| #include "cpu.h" |
| #include "gdbstub.h" |
| #include "helper.h" |
| #include "host-utils.h" |
| #if !defined(CONFIG_USER_ONLY) |
| #include "hw/loader.h" |
| #endif |
| #include "sysemu.h" |
| |
| static uint32_t cortexa15_cp15_c0_c1[8] = { |
| 0x00001131, 0x00011011, 0x02010555, 0x00000000, |
| 0x10201105, 0x20000000, 0x01240000, 0x02102211 |
| }; |
| |
| static uint32_t cortexa15_cp15_c0_c2[8] = { |
| 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0 |
| }; |
| |
| static uint32_t cortexa9_cp15_c0_c1[8] = |
| { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 }; |
| |
| static uint32_t cortexa9_cp15_c0_c2[8] = |
| { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 }; |
| |
| static uint32_t cortexa8_cp15_c0_c1[8] = |
| { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 }; |
| |
| static uint32_t cortexa8_cp15_c0_c2[8] = |
| { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 }; |
| |
| static uint32_t mpcore_cp15_c0_c1[8] = |
| { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 }; |
| |
| static uint32_t mpcore_cp15_c0_c2[8] = |
| { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 }; |
| |
| static uint32_t arm1136_cp15_c0_c1[8] = |
| { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 }; |
| |
| static uint32_t arm1136_cp15_c0_c2[8] = |
| { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 }; |
| |
| static uint32_t arm1176_cp15_c0_c1[8] = |
| { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 }; |
| |
| static uint32_t arm1176_cp15_c0_c2[8] = |
| { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 }; |
| |
| static inline void set_feature(CPUARMState *env, int feature) |
| { |
| env->features |= 1u << feature; |
| } |
| |
| static void cpu_reset_model_id(CPUARMState *env, uint32_t id) |
| { |
| switch (id) { |
| case ARM_CPUID_ARM926: |
| set_feature(env, ARM_FEATURE_V5); |
| set_feature(env, ARM_FEATURE_VFP); |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090; |
| env->cp15.c0_cachetype = 0x1dd20d2; |
| env->cp15.c1_sys = 0x00090078; |
| break; |
| case ARM_CPUID_ARM946: |
| set_feature(env, ARM_FEATURE_V5); |
| set_feature(env, ARM_FEATURE_MPU); |
| env->cp15.c0_cachetype = 0x0f004006; |
| env->cp15.c1_sys = 0x00000078; |
| break; |
| case ARM_CPUID_ARM1026: |
| set_feature(env, ARM_FEATURE_V5); |
| set_feature(env, ARM_FEATURE_VFP); |
| set_feature(env, ARM_FEATURE_AUXCR); |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0; |
| env->cp15.c0_cachetype = 0x1dd20d2; |
| env->cp15.c1_sys = 0x00090078; |
| break; |
| case ARM_CPUID_ARM1136: |
| /* This is the 1136 r1, which is a v6K core */ |
| set_feature(env, ARM_FEATURE_V6K); |
| /* Fall through */ |
| case ARM_CPUID_ARM1136_R2: |
| /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an |
| * older core than plain "arm1136". In particular this does not |
| * have the v6K features. |
| */ |
| set_feature(env, ARM_FEATURE_V6); |
| set_feature(env, ARM_FEATURE_VFP); |
| /* These ID register values are correct for 1136 but may be wrong |
| * for 1136_r2 (in particular r0p2 does not actually implement most |
| * of the ID registers). |
| */ |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; |
| env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; |
| env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; |
| memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t)); |
| memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t)); |
| env->cp15.c0_cachetype = 0x1dd20d2; |
| env->cp15.c1_sys = 0x00050078; |
| break; |
| case ARM_CPUID_ARM1176: |
| set_feature(env, ARM_FEATURE_V6K); |
| set_feature(env, ARM_FEATURE_VFP); |
| set_feature(env, ARM_FEATURE_VAPA); |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5; |
| env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; |
| env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; |
| memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t)); |
| memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t)); |
| env->cp15.c0_cachetype = 0x1dd20d2; |
| env->cp15.c1_sys = 0x00050078; |
| break; |
| case ARM_CPUID_ARM11MPCORE: |
| set_feature(env, ARM_FEATURE_V6K); |
| set_feature(env, ARM_FEATURE_VFP); |
| set_feature(env, ARM_FEATURE_VAPA); |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; |
| env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; |
| env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; |
| memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t)); |
| memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t)); |
| env->cp15.c0_cachetype = 0x1dd20d2; |
| break; |
| case ARM_CPUID_CORTEXA8: |
| set_feature(env, ARM_FEATURE_V7); |
| set_feature(env, ARM_FEATURE_VFP3); |
| set_feature(env, ARM_FEATURE_NEON); |
| set_feature(env, ARM_FEATURE_THUMB2EE); |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0; |
| env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; |
| env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100; |
| memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t)); |
| memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t)); |
| env->cp15.c0_cachetype = 0x82048004; |
| env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3; |
| env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */ |
| env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */ |
| env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */ |
| env->cp15.c1_sys = 0x00c50078; |
| break; |
| case ARM_CPUID_CORTEXA9: |
| set_feature(env, ARM_FEATURE_V7); |
| set_feature(env, ARM_FEATURE_VFP3); |
| set_feature(env, ARM_FEATURE_VFP_FP16); |
| set_feature(env, ARM_FEATURE_NEON); |
| set_feature(env, ARM_FEATURE_THUMB2EE); |
| /* Note that A9 supports the MP extensions even for |
| * A9UP and single-core A9MP (which are both different |
| * and valid configurations; we don't model A9UP). |
| */ |
| set_feature(env, ARM_FEATURE_V7MP); |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090; |
| env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; |
| env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111; |
| memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t)); |
| memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t)); |
| env->cp15.c0_cachetype = 0x80038003; |
| env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3; |
| env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */ |
| env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */ |
| env->cp15.c1_sys = 0x00c50078; |
| break; |
| case ARM_CPUID_CORTEXA15: |
| set_feature(env, ARM_FEATURE_V7); |
| set_feature(env, ARM_FEATURE_VFP4); |
| set_feature(env, ARM_FEATURE_VFP_FP16); |
| set_feature(env, ARM_FEATURE_NEON); |
| set_feature(env, ARM_FEATURE_THUMB2EE); |
| set_feature(env, ARM_FEATURE_ARM_DIV); |
| set_feature(env, ARM_FEATURE_V7MP); |
| set_feature(env, ARM_FEATURE_GENERIC_TIMER); |
| env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0; |
| env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222; |
| env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111; |
| memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t)); |
| memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t)); |
| env->cp15.c0_cachetype = 0x8444c004; |
| env->cp15.c0_clid = 0x0a200023; |
| env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */ |
| env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */ |
| env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */ |
| env->cp15.c1_sys = 0x00c50078; |
| break; |
| case ARM_CPUID_CORTEXM3: |
| set_feature(env, ARM_FEATURE_V7); |
| set_feature(env, ARM_FEATURE_M); |
| break; |
| case ARM_CPUID_ANY: /* For userspace emulation. */ |
| set_feature(env, ARM_FEATURE_V7); |
| set_feature(env, ARM_FEATURE_VFP4); |
| set_feature(env, ARM_FEATURE_VFP_FP16); |
| set_feature(env, ARM_FEATURE_NEON); |
| set_feature(env, ARM_FEATURE_THUMB2EE); |
| set_feature(env, ARM_FEATURE_ARM_DIV); |
| set_feature(env, ARM_FEATURE_V7MP); |
| break; |
| case ARM_CPUID_TI915T: |
| case ARM_CPUID_TI925T: |
| set_feature(env, ARM_FEATURE_V4T); |
| set_feature(env, ARM_FEATURE_OMAPCP); |
| env->cp15.c0_cachetype = 0x5109149; |
| env->cp15.c1_sys = 0x00000070; |
| env->cp15.c15_i_max = 0x000; |
| env->cp15.c15_i_min = 0xff0; |
| break; |
| case ARM_CPUID_PXA250: |
| case ARM_CPUID_PXA255: |
| case ARM_CPUID_PXA260: |
| case ARM_CPUID_PXA261: |
| case ARM_CPUID_PXA262: |
| set_feature(env, ARM_FEATURE_V5); |
| set_feature(env, ARM_FEATURE_XSCALE); |
| /* JTAG_ID is ((id << 28) | 0x09265013) */ |
| env->cp15.c0_cachetype = 0xd172172; |
| env->cp15.c1_sys = 0x00000078; |
| break; |
| case ARM_CPUID_PXA270_A0: |
| case ARM_CPUID_PXA270_A1: |
| case ARM_CPUID_PXA270_B0: |
| case ARM_CPUID_PXA270_B1: |
| case ARM_CPUID_PXA270_C0: |
| case ARM_CPUID_PXA270_C5: |
| set_feature(env, ARM_FEATURE_V5); |
| set_feature(env, ARM_FEATURE_XSCALE); |
| /* JTAG_ID is ((id << 28) | 0x09265013) */ |
| set_feature(env, ARM_FEATURE_IWMMXT); |
| env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; |
| env->cp15.c0_cachetype = 0xd172172; |
| env->cp15.c1_sys = 0x00000078; |
| break; |
| case ARM_CPUID_SA1100: |
| case ARM_CPUID_SA1110: |
| set_feature(env, ARM_FEATURE_STRONGARM); |
| env->cp15.c1_sys = 0x00000070; |
| break; |
| default: |
| cpu_abort(env, "Bad CPU ID: %x\n", id); |
| break; |
| } |
| |
| /* Some features automatically imply others: */ |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| set_feature(env, ARM_FEATURE_VAPA); |
| set_feature(env, ARM_FEATURE_THUMB2); |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| set_feature(env, ARM_FEATURE_V6K); |
| } else { |
| set_feature(env, ARM_FEATURE_V6); |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_V6K)) { |
| set_feature(env, ARM_FEATURE_V6); |
| set_feature(env, ARM_FEATURE_MVFR); |
