE | PAGE_EXEC, |
| PAGE_EXEC, |
| PAGE_READ | PAGE_WRITE, |
| PAGE_READ | PAGE_EXEC, |
| PAGE_READ | PAGE_WRITE | PAGE_EXEC |
| }, |
| { |
| PAGE_READ, |
| PAGE_READ | PAGE_WRITE, |
| PAGE_READ | PAGE_EXEC, |
| PAGE_READ | PAGE_WRITE | PAGE_EXEC, |
| PAGE_EXEC, |
| PAGE_READ, |
| 0, |
| 0, |
| } |
| }; |
| |
| static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full, |
| int *access_index, target_ulong address, |
| int rw, int mmu_idx) |
| { |
| int access_perms = 0; |
| hwaddr pde_ptr; |
| uint32_t pde; |
| int error_code = 0, is_dirty, is_user; |
| unsigned long page_offset; |
| CPUState *cs = env_cpu(env); |
| MemTxResult result; |
| |
| is_user = mmu_idx == MMU_USER_IDX; |
| |
| if (mmu_idx == MMU_PHYS_IDX) { |
| full->lg_page_size = TARGET_PAGE_BITS; |
| /* Boot mode: instruction fetches are taken from PROM */ |
| if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) { |
| full->phys_addr = env->prom_addr | (address & 0x7ffffULL); |
| full->prot = PAGE_READ | PAGE_EXEC; |
| return 0; |
| } |
| full->phys_addr = address; |
| full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return 0; |
| } |
| |
| *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1); |
| full->phys_addr = 0xffffffffffff0000ULL; |
| |
| /* SPARC reference MMU table walk: Context table->L1->L2->PTE */ |
| /* Context base + context number */ |
| pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2); |
| pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return 4 << 2; /* Translation fault, L = 0 */ |
| } |
| |
| /* Ctx pde */ |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| return 1 << 2; |
| case 2: /* L0 PTE, maybe should not happen? */ |
| case 3: /* Reserved */ |
| return 4 << 2; |
| case 1: /* L0 PDE */ |
| pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4); |
| pde = address_space_ldl(cs->as, pde_ptr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */ |
| } |
| |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| return (1 << 8) | (1 << 2); |
| case 3: /* Reserved */ |
| return (1 << 8) | (4 << 2); |
| case 1: /* L1 PDE */ |
| pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4); |
| pde = address_space_ldl(cs->as, pde_ptr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */ |
| } |
| |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| return (2 << 8) | (1 << 2); |
| case 3: /* Reserved */ |
| return (2 << 8) | (4 << 2); |
| case 1: /* L2 PDE */ |
| pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4); |
| pde = address_space_ldl(cs->as, pde_ptr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */ |
| } |
| |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| return (3 << 8) | (1 << 2); |
| case 1: /* PDE, should not happen */ |
| case 3: /* Reserved */ |
| return (3 << 8) | (4 << 2); |
| case 2: /* L3 PTE */ |
| page_offset = 0; |
| } |
| full->lg_page_size = TARGET_PAGE_BITS; |
| break; |
| case 2: /* L2 PTE */ |
| page_offset = address & 0x3f000; |
| full->lg_page_size = 18; |
| } |
| break; |
| case 2: /* L1 PTE */ |
| page_offset = address & 0xfff000; |
| full->lg_page_size = 24; |
| break; |
| } |
| } |
| |
| /* check access */ |
| access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT; |
| error_code = access_table[*access_index][access_perms]; |
| if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) { |
| return error_code; |
| } |
| |
| /* update page modified and dirty bits */ |
| is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK); |
| if (!(pde & PG_ACCESSED_MASK) || is_dirty) { |
| pde |= PG_ACCESSED_MASK; |
| if (is_dirty) { |
| pde |= PG_MODIFIED_MASK; |
| } |
| stl_phys_notdirty(cs->as, pde_ptr, pde); |
| } |
| |
| /* the page can be put in the TLB */ |
| full->prot = perm_table[is_user][access_perms]; |
