| /* General "disassemble this chunk" code. Used for debugging. */ |
| #include "qemu/osdep.h" |
| #include "disas/dis-asm.h" |
| #include "elf.h" |
| #include "qemu/qemu-print.h" |
| |
| #include "cpu.h" |
| #include "disas/disas.h" |
| #include "disas/capstone.h" |
| |
| typedef struct CPUDebug { |
| struct disassemble_info info; |
| CPUState *cpu; |
| } CPUDebug; |
| |
| /* Filled in by elfload.c. Simplistic, but will do for now. */ |
| struct syminfo *syminfos = NULL; |
| |
| /* Get LENGTH bytes from info's buffer, at target address memaddr. |
| Transfer them to myaddr. */ |
| int |
| buffer_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length, |
| struct disassemble_info *info) |
| { |
| if (memaddr < info->buffer_vma |
| || memaddr + length > info->buffer_vma + info->buffer_length) |
| /* Out of bounds. Use EIO because GDB uses it. */ |
| return EIO; |
| memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length); |
| return 0; |
| } |
| |
| /* Get LENGTH bytes from info's buffer, at target address memaddr. |
| Transfer them to myaddr. */ |
| static int |
| target_read_memory (bfd_vma memaddr, |
| bfd_byte *myaddr, |
| int length, |
| struct disassemble_info *info) |
| { |
| CPUDebug *s = container_of(info, CPUDebug, info); |
| int r; |
| |
| r = cpu_memory_rw_debug(s->cpu, memaddr, myaddr, length, 0); |
| |
| return r ? EIO : 0; |
| } |
| |
| /* Print an error message. We can assume that this is in response to |
| an error return from buffer_read_memory. */ |
| void |
| perror_memory (int status, bfd_vma memaddr, struct disassemble_info *info) |
| { |
| if (status != EIO) |
| /* Can't happen. */ |
| (*info->fprintf_func) (info->stream, "Unknown error %d\n", status); |
| else |
| /* Actually, address between memaddr and memaddr + len was |
| out of bounds. */ |
| (*info->fprintf_func) (info->stream, |
| "Address 0x%" PRIx64 " is out of bounds.\n", memaddr); |
| } |
| |
| /* This could be in a separate file, to save minuscule amounts of space |
| in statically linked executables. */ |
| |
| /* Just print the address is hex. This is included for completeness even |
| though both GDB and objdump provide their own (to print symbolic |
| addresses). */ |
| |
| void |
| generic_print_address (bfd_vma addr, struct disassemble_info *info) |
| { |
| (*info->fprintf_func) (info->stream, "0x%" PRIx64, addr); |
| } |
| |
| /* Print address in hex, truncated to the width of a host virtual address. */ |
| static void |
| generic_print_host_address(bfd_vma addr, struct disassemble_info *info) |
| { |
| uint64_t mask = ~0ULL >> (64 - (sizeof(void *) * 8)); |
| generic_print_address(addr & mask, info); |
| } |
| |
| /* Just return the given address. */ |
| |
| int |
| generic_symbol_at_address (bfd_vma addr, struct disassemble_info *info) |
| { |
| return 1; |
| } |
| |
| bfd_vma bfd_getl64 (const bfd_byte *addr) |
| { |
| unsigned long long v; |
| |
| v = (unsigned long long) addr[0]; |
| v |= (unsigned long long) addr[1] << 8; |
| v |= (unsigned long long) addr[2] << 16; |
| v |= (unsigned long long) addr[3] << 24; |
| v |= (unsigned long long) addr[4] << 32; |
| v |= (unsigned long long) addr[5] << 40; |
| v |= (unsigned long long) addr[6] << 48; |
| v |= (unsigned long long) addr[7] << 56; |
| return (bfd_vma) v; |
| } |
| |
| bfd_vma bfd_getl32 (const bfd_byte *addr) |
| { |
| unsigned long v; |
| |
| v = (unsigned long) addr[0]; |
| v |= (unsigned long) addr[1] << 8; |
| v |= (unsigned long) addr[2] << 16; |
| v |= (unsigned long) addr[3] << 24; |
| return (bfd_vma) v; |
| } |
| |
| bfd_vma bfd_getb32 (const bfd_byte *addr) |