| } |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| set_feature(env, ARM_FEATURE_V5); |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| set_feature(env, ARM_FEATURE_AUXCR); |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_V5)) { |
| set_feature(env, ARM_FEATURE_V4T); |
| } |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| set_feature(env, ARM_FEATURE_THUMB_DIV); |
| } |
| if (arm_feature(env, ARM_FEATURE_ARM_DIV)) { |
| set_feature(env, ARM_FEATURE_THUMB_DIV); |
| } |
| if (arm_feature(env, ARM_FEATURE_VFP4)) { |
| set_feature(env, ARM_FEATURE_VFP3); |
| } |
| if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| set_feature(env, ARM_FEATURE_VFP); |
| } |
| } |
| |
| /* TODO Move contents into arm_cpu_reset() in cpu.c, |
| * once cpu_reset_model_id() is eliminated, |
| * and then forward to cpu_reset() here. |
| */ |
| void cpu_state_reset(CPUARMState *env) |
| { |
| uint32_t id; |
| uint32_t tmp = 0; |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (qemu_loglevel_mask(CPU_LOG_RESET)) { |
| qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); |
| log_cpu_state(env, 0); |
| } |
| |
| id = cpu->midr; |
| tmp = env->cp15.c15_config_base_address; |
| memset(env, 0, offsetof(CPUARMState, breakpoints)); |
| if (id) |
| cpu_reset_model_id(env, id); |
| env->cp15.c15_config_base_address = tmp; |
| env->cp15.c0_cpuid = cpu->midr; |
| #if defined (CONFIG_USER_ONLY) |
| env->uncached_cpsr = ARM_CPU_MODE_USR; |
| /* For user mode we must enable access to coprocessors */ |
| env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; |
| if (arm_feature(env, ARM_FEATURE_IWMMXT)) { |
| env->cp15.c15_cpar = 3; |
| } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| env->cp15.c15_cpar = 1; |
| } |
| #else |
| /* SVC mode with interrupts disabled. */ |
| env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; |
| /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is |
| clear at reset. Initial SP and PC are loaded from ROM. */ |
| if (IS_M(env)) { |
| uint32_t pc; |
| uint8_t *rom; |
| env->uncached_cpsr &= ~CPSR_I; |
| rom = rom_ptr(0); |
| if (rom) { |
| /* We should really use ldl_phys here, in case the guest |
| modified flash and reset itself. However images |
| loaded via -kernel have not been copied yet, so load the |
| values directly from there. */ |
| env->regs[13] = ldl_p(rom); |
| pc = ldl_p(rom + 4); |
| env->thumb = pc & 1; |
| env->regs[15] = pc & ~1; |
| } |
| } |
| env->vfp.xregs[ARM_VFP_FPEXC] = 0; |
| env->cp15.c2_base_mask = 0xffffc000u; |
| /* v7 performance monitor control register: same implementor |
| * field as main ID register, and we implement no event counters. |
| */ |
| env->cp15.c9_pmcr = (id & 0xff000000); |
| #endif |
| set_flush_to_zero(1, &env->vfp.standard_fp_status); |
| set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); |
| set_default_nan_mode(1, &env->vfp.standard_fp_status); |
| set_float_detect_tininess(float_tininess_before_rounding, |
| &env->vfp.fp_status); |
| set_float_detect_tininess(float_tininess_before_rounding, |
| &env->vfp.standard_fp_status); |
| tlb_flush(env, 1); |
| /* Reset is a state change for some CPUARMState fields which we |
| * bake assumptions about into translated code, so we need to |
| * tb_flush(). |
| */ |
| tb_flush(env); |
| } |
| |
| static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| /* VFP data registers are always little-endian. */ |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[reg]); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| /* Aliases for Q regs. */ |
| nregs += 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); |
| stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; |
| case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; |
| case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| env->vfp.regs[reg] = ldfq_le_p(buf); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| nregs += 16; |
| if (reg < nregs) { |
| env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); |
| env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; |
| case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; |
| case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
| } |
| return 0; |
| } |
| |
| CPUARMState *cpu_arm_init(const char *cpu_model) |
| { |
| ARMCPU *cpu; |
| CPUARMState *env; |
| static int inited = 0; |
| |
| if (!object_class_by_name(cpu_model)) { |
| return NULL; |
| } |
| cpu = ARM_CPU(object_new(cpu_model)); |
| env = &cpu->env; |
| env->cpu_model_str = cpu_model; |
| |
| if (tcg_enabled() && !inited) { |
| inited = 1; |
| arm_translate_init(); |
| } |
| |
| cpu_state_reset(env); |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 51, "arm-neon.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 35, "arm-vfp3.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
| gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 19, "arm-vfp.xml", 0); |
| } |
| qemu_init_vcpu(env); |
| return env; |
| } |
| |
| typedef struct ARMCPUListState { |
| fprintf_function cpu_fprintf; |
| FILE *file; |
| } ARMCPUListState; |
| |
| /* Sort alphabetically by type name, except for "any". */ |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
| { |
| ObjectClass *class_a = (ObjectClass *)a; |
| ObjectClass *class_b = (ObjectClass *)b; |
| const char *name_a, *name_b; |
| |
| name_a = object_class_get_name(class_a); |
| name_b = object_class_get_name(class_b); |
| if (strcmp(name_a, "any") == 0) { |
| return 1; |
| } else if (strcmp(name_b, "any") == 0) { |
| return -1; |
| } else { |
| return strcmp(name_a, name_b); |
| } |
| } |
| |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| ARMCPUListState *s = user_data; |
| |
| (*s->cpu_fprintf)(s->file, " %s\n", |
| object_class_get_name(oc)); |
| } |
| |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) |
| { |
| ARMCPUListState s = { |
| .file = f, |
| .cpu_fprintf = cpu_fprintf, |
| }; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| list = g_slist_sort(list, arm_cpu_list_compare); |
| (*cpu_fprintf)(f, "Available CPUs:\n"); |
| g_slist_foreach(list, arm_cpu_list_entry, &s); |
| g_slist_free(list); |
| } |
| |
| static int bad_mode_switch(CPUARMState *env, int mode) |
| { |
| /* Return true if it is not valid for us to switch to |
| * this CPU mode (ie all the UNPREDICTABLE cases in |
| * the ARM ARM CPSRWriteByInstr pseudocode). |
| */ |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_FIQ: |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| uint32_t cpsr_read(CPUARMState *env) |
| { |
| int ZF; |
| ZF = (env->ZF == 0); |
| return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
| | ((env->condexec_bits & 0xfc) << 8) |
| | (env->GE << 16); |
| } |
| |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
| { |
| if (mask & CPSR_NZCV) { |
| env->ZF = (~val) & CPSR_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| } |
| if (mask & CPSR_Q) |
| env->QF = ((val & CPSR_Q) != 0); |
| if (mask & CPSR_T) |
| env->thumb = ((val & CPSR_T) != 0); |
| if (mask & CPSR_IT_0_1) { |
| env->condexec_bits &= ~3; |
| env->condexec_bits |= (val >> 25) & 3; |
| } |
| if (mask & CPSR_IT_2_7) { |
| env->condexec_bits &= 3; |
| env->condexec_bits |= (val >> 8) & 0xfc; |
| } |
| if (mask & CPSR_GE) { |
| env->GE = (val >> 16) & 0xf; |
| } |
| |
| if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
| if (bad_mode_switch(env, val & CPSR_M)) { |
| /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. |
| * We choose to ignore the attempt and leave the CPSR M field |
| * untouched. |
| */ |
| mask &= ~CPSR_M; |
| } else { |
| switch_mode(env, val & CPSR_M); |
| } |
| } |
| mask &= ~CACHED_CPSR_BITS; |
| env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
| } |
| |
| /* Sign/zero extend */ |
| uint32_t HELPER(sxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(int8_t)x; |
| res |= (uint32_t)(int8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(uxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(uint8_t)x; |
| res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(clz)(uint32_t x) |
| { |
| return clz32(x); |
| } |
| |
| int32_t HELPER(sdiv)(int32_t num, int32_t den) |
| { |
| if (den == 0) |
| return 0; |
| if (num == INT_MIN && den == -1) |
| return INT_MIN; |
| return num / den; |
| } |
| |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den) |
| { |
| if (den == 0) |
| return 0; |
| return num / den; |
| } |
| |
| uint32_t HELPER(rbit)(uint32_t x) |
| { |
| x = ((x & 0xff000000) >> 24) |
| | ((x & 0x00ff0000) >> 8) |
| | ((x & 0x0000ff00) << 8) |
| | ((x & 0x000000ff) << 24); |
| x = ((x & 0xf0f0f0f0) >> 4) |
| | ((x & 0x0f0f0f0f) << 4); |
| x = ((x & 0x88888888) >> 3) |
| | ((x & 0x44444444) >> 1) |
| | ((x & 0x22222222) << 1) |
| | ((x & 0x11111111) << 3); |
| return x; |
| } |
| |
| uint32_t HELPER(abs)(uint32_t x) |
| { |
| return ((int32_t)x < 0) ? -x : x; |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void do_interrupt (CPUARMState *env) |
| { |
| env->exception_index = -1; |
| } |
| |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
| int mmu_idx) |
| { |
| if (rw == 2) { |
| env->exception_index = EXCP_PREFETCH_ABORT; |
| env->cp15.c6_insn = address; |
| } else { |
| env->exception_index = EXCP_DATA_ABORT; |
| env->cp15.c6_data = address; |
| } |
| return 1; |
| } |
| |
| /* These should probably raise undefined insn exceptions. */ |
| void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val) |
| { |
| int op1 = (insn >> 8) & 0xf; |
| cpu_abort(env, "cp%i insn %08x\n", op1, insn); |
| return; |
| } |
| |
| uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn) |
| { |
| int op1 = (insn >> 8) & 0xf; |
| cpu_abort(env, "cp%i insn %08x\n", op1, insn); |
| return 0; |
| } |
| |
| void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val) |