| if (!(pde & PG_MODIFIED_MASK)) { |
| /* only set write access if already dirty... otherwise wait |
| for dirty access */ |
| full->prot &= ~PAGE_WRITE; |
| } |
| |
| /* Even if large ptes, we map only one 4KB page in the cache to |
| avoid filling it too fast */ |
| full->phys_addr = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset; |
| return error_code; |
| } |
| |
| /* Perform address translation */ |
| bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| CPUTLBEntryFull full = {}; |
| target_ulong vaddr; |
| int error_code = 0, access_index; |
| |
| /* |
| * TODO: If we ever need tlb_vaddr_to_host for this target, |
| * then we must figure out how to manipulate FSR and FAR |
| * when both MMU_NF and probe are set. In the meantime, |
| * do not support this use case. |
| */ |
| assert(!probe); |
| |
| address &= TARGET_PAGE_MASK; |
| error_code = get_physical_address(env, &full, &access_index, |
| address, access_type, mmu_idx); |
| vaddr = address; |
| if (likely(error_code == 0)) { |
| qemu_log_mask(CPU_LOG_MMU, |
| "Translate at %" VADDR_PRIx " -> " |
| HWADDR_FMT_plx ", vaddr " TARGET_FMT_lx "\n", |
| address, full.phys_addr, vaddr); |
| tlb_set_page_full(cs, mmu_idx, vaddr, &full); |
| return true; |
| } |
| |
| if (env->mmuregs[3]) { /* Fault status register */ |
| env->mmuregs[3] = 1; /* overflow (not read before another fault) */ |
| } |
| env->mmuregs[3] |= (access_index << 5) | error_code | 2; |
| env->mmuregs[4] = address; /* Fault address register */ |
| |
| if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) { |
| /* No fault mode: if a mapping is available, just override |
| permissions. If no mapping is available, redirect accesses to |
| neverland. Fake/overridden mappings will be flushed when |
| switching to normal mode. */ |
| full.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| tlb_set_page_full(cs, mmu_idx, vaddr, &full); |
| return true; |
| } else { |
| if (access_type == MMU_INST_FETCH) { |
| cs->exception_index = TT_TFAULT; |
| } else { |
| cs->exception_index = TT_DFAULT; |
| } |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| } |
| |
| target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev) |
| { |
| CPUState *cs = env_cpu(env); |
| hwaddr pde_ptr; |
| uint32_t pde; |
| MemTxResult result; |
| |
| /* |
| * TODO: MMU probe operations are supposed to set the fault |
| * status registers, but we don't do this. |
| */ |
| |
| /* Context base + context number */ |
| pde_ptr = (hwaddr)(env->mmuregs[1] << 4) + |
| (env->mmuregs[2] << 2); |
| pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return 0; |
| } |
| |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| case 2: /* PTE, maybe should not happen? */ |
| case 3: /* Reserved */ |
| return 0; |
| case 1: /* L1 PDE */ |
| if (mmulev == 3) { |
| return pde; |
| } |
| pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4); |
| pde = address_space_ldl(cs->as, pde_ptr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return 0; |
| } |
| |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| case 3: /* Reserved */ |
| return 0; |
| case 2: /* L1 PTE */ |
| return pde; |
| case 1: /* L2 PDE */ |
| if (mmulev == 2) { |
| return pde; |
| } |
| pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4); |
| pde = address_space_ldl(cs->as, pde_ptr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return 0; |
| } |
| |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| case 3: /* Reserved */ |
| return 0; |
| case 2: /* L2 PTE */ |
| return pde; |
| case 1: /* L3 PDE */ |
| if (mmulev == 1) { |
| return pde; |
| } |
| pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4); |