| { |
| unsigned long v; |
| |
| v = (unsigned long) addr[0] << 24; |
| v |= (unsigned long) addr[1] << 16; |
| v |= (unsigned long) addr[2] << 8; |
| v |= (unsigned long) addr[3]; |
| return (bfd_vma) v; |
| } |
| |
| bfd_vma bfd_getl16 (const bfd_byte *addr) |
| { |
| unsigned long v; |
| |
| v = (unsigned long) addr[0]; |
| v |= (unsigned long) addr[1] << 8; |
| return (bfd_vma) v; |
| } |
| |
| bfd_vma bfd_getb16 (const bfd_byte *addr) |
| { |
| unsigned long v; |
| |
| v = (unsigned long) addr[0] << 24; |
| v |= (unsigned long) addr[1] << 16; |
| return (bfd_vma) v; |
| } |
| |
| static int print_insn_objdump(bfd_vma pc, disassemble_info *info, |
| const char *prefix) |
| { |
| int i, n = info->buffer_length; |
| uint8_t *buf = g_malloc(n); |
| |
| info->read_memory_func(pc, buf, n, info); |
| |
| for (i = 0; i < n; ++i) { |
| if (i % 32 == 0) { |
| info->fprintf_func(info->stream, "\n%s: ", prefix); |
| } |
| info->fprintf_func(info->stream, "%02x", buf[i]); |
| } |
| |
| g_free(buf); |
| return n; |
| } |
| |
| static int print_insn_od_host(bfd_vma pc, disassemble_info *info) |
| { |
| return print_insn_objdump(pc, info, "OBJD-H"); |
| } |
| |
| static int print_insn_od_target(bfd_vma pc, disassemble_info *info) |
| { |
| return print_insn_objdump(pc, info, "OBJD-T"); |
| } |
| |
| #ifdef CONFIG_CAPSTONE |
| /* Temporary storage for the capstone library. This will be alloced via |
| malloc with a size private to the library; thus there's no reason not |
| to share this across calls and across host vs target disassembly. */ |
| static __thread cs_insn *cap_insn; |
| |
| /* Initialize the Capstone library. */ |
| /* ??? It would be nice to cache this. We would need one handle for the |
| host and one for the target. For most targets we can reset specific |
| parameters via cs_option(CS_OPT_MODE, new_mode), but we cannot change |
| CS_ARCH_* in this way. Thus we would need to be able to close and |
| re-open the target handle with a different arch for the target in order |
| to handle AArch64 vs AArch32 mode switching. */ |
| static cs_err cap_disas_start(disassemble_info *info, csh *handle) |
| { |
| cs_mode cap_mode = info->cap_mode; |
| cs_err err; |
| |
| cap_mode += (info->endian == BFD_ENDIAN_BIG ? CS_MODE_BIG_ENDIAN |
| : CS_MODE_LITTLE_ENDIAN); |
| |
| err = cs_open(info->cap_arch, cap_mode, handle); |
| if (err != CS_ERR_OK) { |
| return err; |
| } |
| |
| /* ??? There probably ought to be a better place to put this. */ |
| if (info->cap_arch == CS_ARCH_X86) { |
| /* We don't care about errors (if for some reason the library |
| is compiled without AT&T syntax); the user will just have |
| to deal with the Intel syntax. */ |
| cs_option(*handle, CS_OPT_SYNTAX, CS_OPT_SYNTAX_ATT); |
| } |
| |
| /* "Disassemble" unknown insns as ".byte W,X,Y,Z". */ |
| cs_option(*handle, CS_OPT_SKIPDATA, CS_OPT_ON); |
| |
| /* Allocate temp space for cs_disasm_iter. */ |
| if (cap_insn == NULL) { |
| cap_insn = cs_malloc(*handle); |
| if (cap_insn == NULL) { |
| cs_close(handle); |
| return CS_ERR_MEM; |
| } |
| } |
| return CS_ERR_OK; |
| } |
| |
| static void cap_dump_insn_units(disassemble_info *info, cs_insn *insn, |
| int i, int n) |
| { |
| fprintf_function print = info->fprintf_func; |
| FILE *stream = info->stream; |
| |
| switch (info->cap_insn_unit) { |
| case 4: |
| if (info->endian == BFD_ENDIAN_BIG) { |
| for (; i < n; i += 4) { |
| print(stream, " %08x", ldl_be_p(insn->bytes + i)); |
| |
| } |
| } else { |
| for (; i < n; i += 4) { |
| print(stream, " %08x", ldl_le_p(insn->bytes + i)); |
| } |
| } |