| { |
| cpu_abort(env, "cp15 insn %08x\n", insn); |
| } |
| |
| uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn) |
| { |
| cpu_abort(env, "cp15 insn %08x\n", insn); |
| } |
| |
| /* These should probably raise undefined insn exceptions. */ |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| cpu_abort(env, "v7m_mrs %d\n", reg); |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| cpu_abort(env, "v7m_mrs %d\n", reg); |
| return 0; |
| } |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| if (mode != ARM_CPU_MODE_USR) |
| cpu_abort(env, "Tried to switch out of user mode\n"); |
| } |
| |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
| { |
| cpu_abort(env, "banked r13 write\n"); |
| } |
| |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
| { |
| cpu_abort(env, "banked r13 read\n"); |
| return 0; |
| } |
| |
| #else |
| |
| /* Map CPU modes onto saved register banks. */ |
| static inline int bank_number(CPUARMState *env, int mode) |
| { |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| return 0; |
| case ARM_CPU_MODE_SVC: |
| return 1; |
| case ARM_CPU_MODE_ABT: |
| return 2; |
| case ARM_CPU_MODE_UND: |
| return 3; |
| case ARM_CPU_MODE_IRQ: |
| return 4; |
| case ARM_CPU_MODE_FIQ: |
| return 5; |
| } |
| cpu_abort(env, "Bad mode %x\n", mode); |
| return -1; |
| } |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| int old_mode; |
| int i; |
| |
| old_mode = env->uncached_cpsr & CPSR_M; |
| if (mode == old_mode) |
| return; |
| |
| if (old_mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| } else if (mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| } |
| |
| i = bank_number(env, old_mode); |
| env->banked_r13[i] = env->regs[13]; |
| env->banked_r14[i] = env->regs[14]; |
| env->banked_spsr[i] = env->spsr; |
| |
| i = bank_number(env, mode); |
| env->regs[13] = env->banked_r13[i]; |
| env->regs[14] = env->banked_r14[i]; |
| env->spsr = env->banked_spsr[i]; |
| } |
| |
| static void v7m_push(CPUARMState *env, uint32_t val) |
| { |
| env->regs[13] -= 4; |
| stl_phys(env->regs[13], val); |
| } |
| |
| static uint32_t v7m_pop(CPUARMState *env) |
| { |
| uint32_t val; |
| val = ldl_phys(env->regs[13]); |
| env->regs[13] += 4; |
| return val; |
| } |
| |
| /* Switch to V7M main or process stack pointer. */ |
| static void switch_v7m_sp(CPUARMState *env, int process) |
| { |
| uint32_t tmp; |
| if (env->v7m.current_sp != process) { |
| tmp = env->v7m.other_sp; |
| env->v7m.other_sp = env->regs[13]; |
| env->regs[13] = tmp; |
| env->v7m.current_sp = process; |
| } |
| } |
| |
| static void do_v7m_exception_exit(CPUARMState *env) |
| { |
| uint32_t type; |
| uint32_t xpsr; |
| |
| type = env->regs[15]; |
| if (env->v7m.exception != 0) |
| armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
| |
| /* Switch to the target stack. */ |
| switch_v7m_sp(env, (type & 4) != 0); |
| /* Pop registers. */ |
| env->regs[0] = v7m_pop(env); |
| env->regs[1] = v7m_pop(env); |
| env->regs[2] = v7m_pop(env); |
| env->regs[3] = v7m_pop(env); |
| env->regs[12] = v7m_pop(env); |
| env->regs[14] = v7m_pop(env); |
| env->regs[15] = v7m_pop(env); |
| xpsr = v7m_pop(env); |
| xpsr_write(env, xpsr, 0xfffffdff); |
| /* Undo stack alignment. */ |
| if (xpsr & 0x200) |
| env->regs[13] |= 4; |
| /* ??? The exception return type specifies Thread/Handler mode. However |
| this is also implied by the xPSR value. Not sure what to do |
| if there is a mismatch. */ |
| /* ??? Likewise for mismatches between the CONTROL register and the stack |
| pointer. */ |
| } |
| |
| static void do_interrupt_v7m(CPUARMState *env) |
| { |
| uint32_t xpsr = xpsr_read(env); |
| uint32_t lr; |
| uint32_t addr; |
| |
| lr = 0xfffffff1; |
| if (env->v7m.current_sp) |
| lr |= 4; |
| if (env->v7m.exception == 0) |
| lr |= 8; |
| |
| /* For exceptions we just mark as pending on the NVIC, and let that |
| handle it. */ |
| /* TODO: Need to escalate if the current priority is higher than the |
| one we're raising. */ |
| switch (env->exception_index) { |
| case EXCP_UDEF: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
| return; |
| case EXCP_SWI: |
| env->regs[15] += 2; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
| return; |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
| return; |
| case EXCP_BKPT: |
| if (semihosting_enabled) { |
| int nr; |
| nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff; |
| if (nr == 0xab) { |
| env->regs[15] += 2; |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
| return; |
| case EXCP_IRQ: |
| env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
| break; |
| case EXCP_EXCEPTION_EXIT: |
| do_v7m_exception_exit(env); |
| return; |
| default: |
| cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| |
| /* Align stack pointer. */ |
| /* ??? Should only do this if Configuration Control Register |
| STACKALIGN bit is set. */ |
| if (env->regs[13] & 4) { |
| env->regs[13] -= 4; |
| xpsr |= 0x200; |
| } |
| /* Switch to the handler mode. */ |
| v7m_push(env, xpsr); |
| v7m_push(env, env->regs[15]); |
| v7m_push(env, env->regs[14]); |
| v7m_push(env, env->regs[12]); |
| v7m_push(env, env->regs[3]); |
| v7m_push(env, env->regs[2]); |
| v7m_push(env, env->regs[1]); |
| v7m_push(env, env->regs[0]); |
| switch_v7m_sp(env, 0); |
| /* Clear IT bits */ |
| env->condexec_bits = 0; |
| env->regs[14] = lr; |
| addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); |
| env->regs[15] = addr & 0xfffffffe; |
| env->thumb = addr & 1; |
| } |
| |
| /* Handle a CPU exception. */ |
| void do_interrupt(CPUARMState *env) |
| { |
| uint32_t addr; |
| uint32_t mask; |
| int new_mode; |
| uint32_t offset; |
| |
| if (IS_M(env)) { |
| do_interrupt_v7m(env); |
| return; |
| } |
| /* TODO: Vectored interrupt controller. */ |
| switch (env->exception_index) { |
| case EXCP_UDEF: |
| new_mode = ARM_CPU_MODE_UND; |
| addr = 0x04; |
| mask = CPSR_I; |
| if (env->thumb) |
| offset = 2; |
| else |
| offset = 4; |
| break; |
| case EXCP_SWI: |
| if (semihosting_enabled) { |
| /* Check for semihosting interrupt. */ |
| if (env->thumb) { |
| mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff; |
| } else { |
| mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code) |
| & 0xffffff; |
| } |
| /* Only intercept calls from privileged modes, to provide some |
| semblance of security. */ |
| if (((mask == 0x123456 && !env->thumb) |
| || (mask == 0xab && env->thumb)) |
| && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| new_mode = ARM_CPU_MODE_SVC; |
| addr = 0x08; |
| mask = CPSR_I; |
| /* The PC already points to the next instruction. */ |
| offset = 0; |
| break; |
| case EXCP_BKPT: |
| /* See if this is a semihosting syscall. */ |
| if (env->thumb && semihosting_enabled) { |
| mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff; |
| if (mask == 0xab |
| && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
| env->regs[15] += 2; |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| env->cp15.c5_insn = 2; |
| /* Fall through to prefetch abort. */ |
| case EXCP_PREFETCH_ABORT: |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x0c; |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_DATA_ABORT: |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x10; |
| mask = CPSR_A | CPSR_I; |
| offset = 8; |
| break; |
| case EXCP_IRQ: |
| new_mode = ARM_CPU_MODE_IRQ; |
| addr = 0x18; |
| /* Disable IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_FIQ: |
| new_mode = ARM_CPU_MODE_FIQ; |
| addr = 0x1c; |
| /* Disable FIQ, IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| offset = 4; |
| break; |
| default: |
| cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| /* High vectors. */ |
| if (env->cp15.c1_sys & (1 << 13)) { |
| addr += 0xffff0000; |
| } |
| switch_mode (env, new_mode); |
| env->spsr = cpsr_read(env); |
| /* Clear IT bits. */ |
| env->condexec_bits = 0; |
| /* Switch to the new mode, and to the correct instruction set. */ |
| env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
| env->uncached_cpsr |= mask; |
| /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
| * and we should just guard the thumb mode on V4 */ |
| if (arm_feature(env, ARM_FEATURE_V4T)) { |
| env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; |
| } |
| env->regs[14] = env->regs[15] + offset; |
| env->regs[15] = addr; |
| env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| |
| /* Check section/page access permissions. |
| Returns the page protection flags, or zero if the access is not |
| permitted. */ |
| static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
| int access_type, int is_user) |
| { |
| int prot_ro; |
| |
| if (domain_prot == 3) { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| |
| if (access_type == 1) |
| prot_ro = 0; |
| else |
| prot_ro = PAGE_READ; |
| |
| switch (ap) { |
| case 0: |
| if (access_type == 1) |
| return 0; |
| switch ((env->cp15.c1_sys >> 8) & 3) { |
| case 1: |
| return is_user ? 0 : PAGE_READ; |
| case 2: |
| return PAGE_READ; |
| default: |
| return 0; |
| } |
| case 1: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 2: |
| if (is_user) |
| return prot_ro; |
| else |
| return PAGE_READ | PAGE_WRITE; |
| case 3: |
| return PAGE_READ | PAGE_WRITE; |
| case 4: /* Reserved. */ |
| return 0; |
| case 5: |
| return is_user ? 0 : prot_ro; |
| case 6: |
| return prot_ro; |
| case 7: |
| if (!arm_feature (env, ARM_FEATURE_V6K)) |
| return 0; |
| return prot_ro; |
| default: |
| abort(); |
| } |
| } |
| |
| static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
| { |
| uint32_t table; |
| |
| if (address & env->cp15.c2_mask) |
| table = env->cp15.c2_base1 & 0xffffc000; |
| else |
| table = env->cp15.c2_base0 & env->cp15.c2_base_mask; |
| |