| pde = address_space_ldl(cs->as, pde_ptr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| return 0; |
| } |
| |
| switch (pde & PTE_ENTRYTYPE_MASK) { |
| default: |
| case 0: /* Invalid */ |
| case 1: /* PDE, should not happen */ |
| case 3: /* Reserved */ |
| return 0; |
| case 2: /* L3 PTE */ |
| return pde; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| void dump_mmu(CPUSPARCState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| target_ulong va, va1, va2; |
| unsigned int n, m, o; |
| hwaddr pa; |
| uint32_t pde; |
| |
| qemu_printf("Root ptr: " HWADDR_FMT_plx ", ctx: %d\n", |
| (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]); |
| for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) { |
| pde = mmu_probe(env, va, 2); |
| if (pde) { |
| pa = cpu_get_phys_page_debug(cs, va); |
| qemu_printf("VA: " TARGET_FMT_lx ", PA: " HWADDR_FMT_plx |
| " PDE: " TARGET_FMT_lx "\n", va, pa, pde); |
| for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) { |
| pde = mmu_probe(env, va1, 1); |
| if (pde) { |
| pa = cpu_get_phys_page_debug(cs, va1); |
| qemu_printf(" VA: " TARGET_FMT_lx ", PA: " |
| HWADDR_FMT_plx " PDE: " TARGET_FMT_lx "\n", |
| va1, pa, pde); |
| for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) { |
| pde = mmu_probe(env, va2, 0); |
| if (pde) { |
| pa = cpu_get_phys_page_debug(cs, va2); |
| qemu_printf(" VA: " TARGET_FMT_lx ", PA: " |
| HWADDR_FMT_plx " PTE: " |
| TARGET_FMT_lx "\n", |
| va2, pa, pde); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /* Gdb expects all registers windows to be flushed in ram. This function handles |
| * reads (and only reads) in stack frames as if windows were flushed. We assume |
| * that the sparc ABI is followed. |
| */ |
| int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address, |
| uint8_t *buf, int len, bool is_write) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| target_ulong addr = address; |
| int i; |
| int len1; |
| int cwp = env->cwp; |
| |
| if (!is_write) { |
| for (i = 0; i < env->nwindows; i++) { |
| int off; |
| target_ulong fp = env->regbase[cwp * 16 + 22]; |
| |
| /* Assume fp == 0 means end of frame. */ |
| if (fp == 0) { |
| break; |
| } |
| |
| cwp = cpu_cwp_inc(env, cwp + 1); |
| |
| /* Invalid window ? */ |
| if (env->wim & (1 << cwp)) { |
| break; |
| } |
| |
| /* According to the ABI, the stack is growing downward. */ |
| if (addr + len < fp) { |
| break; |
| } |
| |
| /* Not in this frame. */ |
| if (addr > fp + 64) { |
| continue; |
| } |
| |
| /* Handle access before this window. */ |
| if (addr < fp) { |
| len1 = fp - addr; |
| if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) { |
| return -1; |
| } |
| addr += len1; |
| len -= len1; |
| buf += len1; |
| } |
| |
| /* Access byte per byte to registers. Not very efficient but speed |
| * is not critical. |
| */ |
| off = addr - fp; |
| len1 = 64 - off; |
| |
| if (len1 > len) { |
| len1 = len; |
| } |
| |
| for (; len1; len1--) { |
| int reg = cwp * 16 + 8 + (off >> 2); |
| union { |
| uint32_t v; |
| uint8_t c[4]; |
| } u; |
| u.v = cpu_to_be32(env->regbase[reg]); |
| *buf++ = u.c[off & 3]; |
| addr++; |
| len--; |
| off++; |
| } |
| |
| if (len == 0) { |
| return 0; |
| } |
| } |
| } |
| return cpu_memory_rw_debug(cs, addr, buf, len, is_write); |
| } |
| |
| #else /* !TARGET_SPARC64 */ |
| |
| /* 41 bit physical address space */ |
| static inline hwaddr ultrasparc_truncate_physical(uint64_t x) |
| { |
| return x & 0x1ffffffffffULL; |
| } |
| |
| /* |
| * UltraSparc IIi I/DMMUs |
| */ |
| |
| /* Returns true if TTE tag is valid and matches virtual address value |
| in context requires virtual address mask value calculated from TTE |
| entry size */ |
| static inline int ultrasparc_tag_match(SparcTLBEntry *tlb, |