| break; |
| |
| case 2: |
| if (info->endian == BFD_ENDIAN_BIG) { |
| for (; i < n; i += 2) { |
| print(stream, " %04x", lduw_be_p(insn->bytes + i)); |
| } |
| } else { |
| for (; i < n; i += 2) { |
| print(stream, " %04x", lduw_le_p(insn->bytes + i)); |
| } |
| } |
| break; |
| |
| default: |
| for (; i < n; i++) { |
| print(stream, " %02x", insn->bytes[i]); |
| } |
| break; |
| } |
| } |
| |
| static void cap_dump_insn(disassemble_info *info, cs_insn *insn, |
| const char *note) |
| { |
| fprintf_function print = info->fprintf_func; |
| int i, n, split; |
| |
| print(info->stream, "0x%08" PRIx64 ": ", insn->address); |
| |
| n = insn->size; |
| split = info->cap_insn_split; |
| |
| /* Dump the first SPLIT bytes of the instruction. */ |
| cap_dump_insn_units(info, insn, 0, MIN(n, split)); |
| |
| /* Add padding up to SPLIT so that mnemonics line up. */ |
| if (n < split) { |
| int width = (split - n) / info->cap_insn_unit; |
| width *= (2 * info->cap_insn_unit + 1); |
| print(info->stream, "%*s", width, ""); |
| } |
| |
| /* Print the actual instruction. */ |
| print(info->stream, " %-8s %s", insn->mnemonic, insn->op_str); |
| if (note) { |
| print(info->stream, "\t\t%s", note); |
| } |
| print(info->stream, "\n"); |
| |
| /* Dump any remaining part of the insn on subsequent lines. */ |
| for (i = split; i < n; i += split) { |
| print(info->stream, "0x%08" PRIx64 ": ", insn->address + i); |
| cap_dump_insn_units(info, insn, i, MIN(n, i + split)); |
| print(info->stream, "\n"); |
| } |
| } |
| |
| /* Disassemble SIZE bytes at PC for the target. */ |
| static bool cap_disas_target(disassemble_info *info, uint64_t pc, size_t size) |
| { |
| uint8_t cap_buf[1024]; |
| csh handle; |
| cs_insn *insn; |
| size_t csize = 0; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| insn = cap_insn; |
| |
| while (1) { |
| size_t tsize = MIN(sizeof(cap_buf) - csize, size); |
| const uint8_t *cbuf = cap_buf; |
| |
| target_read_memory(pc + csize, cap_buf + csize, tsize, info); |
| csize += tsize; |
| size -= tsize; |
| |
| while (cs_disasm_iter(handle, &cbuf, &csize, &pc, insn)) { |
| cap_dump_insn(info, insn, NULL); |
| } |
| |
| /* If the target memory is not consumed, go back for more... */ |
| if (size != 0) { |
| /* ... taking care to move any remaining fractional insn |
| to the beginning of the buffer. */ |
| if (csize != 0) { |
| memmove(cap_buf, cbuf, csize); |
| } |
| continue; |
| } |
| |
| /* Since the target memory is consumed, we should not have |
| a remaining fractional insn. */ |
| if (csize != 0) { |
| (*info->fprintf_func)(info->stream, |
| "Disassembler disagrees with translator " |
| "over instruction decoding\n" |
| "Please report this to qemu-devel@nongnu.org\n"); |
| } |
| break; |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |
| |
| /* Disassemble SIZE bytes at CODE for the host. */ |
| static bool cap_disas_host(disassemble_info *info, void *code, size_t size, |
| const char *note) |
| { |
| csh handle; |
| const uint8_t *cbuf; |
| cs_insn *insn; |
| uint64_t pc; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| insn = cap_insn; |
| |
| cbuf = code; |
| pc = (uintptr_t)code; |
| |
| while (cs_disasm_iter(handle, &cbuf, &size, &pc, insn)) { |
| cap_dump_insn(info, insn, note); |
| note = NULL; |
| } |
| if (size != 0) { |
| (*info->fprintf_func)(info->stream, |
| "Disassembler disagrees with TCG over instruction encoding\n" |
| "Please report this to qemu-devel@nongnu.org\n"); |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* Disassemble COUNT insns at PC for the target. */ |