| table |= (address >> 18) & 0x3ffc; |
| return table; |
| } |
| |
| static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, uint32_t *phys_ptr, int *prot, |
| target_ulong *page_size) |
| { |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| int type; |
| int ap; |
| int domain; |
| int domain_prot; |
| uint32_t phys_addr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| table = get_level1_table_address(env, address); |
| desc = ldl_phys(table); |
| type = (desc & 3); |
| domain = (desc >> 5) & 0x0f; |
| domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| if (type == 0) { |
| /* Section translation fault. */ |
| code = 5; |
| goto do_fault; |
| } |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type == 2) |
| code = 9; /* Section domain fault. */ |
| else |
| code = 11; /* Page domain fault. */ |
| goto do_fault; |
| } |
| if (type == 2) { |
| /* 1Mb section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| ap = (desc >> 10) & 3; |
| code = 13; |
| *page_size = 1024 * 1024; |
| } else { |
| /* Lookup l2 entry. */ |
| if (type == 1) { |
| /* Coarse pagetable. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| } else { |
| /* Fine pagetable. */ |
| table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| } |
| desc = ldl_phys(table); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x10000; |
| break; |
| case 2: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x1000; |
| break; |
| case 3: /* 1k page. */ |
| if (type == 1) { |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| } else { |
| /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| } |
| } else { |
| phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| } |
| ap = (desc >> 4) & 3; |
| *page_size = 0x400; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| if (!*prot) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| *prot |= PAGE_EXEC; |
| *phys_ptr = phys_addr; |
| return 0; |
| do_fault: |
| return code | (domain << 4); |
| } |
| |
| static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, uint32_t *phys_ptr, int *prot, |
| target_ulong *page_size) |
| { |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| uint32_t xn; |
| int type; |
| int ap; |
| int domain; |
| int domain_prot; |
| uint32_t phys_addr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| table = get_level1_table_address(env, address); |
| desc = ldl_phys(table); |
| type = (desc & 3); |
| if (type == 0) { |
| /* Section translation fault. */ |
| code = 5; |
| domain = 0; |
| goto do_fault; |
| } else if (type == 2 && (desc & (1 << 18))) { |
| /* Supersection. */ |
| domain = 0; |
| } else { |
| /* Section or page. */ |
| domain = (desc >> 5) & 0x0f; |
| } |
| domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type == 2) |
| code = 9; /* Section domain fault. */ |
| else |
| code = 11; /* Page domain fault. */ |
| goto do_fault; |
| } |
| if (type == 2) { |
| if (desc & (1 << 18)) { |
| /* Supersection. */ |
| phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| *page_size = 0x1000000; |
| } else { |
| /* Section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| *page_size = 0x100000; |
| } |
| ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| xn = desc & (1 << 4); |
| code = 13; |
| } else { |
| /* Lookup l2 entry. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| desc = ldl_phys(table); |
| ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| xn = desc & (1 << 15); |
| *page_size = 0x10000; |
| break; |
| case 2: case 3: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| xn = desc & 1; |
| *page_size = 0x1000; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| if (domain_prot == 3) { |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } else { |
| if (xn && access_type == 2) |
| goto do_fault; |
| |
| /* The simplified model uses AP[0] as an access control bit. */ |
| if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { |
| /* Access flag fault. */ |
| code = (code == 15) ? 6 : 3; |
| goto do_fault; |
| } |
| *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| if (!*prot) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| if (!xn) { |
| *prot |= PAGE_EXEC; |
| } |
| } |
| *phys_ptr = phys_addr; |
| return 0; |
| do_fault: |
| return code | (domain << 4); |
| } |
| |
| static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, uint32_t *phys_ptr, int *prot) |
| { |
| int n; |
| uint32_t mask; |
| uint32_t base; |
| |
| *phys_ptr = address; |
| for (n = 7; n >= 0; n--) { |
| base = env->cp15.c6_region[n]; |
| if ((base & 1) == 0) |
| continue; |
| mask = 1 << ((base >> 1) & 0x1f); |
| /* Keep this shift separate from the above to avoid an |
| (undefined) << 32. */ |
| mask = (mask << 1) - 1; |
| if (((base ^ address) & ~mask) == 0) |
| break; |
| } |
| if (n < 0) |
| return 2; |
| |
| if (access_type == 2) { |
| mask = env->cp15.c5_insn; |
| } else { |
| mask = env->cp15.c5_data; |
| } |
| mask = (mask >> (n * 4)) & 0xf; |
| switch (mask) { |
| case 0: |
| return 1; |
| case 1: |
| if (is_user) |
| return 1; |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 2: |
| *prot = PAGE_READ; |
| if (!is_user) |
| *prot |= PAGE_WRITE; |
| break; |
| case 3: |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 5: |
| if (is_user) |
| return 1; |
| *prot = PAGE_READ; |
| break; |
| case 6: |
| *prot = PAGE_READ; |
| break; |
| default: |
| /* Bad permission. */ |
| return 1; |
| } |
| *prot |= PAGE_EXEC; |
| return 0; |
| } |
| |
| static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
| int access_type, int is_user, |
| uint32_t *phys_ptr, int *prot, |
| target_ulong *page_size) |
| { |
| /* Fast Context Switch Extension. */ |
| if (address < 0x02000000) |
| address += env->cp15.c13_fcse; |
| |
| if ((env->cp15.c1_sys & 1) == 0) { |
| /* MMU/MPU disabled. */ |
| *phys_ptr = address; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| *page_size = TARGET_PAGE_SIZE; |
| return 0; |
| } else if (arm_feature(env, ARM_FEATURE_MPU)) { |
| *page_size = TARGET_PAGE_SIZE; |
| return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
| prot); |
| } else if (env->cp15.c1_sys & (1 << 23)) { |
| return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
| prot, page_size); |
| } else { |
| return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, |
| prot, page_size); |
| } |
| } |
| |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
| int access_type, int mmu_idx) |
| { |
| uint32_t phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret, is_user; |
| |
| is_user = mmu_idx == MMU_USER_IDX; |
| ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
| &page_size); |
| if (ret == 0) { |
| /* Map a single [sub]page. */ |
| phys_addr &= ~(uint32_t)0x3ff; |
| address &= ~(uint32_t)0x3ff; |
| tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
| return 0; |
| } |
| |
| if (access_type == 2) { |
| env->cp15.c5_insn = ret; |
| env->cp15.c6_insn = address; |
| env->exception_index = EXCP_PREFETCH_ABORT; |
| } else { |
| env->cp15.c5_data = ret; |
| if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
| env->cp15.c5_data |= (1 << 11); |
| env->cp15.c6_data = address; |
| env->exception_index = EXCP_DATA_ABORT; |
| } |
| return 1; |
| } |
| |
| target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr) |
| { |
| uint32_t phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret; |
| |
| ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size); |
| |
| if (ret != 0) |
| return -1; |
| |
| return phys_addr; |
| } |
| |
| void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val) |
| { |
| int cp_num = (insn >> 8) & 0xf; |
| int cp_info = (insn >> 5) & 7; |
| int src = (insn >> 16) & 0xf; |
| int operand = insn & 0xf; |
| |
| if (env->cp[cp_num].cp_write) |
| env->cp[cp_num].cp_write(env->cp[cp_num].opaque, |
| cp_info, src, operand, val); |
| } |
| |
| uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn) |
| { |
| int cp_num = (insn >> 8) & 0xf; |
| int cp_info = (insn >> 5) & 7; |
| int dest = (insn >> 16) & 0xf; |
| int operand = insn & 0xf; |
| |
| if (env->cp[cp_num].cp_read) |
| return env->cp[cp_num].cp_read(env->cp[cp_num].opaque, |
| cp_info, dest, operand); |
| return 0; |
| } |
| |
| /* Return basic MPU access permission bits. */ |
| static uint32_t simple_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val >> i) & mask; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| /* Pad basic MPU access permission bits to extended format. */ |
| static uint32_t extended_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val & mask) << i; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val) |
| { |
| int op1; |
| int op2; |
| int crm; |
| |
| op1 = (insn >> 21) & 7; |
| op2 = (insn >> 5) & 7; |
| crm = insn & 0xf; |
| switch ((insn >> 16) & 0xf) { |
| case 0: |
| /* ID codes. */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) |
| break; |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| break; |
| if (arm_feature(env, ARM_FEATURE_V7) |
| && op1 == 2 && crm == 0 && op2 == 0) { |
| env->cp15.c0_cssel = val & 0xf; |
| break; |
| } |
| goto bad_reg; |
| case 1: /* System configuration. */ |
| if (arm_feature(env, ARM_FEATURE_V7) |
| && op1 == 0 && crm == 1 && op2 == 0) { |
| env->cp15.c1_scr = val; |
| break; |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| op2 = 0; |
| switch (op2) { |
| case 0: |
| if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0) |
| env->cp15.c1_sys = val; |
| /* ??? Lots of these bits are not implemented. */ |
| /* This may enable/disable the MMU, so do a TLB flush. */ |
| tlb_flush(env, 1); |
| break; |
| case 1: /* Auxiliary control register. */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| env->cp15.c1_xscaleauxcr = val; |
| break; |
| } |
| /* Not implemented. */ |