| uint64_t address, uint64_t context, |
| hwaddr *physical) |
| { |
| uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte)); |
| |
| /* valid, context match, virtual address match? */ |
| if (TTE_IS_VALID(tlb->tte) && |
| (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context)) |
| && compare_masked(address, tlb->tag, mask)) { |
| /* decode physical address */ |
| *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw) |
| { |
| uint64_t sfsr = SFSR_VALID_BIT; |
| |
| switch (mmu_idx) { |
| case MMU_PHYS_IDX: |
| sfsr |= SFSR_CT_NOTRANS; |
| break; |
| case MMU_USER_IDX: |
| case MMU_KERNEL_IDX: |
| sfsr |= SFSR_CT_PRIMARY; |
| break; |
| case MMU_USER_SECONDARY_IDX: |
| case MMU_KERNEL_SECONDARY_IDX: |
| sfsr |= SFSR_CT_SECONDARY; |
| break; |
| case MMU_NUCLEUS_IDX: |
| sfsr |= SFSR_CT_NUCLEUS; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (rw == 1) { |
| sfsr |= SFSR_WRITE_BIT; |
| } else if (rw == 4) { |
| sfsr |= SFSR_NF_BIT; |
| } |
| |
| if (env->pstate & PS_PRIV) { |
| sfsr |= SFSR_PR_BIT; |
| } |
| |
| if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */ |
| sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */ |
| } |
| |
| /* FIXME: ASI field in SFSR must be set */ |
| |
| return sfsr; |
| } |
| |
| static int get_physical_address_data(CPUSPARCState *env, CPUTLBEntryFull *full, |
| target_ulong address, int rw, int mmu_idx) |
| { |
| CPUState *cs = env_cpu(env); |
| unsigned int i; |
| uint64_t sfsr; |
| uint64_t context; |
| bool is_user = false; |
| |
| sfsr = build_sfsr(env, mmu_idx, rw); |
| |
| switch (mmu_idx) { |
| case MMU_PHYS_IDX: |
| g_assert_not_reached(); |
| case MMU_USER_IDX: |
| is_user = true; |
| /* fallthru */ |
| case MMU_KERNEL_IDX: |
| context = env->dmmu.mmu_primary_context & 0x1fff; |
| break; |
| case MMU_USER_SECONDARY_IDX: |
| is_user = true; |
| /* fallthru */ |
| case MMU_KERNEL_SECONDARY_IDX: |
| context = env->dmmu.mmu_secondary_context & 0x1fff; |
| break; |
| default: |
| context = 0; |
| break; |
| } |
| |
| for (i = 0; i < 64; i++) { |
| /* ctx match, vaddr match, valid? */ |
| if (ultrasparc_tag_match(&env->dtlb[i], address, context, |
| &full->phys_addr)) { |
| int do_fault = 0; |
| |
| if (TTE_IS_IE(env->dtlb[i].tte)) { |
| full->attrs.byte_swap = true; |
| } |
| |
| /* access ok? */ |
| /* multiple bits in SFSR.FT may be set on TT_DFAULT */ |
| if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) { |
| do_fault = 1; |
| sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */ |
| trace_mmu_helper_dfault(address, context, mmu_idx, env->tl); |
| } |
| if (rw == 4) { |
| if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) { |
| do_fault = 1; |
| sfsr |= SFSR_FT_NF_E_BIT; |
| } |
| } else { |
| if (TTE_IS_NFO(env->dtlb[i].tte)) { |
| do_fault = 1; |
| sfsr |= SFSR_FT_NFO_BIT; |
| } |
| } |
| |
| if (do_fault) { |
| /* faults above are reported with TT_DFAULT. */ |
| cs->exception_index = TT_DFAULT; |
| } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) { |
| do_fault = 1; |
| cs->exception_index = TT_DPROT; |
| |
| trace_mmu_helper_dprot(address, context, mmu_idx, env->tl); |
| } |
| |
| if (!do_fault) { |
| full->prot = PAGE_READ; |
| if (TTE_IS_W_OK(env->dtlb[i].tte)) { |
| full->prot |= PAGE_WRITE; |
| } |
| |
| TTE_SET_USED(env->dtlb[i].tte); |
| |
| return 0; |
| } |
| |
| env->dmmu.sfsr = sfsr; |
| env->dmmu.sfar = address; /* Fault address register */ |
| env->dmmu.tag_access = (address & ~0x1fffULL) | context; |
| return 1; |
| } |
| } |
| |
| trace_mmu_helper_dmiss(address, context); |
| |
| /* |
| * On MMU misses: |
| * - UltraSPARC IIi: SFSR and SFAR unmodified |
| * - JPS1: SFAR updated and some fields of SFSR updated |
| */ |
| env->dmmu.tag_access = (address & ~0x1fffULL) | context; |