| static bool cap_disas_monitor(disassemble_info *info, uint64_t pc, int count) |
| { |
| uint8_t cap_buf[32]; |
| csh handle; |
| cs_insn *insn; |
| size_t csize = 0; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| insn = cap_insn; |
| |
| while (1) { |
| /* We want to read memory for one insn, but generically we do not |
| know how much memory that is. We have a small buffer which is |
| known to be sufficient for all supported targets. Try to not |
| read beyond the page, Just In Case. For even more simplicity, |
| ignore the actual target page size and use a 1k boundary. If |
| that turns out to be insufficient, we'll come back around the |
| loop and read more. */ |
| uint64_t epc = QEMU_ALIGN_UP(pc + csize + 1, 1024); |
| size_t tsize = MIN(sizeof(cap_buf) - csize, epc - pc); |
| const uint8_t *cbuf = cap_buf; |
| |
| /* Make certain that we can make progress. */ |
| assert(tsize != 0); |
| info->read_memory_func(pc, cap_buf + csize, tsize, info); |
| csize += tsize; |
| |
| if (cs_disasm_iter(handle, &cbuf, &csize, &pc, insn)) { |
| cap_dump_insn(info, insn, NULL); |
| if (--count <= 0) { |
| break; |
| } |
| } |
| memmove(cap_buf, cbuf, csize); |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| #else |
| # define cap_disas_target(i, p, s) false |
| # define cap_disas_host(i, p, s, n) false |
| # define cap_disas_monitor(i, p, c) false |
| # define cap_disas_plugin(i, p, c) false |
| #endif /* CONFIG_CAPSTONE */ |
| |
| /* Disassemble this for me please... (debugging). */ |
| void target_disas(FILE *out, CPUState *cpu, target_ulong code, |
| target_ulong size) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| target_ulong pc; |
| int count; |
| CPUDebug s; |
| |
| INIT_DISASSEMBLE_INFO(s.info, out, fprintf); |
| |
| s.cpu = cpu; |
| s.info.read_memory_func = target_read_memory; |
| s.info.buffer_vma = code; |
| s.info.buffer_length = size; |
| s.info.print_address_func = generic_print_address; |
| s.info.cap_arch = -1; |
| s.info.cap_mode = 0; |
| s.info.cap_insn_unit = 4; |
| s.info.cap_insn_split = 4; |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| s.info.endian = BFD_ENDIAN_BIG; |
| #else |
| s.info.endian = BFD_ENDIAN_LITTLE; |
| #endif |
| |
| if (cc->disas_set_info) { |
| cc->disas_set_info(cpu, &s.info); |
| } |
| |
| if (s.info.cap_arch >= 0 && cap_disas_target(&s.info, code, size)) { |
| return; |
| } |
| |
| if (s.info.print_insn == NULL) { |
| s.info.print_insn = print_insn_od_target; |
| } |
| |
| for (pc = code; size > 0; pc += count, size -= count) { |
| fprintf(out, "0x" TARGET_FMT_lx ": ", pc); |
| count = s.info.print_insn(pc, &s.info); |
| fprintf(out, "\n"); |
| if (count < 0) |
| break; |
| if (size < count) { |
| fprintf(out, |
| "Disassembler disagrees with translator over instruction " |
| "decoding\n" |
| "Please report this to qemu-devel@nongnu.org\n"); |
| break; |
| } |
| } |
| } |
| |
| static __thread GString plugin_disas_output; |
| |
| static int plugin_printf(FILE *stream, const char *fmt, ...) |
| { |
| va_list va; |
| GString *s = &plugin_disas_output; |
| int initial_len = s->len; |
| |
| va_start(va, fmt); |
| g_string_append_vprintf(s, fmt, va); |
| va_end(va); |
| |
| return s->len - initial_len; |
| } |
| |
| static void plugin_print_address(bfd_vma addr, struct disassemble_info *info) |
| { |
| /* does nothing */ |
| } |
| |
| |
| #ifdef CONFIG_CAPSTONE |
| /* Disassemble a single instruction directly into plugin output */ |
| static |
| bool cap_disas_plugin(disassemble_info *info, uint64_t pc, size_t size) |
| { |
| uint8_t cap_buf[1024]; |
| csh handle; |
| cs_insn *insn; |