| break; |
| case 2: |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) |
| goto bad_reg; |
| if (env->cp15.c1_coproc != val) { |
| env->cp15.c1_coproc = val; |
| /* ??? Is this safe when called from within a TB? */ |
| tb_flush(env); |
| } |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 2: /* MMU Page table control / MPU cache control. */ |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| switch (op2) { |
| case 0: |
| env->cp15.c2_data = val; |
| break; |
| case 1: |
| env->cp15.c2_insn = val; |
| break; |
| default: |
| goto bad_reg; |
| } |
| } else { |
| switch (op2) { |
| case 0: |
| env->cp15.c2_base0 = val; |
| break; |
| case 1: |
| env->cp15.c2_base1 = val; |
| break; |
| case 2: |
| val &= 7; |
| env->cp15.c2_control = val; |
| env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val); |
| env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val); |
| break; |
| default: |
| goto bad_reg; |
| } |
| } |
| break; |
| case 3: /* MMU Domain access control / MPU write buffer control. */ |
| env->cp15.c3 = val; |
| tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ |
| break; |
| case 4: /* Reserved. */ |
| goto bad_reg; |
| case 5: /* MMU Fault status / MPU access permission. */ |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| op2 = 0; |
| switch (op2) { |
| case 0: |
| if (arm_feature(env, ARM_FEATURE_MPU)) |
| val = extended_mpu_ap_bits(val); |
| env->cp15.c5_data = val; |
| break; |
| case 1: |
| if (arm_feature(env, ARM_FEATURE_MPU)) |
| val = extended_mpu_ap_bits(val); |
| env->cp15.c5_insn = val; |
| break; |
| case 2: |
| if (!arm_feature(env, ARM_FEATURE_MPU)) |
| goto bad_reg; |
| env->cp15.c5_data = val; |
| break; |
| case 3: |
| if (!arm_feature(env, ARM_FEATURE_MPU)) |
| goto bad_reg; |
| env->cp15.c5_insn = val; |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 6: /* MMU Fault address / MPU base/size. */ |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| if (crm >= 8) |
| goto bad_reg; |
| env->cp15.c6_region[crm] = val; |
| } else { |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| op2 = 0; |
| switch (op2) { |
| case 0: |
| env->cp15.c6_data = val; |
| break; |
| case 1: /* ??? This is WFAR on armv6 */ |
| case 2: |
| env->cp15.c6_insn = val; |
| break; |
| default: |
| goto bad_reg; |
| } |
| } |
| break; |
| case 7: /* Cache control. */ |
| env->cp15.c15_i_max = 0x000; |
| env->cp15.c15_i_min = 0xff0; |
| if (op1 != 0) { |
| goto bad_reg; |
| } |
| /* No cache, so nothing to do except VA->PA translations. */ |
| if (arm_feature(env, ARM_FEATURE_VAPA)) { |
| switch (crm) { |
| case 4: |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| env->cp15.c7_par = val & 0xfffff6ff; |
| } else { |
| env->cp15.c7_par = val & 0xfffff1ff; |
| } |
| break; |
| case 8: { |
| uint32_t phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret, is_user = op2 & 2; |
| int access_type = op2 & 1; |
| |
| if (op2 & 4) { |
| /* Other states are only available with TrustZone */ |
| goto bad_reg; |
| } |
| ret = get_phys_addr(env, val, access_type, is_user, |
| &phys_addr, &prot, &page_size); |
| if (ret == 0) { |
| /* We do not set any attribute bits in the PAR */ |
| if (page_size == (1 << 24) |
| && arm_feature(env, ARM_FEATURE_V7)) { |
| env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; |
| } else { |
| env->cp15.c7_par = phys_addr & 0xfffff000; |
| } |
| } else { |
| env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | |
| ((ret & (12 << 1)) >> 6) | |
| ((ret & 0xf) << 1) | 1; |
| } |
| break; |
| } |
| } |
| } |
| break; |
| case 8: /* MMU TLB control. */ |
| switch (op2) { |
| case 0: /* Invalidate all (TLBIALL) */ |
| tlb_flush(env, 1); |
| break; |
| case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
| tlb_flush_page(env, val & TARGET_PAGE_MASK); |
| break; |
| case 2: /* Invalidate by ASID (TLBIASID) */ |
| tlb_flush(env, val == 0); |
| break; |
| case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
| tlb_flush_page(env, val & TARGET_PAGE_MASK); |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 9: |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| break; |
| if (arm_feature(env, ARM_FEATURE_STRONGARM)) |
| break; /* Ignore ReadBuffer access */ |
| switch (crm) { |
| case 0: /* Cache lockdown. */ |
| switch (op1) { |
| case 0: /* L1 cache. */ |
| switch (op2) { |
| case 0: |
| env->cp15.c9_data = val; |
| break; |
| case 1: |
| env->cp15.c9_insn = val; |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 1: /* L2 cache. */ |
| /* Ignore writes to L2 lockdown/auxiliary registers. */ |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 1: /* TCM memory region registers. */ |
| /* Not implemented. */ |
| goto bad_reg; |
| case 12: /* Performance monitor control */ |
| /* Performance monitors are implementation defined in v7, |
| * but with an ARM recommended set of registers, which we |
| * follow (although we don't actually implement any counters) |
| */ |
| if (!arm_feature(env, ARM_FEATURE_V7)) { |
| goto bad_reg; |
| } |
| switch (op2) { |
| case 0: /* performance monitor control register */ |
| /* only the DP, X, D and E bits are writable */ |
| env->cp15.c9_pmcr &= ~0x39; |
| env->cp15.c9_pmcr |= (val & 0x39); |
| break; |
| case 1: /* Count enable set register */ |
| val &= (1 << 31); |
| env->cp15.c9_pmcnten |= val; |
| break; |
| case 2: /* Count enable clear */ |
| val &= (1 << 31); |
| env->cp15.c9_pmcnten &= ~val; |
| break; |
| case 3: /* Overflow flag status */ |
| env->cp15.c9_pmovsr &= ~val; |
| break; |
| case 4: /* Software increment */ |
| /* RAZ/WI since we don't implement the software-count event */ |
| break; |
| case 5: /* Event counter selection register */ |
| /* Since we don't implement any events, writing to this register |
| * is actually UNPREDICTABLE. So we choose to RAZ/WI. |
| */ |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 13: /* Performance counters */ |
| if (!arm_feature(env, ARM_FEATURE_V7)) { |
| goto bad_reg; |
| } |
| switch (op2) { |
| case 0: /* Cycle count register: not implemented, so RAZ/WI */ |
| break; |
| case 1: /* Event type select */ |
| env->cp15.c9_pmxevtyper = val & 0xff; |
| break; |
| case 2: /* Event count register */ |
| /* Unimplemented (we have no events), RAZ/WI */ |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 14: /* Performance monitor control */ |
| if (!arm_feature(env, ARM_FEATURE_V7)) { |
| goto bad_reg; |
| } |
| switch (op2) { |
| case 0: /* user enable */ |
| env->cp15.c9_pmuserenr = val & 1; |
| /* changes access rights for cp registers, so flush tbs */ |
| tb_flush(env); |
| break; |
| case 1: /* interrupt enable set */ |
| /* We have no event counters so only the C bit can be changed */ |
| val &= (1 << 31); |
| env->cp15.c9_pminten |= val; |
| break; |
| case 2: /* interrupt enable clear */ |
| val &= (1 << 31); |
| env->cp15.c9_pminten &= ~val; |
| break; |
| } |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 10: /* MMU TLB lockdown. */ |
| /* ??? TLB lockdown not implemented. */ |
| break; |
| case 12: /* Reserved. */ |
| goto bad_reg; |
| case 13: /* Process ID. */ |
| switch (op2) { |
| case 0: |
| /* Unlike real hardware the qemu TLB uses virtual addresses, |
| not modified virtual addresses, so this causes a TLB flush. |
| */ |
| if (env->cp15.c13_fcse != val) |
| tlb_flush(env, 1); |
| env->cp15.c13_fcse = val; |
| break; |
| case 1: |
| /* This changes the ASID, so do a TLB flush. */ |
| if (env->cp15.c13_context != val |
| && !arm_feature(env, ARM_FEATURE_MPU)) |
| tlb_flush(env, 0); |
| env->cp15.c13_context = val; |
| break; |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 14: /* Generic timer */ |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| /* Dummy implementation: RAZ/WI for all */ |
| break; |
| } |
| goto bad_reg; |
| case 15: /* Implementation specific. */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| if (op2 == 0 && crm == 1) { |
| if (env->cp15.c15_cpar != (val & 0x3fff)) { |
| /* Changes cp0 to cp13 behavior, so needs a TB flush. */ |
| tb_flush(env); |
| env->cp15.c15_cpar = val & 0x3fff; |
| } |
| break; |
| } |
| goto bad_reg; |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| switch (crm) { |
| case 0: |
| break; |
| case 1: /* Set TI925T configuration. */ |
| env->cp15.c15_ticonfig = val & 0xe7; |
| env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */ |
| ARM_CPUID_TI915T : ARM_CPUID_TI925T; |
| break; |
| case 2: /* Set I_max. */ |
| env->cp15.c15_i_max = val; |
| break; |
| case 3: /* Set I_min. */ |
| env->cp15.c15_i_min = val; |
| break; |
| case 4: /* Set thread-ID. */ |
| env->cp15.c15_threadid = val & 0xffff; |
| break; |
| case 8: /* Wait-for-interrupt (deprecated). */ |
| cpu_interrupt(env, CPU_INTERRUPT_HALT); |
| break; |
| default: |
| goto bad_reg; |
| } |
| } |
| if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) { |
| switch (crm) { |
| case 0: |
| if ((op1 == 0) && (op2 == 0)) { |
| env->cp15.c15_power_control = val; |
| } else if ((op1 == 0) && (op2 == 1)) { |
| env->cp15.c15_diagnostic = val; |
| } else if ((op1 == 0) && (op2 == 2)) { |
| env->cp15.c15_power_diagnostic = val; |
| } |
| default: |
| break; |
| } |
| } |
| break; |
| } |
| return; |
| bad_reg: |
| /* ??? For debugging only. Should raise illegal instruction exception. */ |
| cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n", |
| (insn >> 16) & 0xf, crm, op1, op2); |
| } |
| |
| uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn) |
| { |
| int op1; |
| int op2; |
| int crm; |
| |
| op1 = (insn >> 21) & 7; |
| op2 = (insn >> 5) & 7; |
| crm = insn & 0xf; |
| switch ((insn >> 16) & 0xf) { |
| case 0: /* ID codes. */ |
| switch (op1) { |
| case 0: |
| switch (crm) { |
| case 0: |
| switch (op2) { |
| case 0: /* Device ID. */ |