| cs->exception_index = TT_DMISS; |
| return 1; |
| } |
| |
| static int get_physical_address_code(CPUSPARCState *env, CPUTLBEntryFull *full, |
| target_ulong address, int mmu_idx) |
| { |
| CPUState *cs = env_cpu(env); |
| unsigned int i; |
| uint64_t context; |
| bool is_user = false; |
| |
| switch (mmu_idx) { |
| case MMU_PHYS_IDX: |
| case MMU_USER_SECONDARY_IDX: |
| case MMU_KERNEL_SECONDARY_IDX: |
| g_assert_not_reached(); |
| case MMU_USER_IDX: |
| is_user = true; |
| /* fallthru */ |
| case MMU_KERNEL_IDX: |
| context = env->dmmu.mmu_primary_context & 0x1fff; |
| break; |
| default: |
| context = 0; |
| break; |
| } |
| |
| if (env->tl == 0) { |
| /* PRIMARY context */ |
| context = env->dmmu.mmu_primary_context & 0x1fff; |
| } else { |
| /* NUCLEUS context */ |
| context = 0; |
| } |
| |
| for (i = 0; i < 64; i++) { |
| /* ctx match, vaddr match, valid? */ |
| if (ultrasparc_tag_match(&env->itlb[i], |
| address, context, &full->phys_addr)) { |
| /* access ok? */ |
| if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) { |
| /* Fault status register */ |
| if (env->immu.sfsr & SFSR_VALID_BIT) { |
| env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before |
| another fault) */ |
| } else { |
| env->immu.sfsr = 0; |
| } |
| if (env->pstate & PS_PRIV) { |
| env->immu.sfsr |= SFSR_PR_BIT; |
| } |
| if (env->tl > 0) { |
| env->immu.sfsr |= SFSR_CT_NUCLEUS; |
| } |
| |
| /* FIXME: ASI field in SFSR must be set */ |
| env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT; |
| cs->exception_index = TT_TFAULT; |
| |
| env->immu.tag_access = (address & ~0x1fffULL) | context; |
| |
| trace_mmu_helper_tfault(address, context); |
| |
| return 1; |
| } |
| full->prot = PAGE_EXEC; |
| TTE_SET_USED(env->itlb[i].tte); |
| return 0; |
| } |
| } |
| |
| trace_mmu_helper_tmiss(address, context); |
| |
| /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */ |
| env->immu.tag_access = (address & ~0x1fffULL) | context; |
| cs->exception_index = TT_TMISS; |
| return 1; |
| } |
| |
| static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full, |
| int *access_index, target_ulong address, |
| int rw, int mmu_idx) |
| { |
| /* ??? We treat everything as a small page, then explicitly flush |
| everything when an entry is evicted. */ |
| full->lg_page_size = TARGET_PAGE_BITS; |
| |
| /* safety net to catch wrong softmmu index use from dynamic code */ |
| if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) { |
| if (rw == 2) { |
| trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx, |
| env->dmmu.mmu_primary_context, |
| env->dmmu.mmu_secondary_context, |
| address); |
| } else { |
| trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx, |
| env->dmmu.mmu_primary_context, |
| env->dmmu.mmu_secondary_context, |
| address); |
| } |
| } |
| |
| if (mmu_idx == MMU_PHYS_IDX) { |
| full->phys_addr = ultrasparc_truncate_physical(address); |
| full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return 0; |
| } |
| |
| if (rw == 2) { |
| return get_physical_address_code(env, full, address, mmu_idx); |
| } else { |
| return get_physical_address_data(env, full, address, rw, mmu_idx); |
| } |
| } |
| |
| /* Perform address translation */ |
| bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| CPUTLBEntryFull full = {}; |
| int error_code = 0, access_index; |
| |
| address &= TARGET_PAGE_MASK; |
| error_code = get_physical_address(env, &full, &access_index, |
| address, access_type, mmu_idx); |
| if (likely(error_code == 0)) { |
| trace_mmu_helper_mmu_fault(address, full.phys_addr, mmu_idx, env->tl, |
| env->dmmu.mmu_primary_context, |
| env->dmmu.mmu_secondary_context); |
| tlb_set_page_full(cs, mmu_idx, address, &full); |