| size_t csize = 0; |
| int count; |
| GString *s = &plugin_disas_output; |
| |
| if (cap_disas_start(info, &handle) != CS_ERR_OK) { |
| return false; |
| } |
| insn = cap_insn; |
| |
| size_t tsize = MIN(sizeof(cap_buf) - csize, size); |
| const uint8_t *cbuf = cap_buf; |
| target_read_memory(pc, cap_buf, tsize, info); |
| |
| count = cs_disasm(handle, cbuf, size, 0, 1, &insn); |
| |
| if (count) { |
| g_string_printf(s, "%s %s", insn->mnemonic, insn->op_str); |
| } else { |
| g_string_printf(s, "cs_disasm failed"); |
| } |
| |
| cs_close(&handle); |
| return true; |
| } |
| #endif |
| |
| /* |
| * We should only be dissembling one instruction at a time here. If |
| * there is left over it usually indicates the front end has read more |
| * bytes than it needed. |
| */ |
| char *plugin_disas(CPUState *cpu, uint64_t addr, size_t size) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| int count; |
| CPUDebug s; |
| GString *ds = g_string_set_size(&plugin_disas_output, 0); |
| |
| g_assert(ds == &plugin_disas_output); |
| |
| INIT_DISASSEMBLE_INFO(s.info, NULL, plugin_printf); |
| |
| s.cpu = cpu; |
| s.info.read_memory_func = target_read_memory; |
| s.info.buffer_vma = addr; |
| s.info.buffer_length = size; |
| s.info.print_address_func = plugin_print_address; |
| s.info.cap_arch = -1; |
| s.info.cap_mode = 0; |
| s.info.cap_insn_unit = 4; |
| s.info.cap_insn_split = 4; |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| s.info.endian = BFD_ENDIAN_BIG; |
| #else |
| s.info.endian = BFD_ENDIAN_LITTLE; |
| #endif |
| |
| if (cc->disas_set_info) { |
| cc->disas_set_info(cpu, &s.info); |
| } |
| |
| if (s.info.cap_arch >= 0 && cap_disas_plugin(&s.info, addr, size)) { |
| return g_strdup(ds->str); |
| } |
| |
| if (s.info.print_insn == NULL) { |
| s.info.print_insn = print_insn_od_target; |
| } |
| |
| count = s.info.print_insn(addr, &s.info); |
| |
| /* The decoder probably read more than it needed it's not critical */ |
| if (count < size) { |
| warn_report("%s: %zu bytes left over", __func__, size - count); |
| } |
| |
| return g_strdup(ds->str); |
| } |
| |
| /* Disassemble this for me please... (debugging). */ |
| void disas(FILE *out, void *code, unsigned long size, const char *note) |
| { |
| uintptr_t pc; |
| int count; |
| CPUDebug s; |
| int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL; |
| |
| INIT_DISASSEMBLE_INFO(s.info, out, fprintf); |
| s.info.print_address_func = generic_print_host_address; |
| |
| s.info.buffer = code; |
| s.info.buffer_vma = (uintptr_t)code; |
| s.info.buffer_length = size; |
| s.info.cap_arch = -1; |
| s.info.cap_mode = 0; |
| s.info.cap_insn_unit = 4; |
| s.info.cap_insn_split = 4; |
| |
| #ifdef HOST_WORDS_BIGENDIAN |
| s.info.endian = BFD_ENDIAN_BIG; |
| #else |
| s.info.endian = BFD_ENDIAN_LITTLE; |
| #endif |
| #if defined(CONFIG_TCG_INTERPRETER) |
| print_insn = print_insn_tci; |
| #elif defined(__i386__) |
| s.info.mach = bfd_mach_i386_i386; |
| print_insn = print_insn_i386; |
| s.info.cap_arch = CS_ARCH_X86; |
| s.info.cap_mode = CS_MODE_32; |
| s.info.cap_insn_unit = 1; |
| s.info.cap_insn_split = 8; |
| #elif defined(__x86_64__) |
| s.info.mach = bfd_mach_x86_64; |
| print_insn = print_insn_i386; |
| s.info.cap_arch = CS_ARCH_X86; |
| s.info.cap_mode = CS_MODE_64; |
| s.info.cap_insn_unit = 1; |
| s.info.cap_insn_split = 8; |
| #elif defined(_ARCH_PPC) |
| s.info.disassembler_options = (char *)"any"; |
| print_insn = print_insn_ppc; |
| s.info.cap_arch = CS_ARCH_PPC; |
| # ifdef _ARCH_PPC64 |
| s.info.cap_mode = CS_MODE_64; |
| # endif |