| return env->cp15.c0_cpuid; |
| case 1: /* Cache Type. */ |
| return env->cp15.c0_cachetype; |
| case 2: /* TCM status. */ |
| return 0; |
| case 3: /* TLB type register. */ |
| return 0; /* No lockable TLB entries. */ |
| case 5: /* MPIDR */ |
| /* The MPIDR was standardised in v7; prior to |
| * this it was implemented only in the 11MPCore. |
| * For all other pre-v7 cores it does not exist. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V7) || |
| ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) { |
| int mpidr = env->cpu_index; |
| /* We don't support setting cluster ID ([8..11]) |
| * so these bits always RAZ. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V7MP)) { |
| mpidr |= (1 << 31); |
| /* Cores which are uniprocessor (non-coherent) |
| * but still implement the MP extensions set |
| * bit 30. (For instance, A9UP.) However we do |
| * not currently model any of those cores. |
| */ |
| } |
| return mpidr; |
| } |
| /* otherwise fall through to the unimplemented-reg case */ |
| default: |
| goto bad_reg; |
| } |
| case 1: |
| if (!arm_feature(env, ARM_FEATURE_V6)) |
| goto bad_reg; |
| return env->cp15.c0_c1[op2]; |
| case 2: |
| if (!arm_feature(env, ARM_FEATURE_V6)) |
| goto bad_reg; |
| return env->cp15.c0_c2[op2]; |
| case 3: case 4: case 5: case 6: case 7: |
| return 0; |
| default: |
| goto bad_reg; |
| } |
| case 1: |
| /* These registers aren't documented on arm11 cores. However |
| Linux looks at them anyway. */ |
| if (!arm_feature(env, ARM_FEATURE_V6)) |
| goto bad_reg; |
| if (crm != 0) |
| goto bad_reg; |
| if (!arm_feature(env, ARM_FEATURE_V7)) |
| return 0; |
| |
| switch (op2) { |
| case 0: |
| return env->cp15.c0_ccsid[env->cp15.c0_cssel]; |
| case 1: |
| return env->cp15.c0_clid; |
| case 7: |
| return 0; |
| } |
| goto bad_reg; |
| case 2: |
| if (op2 != 0 || crm != 0) |
| goto bad_reg; |
| return env->cp15.c0_cssel; |
| default: |
| goto bad_reg; |
| } |
| case 1: /* System configuration. */ |
| if (arm_feature(env, ARM_FEATURE_V7) |
| && op1 == 0 && crm == 1 && op2 == 0) { |
| return env->cp15.c1_scr; |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| op2 = 0; |
| switch (op2) { |
| case 0: /* Control register. */ |
| return env->cp15.c1_sys; |
| case 1: /* Auxiliary control register. */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) |
| return env->cp15.c1_xscaleauxcr; |
| if (!arm_feature(env, ARM_FEATURE_AUXCR)) |
| goto bad_reg; |
| switch (ARM_CPUID(env)) { |
| case ARM_CPUID_ARM1026: |
| return 1; |
| case ARM_CPUID_ARM1136: |
| case ARM_CPUID_ARM1136_R2: |
| case ARM_CPUID_ARM1176: |
| return 7; |
| case ARM_CPUID_ARM11MPCORE: |
| return 1; |
| case ARM_CPUID_CORTEXA8: |
| return 2; |
| case ARM_CPUID_CORTEXA9: |
| case ARM_CPUID_CORTEXA15: |
| return 0; |
| default: |
| goto bad_reg; |
| } |
| case 2: /* Coprocessor access register. */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) |
| goto bad_reg; |
| return env->cp15.c1_coproc; |
| default: |
| goto bad_reg; |
| } |
| case 2: /* MMU Page table control / MPU cache control. */ |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| switch (op2) { |
| case 0: |
| return env->cp15.c2_data; |
| break; |
| case 1: |
| return env->cp15.c2_insn; |
| break; |
| default: |
| goto bad_reg; |
| } |
| } else { |
| switch (op2) { |
| case 0: |
| return env->cp15.c2_base0; |
| case 1: |
| return env->cp15.c2_base1; |
| case 2: |
| return env->cp15.c2_control; |
| default: |
| goto bad_reg; |
| } |
| } |
| case 3: /* MMU Domain access control / MPU write buffer control. */ |
| return env->cp15.c3; |
| case 4: /* Reserved. */ |
| goto bad_reg; |
| case 5: /* MMU Fault status / MPU access permission. */ |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| op2 = 0; |
| switch (op2) { |
| case 0: |
| if (arm_feature(env, ARM_FEATURE_MPU)) |
| return simple_mpu_ap_bits(env->cp15.c5_data); |
| return env->cp15.c5_data; |
| case 1: |
| if (arm_feature(env, ARM_FEATURE_MPU)) |
| return simple_mpu_ap_bits(env->cp15.c5_insn); |
| return env->cp15.c5_insn; |
| case 2: |
| if (!arm_feature(env, ARM_FEATURE_MPU)) |
| goto bad_reg; |
| return env->cp15.c5_data; |
| case 3: |
| if (!arm_feature(env, ARM_FEATURE_MPU)) |
| goto bad_reg; |
| return env->cp15.c5_insn; |
| default: |
| goto bad_reg; |
| } |
| case 6: /* MMU Fault address. */ |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| if (crm >= 8) |
| goto bad_reg; |
| return env->cp15.c6_region[crm]; |
| } else { |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
| op2 = 0; |
| switch (op2) { |
| case 0: |
| return env->cp15.c6_data; |
| case 1: |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* Watchpoint Fault Adrress. */ |
| return 0; /* Not implemented. */ |
| } else { |
| /* Instruction Fault Adrress. */ |
| /* Arm9 doesn't have an IFAR, but implementing it anyway |
| shouldn't do any harm. */ |
| return env->cp15.c6_insn; |
| } |
| case 2: |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* Instruction Fault Adrress. */ |
| return env->cp15.c6_insn; |
| } else { |
| goto bad_reg; |
| } |
| default: |
| goto bad_reg; |
| } |
| } |
| case 7: /* Cache control. */ |
| if (crm == 4 && op1 == 0 && op2 == 0) { |
| return env->cp15.c7_par; |
| } |
| /* FIXME: Should only clear Z flag if destination is r15. */ |
| env->ZF = 0; |
| return 0; |
| case 8: /* MMU TLB control. */ |
| goto bad_reg; |
| case 9: |
| switch (crm) { |
| case 0: /* Cache lockdown */ |
| switch (op1) { |
| case 0: /* L1 cache. */ |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| return 0; |
| } |
| switch (op2) { |
| case 0: |
| return env->cp15.c9_data; |
| case 1: |
| return env->cp15.c9_insn; |
| default: |
| goto bad_reg; |
| } |
| case 1: /* L2 cache */ |
| /* L2 Lockdown and Auxiliary control. */ |
| switch (op2) { |
| case 0: |
| /* L2 cache lockdown (A8 only) */ |
| return 0; |
| case 2: |
| /* L2 cache auxiliary control (A8) or control (A15) */ |
| if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) { |
| /* Linux wants the number of processors from here. |
| * Might as well set the interrupt-controller bit too. |
| */ |
| return ((smp_cpus - 1) << 24) | (1 << 23); |
| } |
| return 0; |
| case 3: |
| /* L2 cache extended control (A15) */ |
| return 0; |
| default: |
| goto bad_reg; |
| } |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 12: /* Performance monitor control */ |
| if (!arm_feature(env, ARM_FEATURE_V7)) { |
| goto bad_reg; |
| } |
| switch (op2) { |
| case 0: /* performance monitor control register */ |
| return env->cp15.c9_pmcr; |
| case 1: /* count enable set */ |
| case 2: /* count enable clear */ |
| return env->cp15.c9_pmcnten; |
| case 3: /* overflow flag status */ |
| return env->cp15.c9_pmovsr; |
| case 4: /* software increment */ |
| case 5: /* event counter selection register */ |
| return 0; /* Unimplemented, RAZ/WI */ |
| default: |
| goto bad_reg; |
| } |
| case 13: /* Performance counters */ |
| if (!arm_feature(env, ARM_FEATURE_V7)) { |
| goto bad_reg; |
| } |
| switch (op2) { |
| case 1: /* Event type select */ |
| return env->cp15.c9_pmxevtyper; |
| case 0: /* Cycle count register */ |
| case 2: /* Event count register */ |
| /* Unimplemented, so RAZ/WI */ |
| return 0; |
| default: |
| goto bad_reg; |
| } |
| case 14: /* Performance monitor control */ |
| if (!arm_feature(env, ARM_FEATURE_V7)) { |
| goto bad_reg; |
| } |
| switch (op2) { |
| case 0: /* user enable */ |
| return env->cp15.c9_pmuserenr; |
| case 1: /* interrupt enable set */ |
| case 2: /* interrupt enable clear */ |
| return env->cp15.c9_pminten; |
| default: |
| goto bad_reg; |
| } |
| default: |
| goto bad_reg; |
| } |
| break; |
| case 10: /* MMU TLB lockdown. */ |
| /* ??? TLB lockdown not implemented. */ |
| return 0; |
| case 11: /* TCM DMA control. */ |
| case 12: /* Reserved. */ |
| goto bad_reg; |
| case 13: /* Process ID. */ |
| switch (op2) { |
| case 0: |
| return env->cp15.c13_fcse; |
| case 1: |
| return env->cp15.c13_context; |
| default: |
| goto bad_reg; |
| } |
| case 14: /* Generic timer */ |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| /* Dummy implementation: RAZ/WI for all */ |
| return 0; |
| } |
| goto bad_reg; |
| case 15: /* Implementation specific. */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| if (op2 == 0 && crm == 1) |
| return env->cp15.c15_cpar; |
| |
| goto bad_reg; |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| switch (crm) { |
| case 0: |
| return 0; |
| case 1: /* Read TI925T configuration. */ |
| return env->cp15.c15_ticonfig; |
| case 2: /* Read I_max. */ |
| return env->cp15.c15_i_max; |
| case 3: /* Read I_min. */ |
| return env->cp15.c15_i_min; |
| case 4: /* Read thread-ID. */ |
| return env->cp15.c15_threadid; |
| case 8: /* TI925T_status */ |
| return 0; |
| } |
| /* TODO: Peripheral port remap register: |
| * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt |
| * controller base address at $rn & ~0xfff and map size of |
| * 0x200 << ($rn & 0xfff), when MMU is off. */ |
| goto bad_reg; |
| } |
| if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) { |
| switch (crm) { |
| case 0: |
| if ((op1 == 4) && (op2 == 0)) { |
| /* The config_base_address should hold the value of |
| * the peripheral base. ARM should get this from a CPU |
| * object property, but that support isn't available in |
| * December 2011. Default to 0 for now and board models |
| * that care can set it by a private hook */ |
| return env->cp15.c15_config_base_address; |
| } else if ((op1 == 0) && (op2 == 0)) { |
| /* power_control should be set to maximum latency. Again, |
| default to 0 and set by private hook */ |
| return env->cp15.c15_power_control; |
| } else if ((op1 == 0) && (op2 == 1)) { |
| return env->cp15.c15_diagnostic; |