| return true; |
| } |
| if (probe) { |
| return false; |
| } |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| void dump_mmu(CPUSPARCState *env) |
| { |
| unsigned int i; |
| const char *mask; |
| |
| qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %" |
| PRId64 "\n", |
| env->dmmu.mmu_primary_context, |
| env->dmmu.mmu_secondary_context); |
| qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64 |
| "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target); |
| if ((env->lsu & DMMU_E) == 0) { |
| qemu_printf("DMMU disabled\n"); |
| } else { |
| qemu_printf("DMMU dump\n"); |
| for (i = 0; i < 64; i++) { |
| switch (TTE_PGSIZE(env->dtlb[i].tte)) { |
| default: |
| case 0x0: |
| mask = " 8k"; |
| break; |
| case 0x1: |
| mask = " 64k"; |
| break; |
| case 0x2: |
| mask = "512k"; |
| break; |
| case 0x3: |
| mask = " 4M"; |
| break; |
| } |
| if (TTE_IS_VALID(env->dtlb[i].tte)) { |
| qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx" |
| ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n", |
| i, |
| env->dtlb[i].tag & (uint64_t)~0x1fffULL, |
| TTE_PA(env->dtlb[i].tte), |
| mask, |
| TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user", |
| TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO", |
| TTE_IS_LOCKED(env->dtlb[i].tte) ? |
| "locked" : "unlocked", |
| TTE_IS_IE(env->dtlb[i].tte) ? |
| "yes" : "no", |
| env->dtlb[i].tag & (uint64_t)0x1fffULL, |
| TTE_IS_GLOBAL(env->dtlb[i].tte) ? |
| "global" : "local"); |
| } |
| } |
| } |
| if ((env->lsu & IMMU_E) == 0) { |
| qemu_printf("IMMU disabled\n"); |
| } else { |
| qemu_printf("IMMU dump\n"); |
| for (i = 0; i < 64; i++) { |
| switch (TTE_PGSIZE(env->itlb[i].tte)) { |
| default: |
| case 0x0: |
| mask = " 8k"; |
| break; |
| case 0x1: |
| mask = " 64k"; |
| break; |
| case 0x2: |
| mask = "512k"; |
| break; |
| case 0x3: |
| mask = " 4M"; |
| break; |
| } |
| if (TTE_IS_VALID(env->itlb[i].tte)) { |
| qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx" |
| ", %s, %s, %s, ctx %" PRId64 " %s\n", |
| i, |
| env->itlb[i].tag & (uint64_t)~0x1fffULL, |
| TTE_PA(env->itlb[i].tte), |
| mask, |
| TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user", |
| TTE_IS_LOCKED(env->itlb[i].tte) ? |
| "locked" : "unlocked", |
| env->itlb[i].tag & (uint64_t)0x1fffULL, |
| TTE_IS_GLOBAL(env->itlb[i].tte) ? |
| "global" : "local"); |
| } |
| } |
| } |
| } |
| |
| #endif /* TARGET_SPARC64 */ |
| |
| static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys, |
| target_ulong addr, int rw, int mmu_idx) |
| { |
| CPUTLBEntryFull full = {}; |
| int access_index, ret; |
| |
| ret = get_physical_address(env, &full, &access_index, addr, rw, mmu_idx); |
| if (ret == 0) { |
| *phys = full.phys_addr; |
| } |
| return ret; |
| } |
| |
| #if defined(TARGET_SPARC64) |
| hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr, |
| int mmu_idx) |
| { |
| hwaddr phys_addr; |
| |
| if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) { |
| return -1; |
| } |
| return phys_addr; |
| } |
| #endif |
| |
| hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| hwaddr phys_addr; |
| int mmu_idx = cpu_mmu_index(env, false); |
| |
| if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) { |
| if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) { |
| return -1; |
| } |
| } |
| return phys_addr; |
| } |
| |
| G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, |
| int mmu_idx, |
| uintptr_t retaddr) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| |
| #ifdef TARGET_SPARC64 |
| env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type); |
| env->dmmu.sfar = addr; |
| #else |
| env->mmuregs[4] = addr; |
| #endif |
| |
| cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr); |
| } |