| #elif defined(__riscv) && defined(CONFIG_RISCV_DIS) |
| #if defined(_ILP32) || (__riscv_xlen == 32) |
| print_insn = print_insn_riscv32; |
| #elif defined(_LP64) |
| print_insn = print_insn_riscv64; |
| #else |
| #error unsupported RISC-V ABI |
| #endif |
| #elif defined(__aarch64__) && defined(CONFIG_ARM_A64_DIS) |
| print_insn = print_insn_arm_a64; |
| s.info.cap_arch = CS_ARCH_ARM64; |
| #elif defined(__alpha__) |
| print_insn = print_insn_alpha; |
| #elif defined(__sparc__) |
| print_insn = print_insn_sparc; |
| s.info.mach = bfd_mach_sparc_v9b; |
| #elif defined(__arm__) |
| print_insn = print_insn_arm; |
| s.info.cap_arch = CS_ARCH_ARM; |
| /* TCG only generates code for arm mode. */ |
| #elif defined(__MIPSEB__) |
| print_insn = print_insn_big_mips; |
| #elif defined(__MIPSEL__) |
| print_insn = print_insn_little_mips; |
| #elif defined(__m68k__) |
| print_insn = print_insn_m68k; |
| #elif defined(__s390__) |
| print_insn = print_insn_s390; |
| #elif defined(__hppa__) |
| print_insn = print_insn_hppa; |
| #endif |
| |
| if (s.info.cap_arch >= 0 && cap_disas_host(&s.info, code, size, note)) { |
| return; |
| } |
| |
| if (print_insn == NULL) { |
| print_insn = print_insn_od_host; |
| } |
| for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) { |
| fprintf(out, "0x%08" PRIxPTR ": ", pc); |
| count = print_insn(pc, &s.info); |
| if (note) { |
| fprintf(out, "\t\t%s", note); |
| note = NULL; |
| } |
| fprintf(out, "\n"); |
| if (count < 0) { |
| break; |
| } |
| } |
| |
| } |
| |
| /* Look up symbol for debugging purpose. Returns "" if unknown. */ |
| const char *lookup_symbol(target_ulong orig_addr) |
| { |
| const char *symbol = ""; |
| struct syminfo *s; |
| |
| for (s = syminfos; s; s = s->next) { |
| symbol = s->lookup_symbol(s, orig_addr); |
| if (symbol[0] != '\0') { |
| break; |
| } |
| } |
| |
| return symbol; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| #include "monitor/monitor.h" |
| |
| static int |
| physical_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length, |
| struct disassemble_info *info) |
| { |
| CPUDebug *s = container_of(info, CPUDebug, info); |
| MemTxResult res; |
| |
| res = address_space_read(s->cpu->as, memaddr, MEMTXATTRS_UNSPECIFIED, |
| myaddr, length); |
| return res == MEMTX_OK ? 0 : EIO; |
| } |
| |
| /* Disassembler for the monitor. */ |
| void monitor_disas(Monitor *mon, CPUState *cpu, |
| target_ulong pc, int nb_insn, int is_physical) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| int count, i; |
| CPUDebug s; |
| |
| INIT_DISASSEMBLE_INFO(s.info, NULL, qemu_fprintf); |
| |
| s.cpu = cpu; |
| s.info.read_memory_func |
| = (is_physical ? physical_read_memory : target_read_memory); |
| s.info.print_address_func = generic_print_address; |
| s.info.buffer_vma = pc; |
| s.info.cap_arch = -1; |
| s.info.cap_mode = 0; |
| s.info.cap_insn_unit = 4; |
| s.info.cap_insn_split = 4; |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| s.info.endian = BFD_ENDIAN_BIG; |
| #else |
| s.info.endian = BFD_ENDIAN_LITTLE; |
| #endif |
| |
| if (cc->disas_set_info) { |
| cc->disas_set_info(cpu, &s.info); |
| } |
| |
| if (s.info.cap_arch >= 0 && cap_disas_monitor(&s.info, pc, nb_insn)) { |
| return; |
| } |
| |
| if (!s.info.print_insn) { |
| monitor_printf(mon, "0x" TARGET_FMT_lx |
| ": Asm output not supported on this arch\n", pc); |
| return; |
| } |
| |
| for(i = 0; i < nb_insn; i++) { |
| monitor_printf(mon, "0x" TARGET_FMT_lx ": ", pc); |
| count = s.info.print_insn(pc, &s.info); |
| monitor_printf(mon, "\n"); |
| if (count < 0) |
| break; |
| pc += count; |
| } |
| } |
| #endif |