| } else if ((op1 == 0) && (op2 == 2)) { |
| return env->cp15.c15_power_diagnostic; |
| } |
| break; |
| case 1: /* NEON Busy */ |
| return 0; |
| case 5: /* tlb lockdown */ |
| case 6: |
| case 7: |
| if ((op1 == 5) && (op2 == 2)) { |
| return 0; |
| } |
| break; |
| default: |
| break; |
| } |
| goto bad_reg; |
| } |
| return 0; |
| } |
| bad_reg: |
| /* ??? For debugging only. Should raise illegal instruction exception. */ |
| cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n", |
| (insn >> 16) & 0xf, crm, op1, op2); |
| return 0; |
| } |
| |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| env->regs[13] = val; |
| } else { |
| env->banked_r13[bank_number(env, mode)] = val; |
| } |
| } |
| |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| return env->regs[13]; |
| } else { |
| return env->banked_r13[bank_number(env, mode)]; |
| } |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| switch (reg) { |
| case 0: /* APSR */ |
| return xpsr_read(env) & 0xf8000000; |
| case 1: /* IAPSR */ |
| return xpsr_read(env) & 0xf80001ff; |
| case 2: /* EAPSR */ |
| return xpsr_read(env) & 0xff00fc00; |
| case 3: /* xPSR */ |
| return xpsr_read(env) & 0xff00fdff; |
| case 5: /* IPSR */ |
| return xpsr_read(env) & 0x000001ff; |
| case 6: /* EPSR */ |
| return xpsr_read(env) & 0x0700fc00; |
| case 7: /* IEPSR */ |
| return xpsr_read(env) & 0x0700edff; |
| case 8: /* MSP */ |
| return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; |
| case 9: /* PSP */ |
| return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; |
| case 16: /* PRIMASK */ |
| return (env->uncached_cpsr & CPSR_I) != 0; |
| case 17: /* BASEPRI */ |
| case 18: /* BASEPRI_MAX */ |
| return env->v7m.basepri; |
| case 19: /* FAULTMASK */ |
| return (env->uncached_cpsr & CPSR_F) != 0; |
| case 20: /* CONTROL */ |
| return env->v7m.control; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(env, "Unimplemented system register read (%d)\n", reg); |
| return 0; |
| } |
| } |
| |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| switch (reg) { |
| case 0: /* APSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 1: /* IAPSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 2: /* EAPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 3: /* xPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 5: /* IPSR */ |
| /* IPSR bits are readonly. */ |
| break; |
| case 6: /* EPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 7: /* IEPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 8: /* MSP */ |
| if (env->v7m.current_sp) |
| env->v7m.other_sp = val; |
| else |
| env->regs[13] = val; |
| break; |
| case 9: /* PSP */ |
| if (env->v7m.current_sp) |
| env->regs[13] = val; |
| else |
| env->v7m.other_sp = val; |
| break; |
| case 16: /* PRIMASK */ |
| if (val & 1) |
| env->uncached_cpsr |= CPSR_I; |
| else |
| env->uncached_cpsr &= ~CPSR_I; |
| break; |
| case 17: /* BASEPRI */ |
| env->v7m.basepri = val & 0xff; |
| break; |
| case 18: /* BASEPRI_MAX */ |
| val &= 0xff; |
| if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) |
| env->v7m.basepri = val; |
| break; |
| case 19: /* FAULTMASK */ |
| if (val & 1) |
| env->uncached_cpsr |= CPSR_F; |
| else |
| env->uncached_cpsr &= ~CPSR_F; |
| break; |
| case 20: /* CONTROL */ |
| env->v7m.control = val & 3; |
| switch_v7m_sp(env, (val & 2) != 0); |
| break; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(env, "Unimplemented system register write (%d)\n", reg); |
| return; |
| } |
| } |
| |
| void cpu_arm_set_cp_io(CPUARMState *env, int cpnum, |
| ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write, |
| void *opaque) |
| { |
| if (cpnum < 0 || cpnum > 14) { |
| cpu_abort(env, "Bad coprocessor number: %i\n", cpnum); |
| return; |
| } |
| |
| env->cp[cpnum].cp_read = cp_read; |
| env->cp[cpnum].cp_write = cp_write; |
| env->cp[cpnum].opaque = opaque; |
| } |
| |
| #endif |
| |
| /* Note that signed overflow is undefined in C. The following routines are |
| careful to use unsigned types where modulo arithmetic is required. |
| Failure to do so _will_ break on newer gcc. */ |
| |
| /* Signed saturating arithmetic. */ |
| |
| /* Perform 16-bit signed saturating addition. */ |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating addition. */ |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| /* Perform 16-bit signed saturating subtraction. */ |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating subtraction. */ |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| #define PFX q |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned saturating arithmetic. */ |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xffff; |
| return res; |
| } |
| |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xff; |
| return res; |
| } |
| |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| #define PFX uq |
| |
| #include "op_addsub.h" |
| |
| /* Signed modulo arithmetic. */ |
| #define SARITH16(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if (sum >= 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SARITH8(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if (sum >= 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| |
| #define ADD16(a, b, n) SARITH16(a, b, n, +) |
| #define SUB16(a, b, n) SARITH16(a, b, n, -) |
| #define ADD8(a, b, n) SARITH8(a, b, n, +) |
| #define SUB8(a, b, n) SARITH8(a, b, n, -) |
| #define PFX s |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned modulo arithmetic. */ |
| #define ADD16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 1) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define ADD8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 1) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define SUB16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SUB8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define PFX u |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Halved signed arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define PFX sh |
| |
| #include "op_addsub.h" |
| |
| /* Halved unsigned arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define PFX uh |
| |
| #include "op_addsub.h" |
| |
| static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return b - a; |
| } |
| |
| /* Unsigned sum of absolute byte differences. */ |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b) |
| { |
| uint32_t sum; |
| sum = do_usad(a, b); |
| sum += do_usad(a >> 8, b >> 8); |
| sum += do_usad(a >> 16, b >>16); |
| sum += do_usad(a >> 24, b >> 24); |
| return sum; |
| } |
| |
| /* For ARMv6 SEL instruction. */ |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) |
| { |
| uint32_t mask; |
| |
| mask = 0; |
| if (flags & 1) |
| mask |= 0xff; |
| if (flags & 2) |
| mask |= 0xff00; |
| if (flags & 4) |
| mask |= 0xff0000; |
| if (flags & 8) |
| mask |= 0xff000000; |
| return (a & mask) | (b & ~mask); |
| } |
| |
| uint32_t HELPER(logicq_cc)(uint64_t val) |
| { |
| return (val >> 32) | (val != 0); |
| } |
| |
| /* VFP support. We follow the convention used for VFP instrunctions: |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| /* Convert host exception flags to vfp form. */ |
| static inline int vfp_exceptbits_from_host(int host_bits) |
| { |
| int target_bits = 0; |
| |
| if (host_bits & float_flag_invalid) |
| target_bits |= 1; |
| if (host_bits & float_flag_divbyzero) |
| target_bits |= 2; |
| if (host_bits & float_flag_overflow) |
| target_bits |= 4; |
| if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
| target_bits |= 8; |
| if (host_bits & float_flag_inexact) |
| target_bits |= 0x10; |
| if (host_bits & float_flag_input_denormal) |
| target_bits |= 0x80; |
| return target_bits; |
| } |
| |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
| { |
| int i; |
| uint32_t fpscr; |
| |
| fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) |
| | (env->vfp.vec_len << 16) |
| | (env->vfp.vec_stride << 20); |
| i = get_float_exception_flags(&env->vfp.fp_status); |
| i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
| fpscr |= vfp_exceptbits_from_host(i); |
| return fpscr; |
| } |
| |
| uint32_t vfp_get_fpscr(CPUARMState *env) |
| { |
| return HELPER(vfp_get_fpscr)(env); |
| } |
| |
| /* Convert vfp exception flags to target form. */ |
| static inline int vfp_exceptbits_to_host(int target_bits) |
| { |
| int host_bits = 0; |
| |
| if (target_bits & 1) |
| host_bits |= float_flag_invalid; |
| if (target_bits & 2) |
| host_bits |= float_flag_divbyzero; |
| if (target_bits & 4) |
| host_bits |= float_flag_overflow; |
| if (target_bits & 8) |
| host_bits |= float_flag_underflow; |
| if (target_bits & 0x10) |
| host_bits |= float_flag_inexact; |
| if (target_bits & 0x80) |
| host_bits |= float_flag_input_denormal; |
| return host_bits; |
| } |
| |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
| { |
| int i; |
| uint32_t changed; |
| |
| changed = env->vfp.xregs[ARM_VFP_FPSCR]; |
| env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); |
| env->vfp.vec_len = (val >> 16) & 7; |
| env->vfp.vec_stride = (val >> 20) & 3; |
| |
| changed ^= val; |
| if (changed & (3 << 22)) { |
| i = (val >> 22) & 3; |
| switch (i) { |
| case 0: |
| i = float_round_nearest_even; |
| break; |
| case 1: |
| i = float_round_up; |
| break; |
| case 2: |
| i = float_round_down; |
| break; |
| case 3: |
| i = float_round_to_zero; |
| break; |
| } |
| set_float_rounding_mode(i, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 24)) { |
| set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 25)) |
| set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); |
| |
| i = vfp_exceptbits_to_host(val); |
| set_float_exception_flags(i, &env->vfp.fp_status); |
| set_float_exception_flags(0, &env->vfp.standard_fp_status); |
| } |
| |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
| { |
| HELPER(vfp_set_fpscr)(env, val); |
| } |
| |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
| |
| #define VFP_BINOP(name) \ |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float32_ ## name(a, b, fpst); \ |
| } \ |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float64_ ## name(a, b, fpst); \ |
| } |
| VFP_BINOP(add) |
| VFP_BINOP(sub) |
| VFP_BINOP(mul) |
| VFP_BINOP(div) |
| #undef VFP_BINOP |
| |
| float32 VFP_HELPER(neg, s)(float32 a) |
| { |
| return float32_chs(a); |
| } |
| |
| float64 VFP_HELPER(neg, d)(float64 a) |
| { |
| return float64_chs(a); |
| } |
| |
| float32 VFP_HELPER(abs, s)(float32 a) |
| { |
| return float32_abs(a); |
| } |
| |
| float64 VFP_HELPER(abs, d)(float64 a) |
| { |
| return float64_abs(a); |
| } |
| |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
| { |
| return float32_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
| { |
| return float64_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| /* XXX: check quiet/signaling case */ |
| #define DO_VFP_cmp(p, type) \ |
| void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } \ |
| void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } |
| DO_VFP_cmp(s, float32) |
| DO_VFP_cmp(d, float64) |
| #undef DO_VFP_cmp |
| |
| /* Integer to float and float to integer conversions */ |
| |
| #define CONV_ITOF(name, fsz, sign) \ |
| float##fsz HELPER(name)(uint32_t x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
| } |
| |
| #define CONV_FTOI(name, fsz, sign, round) \ |
| uint32_t HELPER(name)(float##fsz x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| return float##fsz##_to_##sign##int32##round(x, fpst); \ |
| } |
| |
| #define FLOAT_CONVS(name, p, fsz, sign) \ |
| CONV_ITOF(vfp_##name##to##p, fsz, sign) \ |
| CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ |
| CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) |
| |
| FLOAT_CONVS(si, s, 32, ) |
| FLOAT_CONVS(si, d, 64, ) |
| FLOAT_CONVS(ui, s, 32, u) |
| FLOAT_CONVS(ui, d, 64, u) |
| |
| #undef CONV_ITOF |
| #undef CONV_FTOI |
| #undef FLOAT_CONVS |
| |
| /* floating point conversion */ |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
| { |
| float64 r = float32_to_float64(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float64_maybe_silence_nan(r); |
| } |
| |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
| { |
| float32 r = float64_to_float32(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float32_maybe_silence_nan(r); |
| } |
| |
| /* VFP3 fixed point conversion. */ |
| #define VFP_CONV_FIX(name, p, fsz, itype, sign) \ |
| float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| float##fsz tmp; \ |
| tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \ |
| return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
| } \ |
| uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| float##fsz tmp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| tmp = float##fsz##_scalbn(x, shift, fpst); \ |
| return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \ |
| } |
| |
| VFP_CONV_FIX(sh, d, 64, int16, ) |
| VFP_CONV_FIX(sl, d, 64, int32, ) |
| VFP_CONV_FIX(uh, d, 64, uint16, u) |
| VFP_CONV_FIX(ul, d, 64, uint32, u) |
| VFP_CONV_FIX(sh, s, 32, int16, ) |
| VFP_CONV_FIX(sl, s, 32, int32, ) |
| VFP_CONV_FIX(uh, s, 32, uint16, u) |
| VFP_CONV_FIX(ul, s, 32, uint32, u) |
| #undef VFP_CONV_FIX |
| |
| /* Half precision conversions. */ |
| static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float32 r = float16_to_float32(make_float16(a), ieee, s); |
| if (ieee) { |
| return float32_maybe_silence_nan(r); |
| } |
| return r; |
| } |
| |
| static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float16 r = float32_to_float16(a, ieee, s); |
| if (ieee) { |
| r = float16_maybe_silence_nan(r); |
| } |
| return float16_val(r); |
| } |
| |
| float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); |
| } |
| |
| #define float32_two make_float32(0x40000000) |
| #define float32_three make_float32(0x40400000) |
| #define float32_one_point_five make_float32(0x3fc00000) |
| |
| float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_two; |
| } |
| return float32_sub(float32_two, float32_mul(a, b, s), s); |
| } |
| |
| float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| float32 product; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_one_point_five; |
| } |
| product = float32_mul(a, b, s); |
| return float32_div(float32_sub(float32_three, product, s), float32_two, s); |
| } |
| |
| /* NEON helpers. */ |
| |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on |
| * int->float conversions at run-time. */ |
| #define float64_256 make_float64(0x4070000000000000LL) |
| #define float64_512 make_float64(0x4080000000000000LL) |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| static float64 recip_estimate(float64 a, CPUARMState *env) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = env->vfp.standard_fp_status; |
| float_status *s = &dummy_status; |
| /* q = (int)(a * 512.0) */ |
| float64 q = float64_mul(float64_512, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* r = 1.0 / (((double)q + 0.5) / 512.0) */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_div(float64_one, q, s); |
| |
| /* s = (int)(256.0 * r + 0.5) */ |
| q = float64_mul(q, float64_256, s); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0 */ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| float64 f64; |
| uint32_t val32 = float32_val(a); |
| |
| int result_exp; |
| int a_exp = (val32 & 0x7f800000) >> 23; |
| int sign = val32 & 0x80000000; |
| |
| if (float32_is_any_nan(a)) { |
| if (float32_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, s); |
| } |
| return float32_default_nan; |
| } else if (float32_is_infinity(a)) { |
| return float32_set_sign(float32_zero, float32_is_neg(a)); |
| } else if (float32_is_zero_or_denormal(a)) { |
| if (!float32_is_zero(a)) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(a)); |
| } else if (a_exp >= 253) { |
| float_raise(float_flag_underflow, s); |
| return float32_set_sign(float32_zero, float32_is_neg(a)); |
| } |
| |
| f64 = make_float64((0x3feULL << 52) |
| | ((int64_t)(val32 & 0x7fffff) << 29)); |
| |
| result_exp = 253 - a_exp; |
| |
| f64 = recip_estimate(f64, env); |
| |
| val32 = sign |
| | ((result_exp & 0xff) << 23) |
| | ((float64_val(f64) >> 29) & 0x7fffff); |
| return make_float32(val32); |
| } |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = env->vfp.standard_fp_status; |
| float_status *s = &dummy_status; |
| float64 q; |
| int64_t q_int; |
| |
| if (float64_lt(a, float64_half, s)) { |
| /* range 0.25 <= a < 0.5 */ |
| |
| /* a in units of 1/512 rounded down */ |
| /* q0 = (int)(a * 512.0); */ |
| q = float64_mul(float64_512, a, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } else { |
| /* range 0.5 <= a < 1.0 */ |
| |
| /* a in units of 1/256 rounded down */ |
| /* q1 = (int)(a * 256.0); */ |
| q = float64_mul(float64_256, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_256, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } |
| /* r in units of 1/256 rounded to nearest */ |
| /* s = (int)(256.0 * r + 0.5); */ |
| |
| q = float64_mul(q, float64_256,s ); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0;*/ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| int result_exp; |
| float64 f64; |
| uint32_t val; |
| uint64_t val64; |
| |
| val = float32_val(a); |
| |
| if (float32_is_any_nan(a)) { |
| if (float32_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, s); |
| } |
| return float32_default_nan; |
| } else if (float32_is_zero_or_denormal(a)) { |
| if (!float32_is_zero(a)) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(a)); |
| } else if (float32_is_neg(a)) { |
| float_raise(float_flag_invalid, s); |
| return float32_default_nan; |
| } else if (float32_is_infinity(a)) { |
| return float32_zero; |
| } |
| |
| /* Normalize to a double-precision value between 0.25 and 1.0, |
| * preserving the parity of the exponent. */ |
| if ((val & 0x800000) == 0) { |
| f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) |
| | (0x3feULL << 52) |
| | ((uint64_t)(val & 0x7fffff) << 29)); |
| } else { |
| f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) |
| | (0x3fdULL << 52) |
| | ((uint64_t)(val & 0x7fffff) << 29)); |
| } |
| |
| result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; |
| |
| f64 = recip_sqrt_estimate(f64, env); |
| |
| val64 = float64_val(f64); |
| |
| val = ((result_exp & 0xff) << 23) |
| | ((val64 >> 29) & 0x7fffff); |
| return make_float32(val); |
| } |
| |
| uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
| { |
| float64 f64; |
| |
| if ((a & 0x80000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| f64 = make_float64((0x3feULL << 52) |
| | ((int64_t)(a & 0x7fffffff) << 21)); |
| |
| f64 = recip_estimate (f64, env); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
| { |
| float64 f64; |
| |
| if ((a & 0xc0000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| if (a & 0x80000000) { |
| f64 = make_float64((0x3feULL << 52) |
| | ((uint64_t)(a & 0x7fffffff) << 21)); |
| } else { /* bits 31-30 == '01' */ |
| f64 = make_float64((0x3fdULL << 52) |
| | ((uint64_t)(a & 0x3fffffff) << 22)); |
| } |
| |
| f64 = recip_sqrt_estimate(f64, env); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| /* VFPv4 fused multiply-accumulate */ |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float32_muladd(a, b, c, 0, fpst); |
| } |
| |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float64_muladd(a, b, c, 0, fpst); |
| } |
| |
| void HELPER(set_teecr)(CPUARMState *env, uint32_t val) |
| { |
| val &= 1; |
| if (env->teecr != val) { |
| env->teecr = val; |
| tb_flush(env); |
| } |
| } |