| /* |
| * QEMU VNC display driver: tight encoding |
| * |
| * From libvncserver/libvncserver/tight.c |
| * Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved. |
| * Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved. |
| * |
| * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qdict.h" |
| #include "qint.h" |
| #include "vnc.h" |
| #include "vnc-encoding-tight.h" |
| |
| /* Compression level stuff. The following array contains various |
| encoder parameters for each of 10 compression levels (0..9). |
| Last three parameters correspond to JPEG quality levels (0..9). */ |
| |
| static const struct { |
| int max_rect_size, max_rect_width; |
| int mono_min_rect_size, gradient_min_rect_size; |
| int idx_zlib_level, mono_zlib_level, raw_zlib_level, gradient_zlib_level; |
| int gradient_threshold, gradient_threshold24; |
| int idx_max_colors_divisor; |
| int jpeg_quality, jpeg_threshold, jpeg_threshold24; |
| } tight_conf[] = { |
| { 512, 32, 6, 65536, 0, 0, 0, 0, 0, 0, 4, 5, 10000, 23000 }, |
| { 2048, 128, 6, 65536, 1, 1, 1, 0, 0, 0, 8, 10, 8000, 18000 }, |
| { 6144, 256, 8, 65536, 3, 3, 2, 0, 0, 0, 24, 15, 6500, 15000 }, |
| { 10240, 1024, 12, 65536, 5, 5, 3, 0, 0, 0, 32, 25, 5000, 12000 }, |
| { 16384, 2048, 12, 65536, 6, 6, 4, 0, 0, 0, 32, 37, 4000, 10000 }, |
| { 32768, 2048, 12, 4096, 7, 7, 5, 4, 150, 380, 32, 50, 3000, 8000 }, |
| { 65536, 2048, 16, 4096, 7, 7, 6, 4, 170, 420, 48, 60, 2000, 5000 }, |
| { 65536, 2048, 16, 4096, 8, 8, 7, 5, 180, 450, 64, 70, 1000, 2500 }, |
| { 65536, 2048, 32, 8192, 9, 9, 8, 6, 190, 475, 64, 75, 500, 1200 }, |
| { 65536, 2048, 32, 8192, 9, 9, 9, 6, 200, 500, 96, 80, 200, 500 } |
| }; |
| |
| /* |
| * Code to determine how many different colors used in rectangle. |
| */ |
| |
| static void tight_palette_rgb2buf(uint32_t rgb, int bpp, uint8_t buf[6]) |
| { |
| memset(buf, 0, 6); |
| |
| if (bpp == 32) { |
| buf[0] = ((rgb >> 24) & 0xFF); |
| buf[1] = ((rgb >> 16) & 0xFF); |
| buf[2] = ((rgb >> 8) & 0xFF); |
| buf[3] = ((rgb >> 0) & 0xFF); |
| buf[4] = ((buf[0] & 1) == 0) << 3 | ((buf[1] & 1) == 0) << 2; |
| buf[4]|= ((buf[2] & 1) == 0) << 1 | ((buf[3] & 1) == 0) << 0; |
| buf[0] |= 1; |
| buf[1] |= 1; |
| buf[2] |= 1; |
| buf[3] |= 1; |
| } |
| if (bpp == 16) { |
| buf[0] = ((rgb >> 8) & 0xFF); |
| buf[1] = ((rgb >> 0) & 0xFF); |
| buf[2] = ((buf[0] & 1) == 0) << 1 | ((buf[1] & 1) == 0) << 0; |
| buf[0] |= 1; |
| buf[1] |= 1; |
| } |
| } |
| |
| static uint32_t tight_palette_buf2rgb(int bpp, const uint8_t *buf) |
| { |
| uint32_t rgb = 0; |
| |
| if (bpp == 32) { |
| rgb |= ((buf[0] & ~1) | !((buf[4] >> 3) & 1)) << 24; |
| rgb |= ((buf[1] & ~1) | !((buf[4] >> 2) & 1)) << 16; |
| rgb |= ((buf[2] & ~1) | !((buf[4] >> 1) & 1)) << 8; |
| rgb |= ((buf[3] & ~1) | !((buf[4] >> 0) & 1)) << 0; |
| } |
| if (bpp == 16) { |
| rgb |= ((buf[0] & ~1) | !((buf[2] >> 1) & 1)) << 8; |
| rgb |= ((buf[1] & ~1) | !((buf[2] >> 0) & 1)) << 0; |
| } |
| return rgb; |
| } |
| |
| |
| static int tight_palette_insert(QDict *palette, uint32_t rgb, int bpp, int max) |
| { |
| uint8_t key[6]; |
| int idx = qdict_size(palette); |
| bool present; |
| |
| tight_palette_rgb2buf(rgb, bpp, key); |
| present = qdict_haskey(palette, (char *)key); |
| if (idx >= max && !present) { |
| return 0; |
| } |
| if (!present) { |
| qdict_put(palette, (char *)key, qint_from_int(idx)); |
| } |
| return qdict_size(palette); |
| } |
| |
| #define DEFINE_FILL_PALETTE_FUNCTION(bpp) \ |
| \ |
| static int \ |
| tight_fill_palette##bpp(VncState *vs, int x, int y, \ |
| int max, size_t count, \ |
| uint32_t *bg, uint32_t *fg, \ |
| struct QDict **palette) { \ |
| uint##bpp##_t *data; \ |
| uint##bpp##_t c0, c1, ci; \ |
| int i, n0, n1; \ |
| \ |
| data = (uint##bpp##_t *)vs->tight.buffer; \ |
| \ |
| c0 = data[0]; \ |
| i = 1; \ |
| while (i < count && data[i] == c0) \ |
| i++; \ |
| if (i >= count) { \ |
| *bg = *fg = c0; \ |
| return 1; \ |
| } \ |
| \ |
| if (max < 2) { \ |
| return 0; \ |
| } \ |
| \ |
| n0 = i; \ |
| c1 = data[i]; \ |
| n1 = 0; \ |
| for (i++; i < count; i++) { \ |
| ci = data[i]; \ |
| if (ci == c0) { \ |
| n0++; \ |
| } else if (ci == c1) { \ |
| n1++; \ |
| } else \ |
| break; \ |
| } \ |
| if (i >= count) { \ |
| if (n0 > n1) { \ |
| *bg = (uint32_t)c0; \ |
| *fg = (uint32_t)c1; \ |
| } else { \ |
| *bg = (uint32_t)c1; \ |
| *fg = (uint32_t)c0; \ |
| } \ |
| return 2; \ |
| } \ |
| \ |
| if (max == 2) { \ |
| return 0; \ |
| } \ |
| \ |
| *palette = qdict_new(); \ |
| tight_palette_insert(*palette, c0, bpp, max); \ |
| tight_palette_insert(*palette, c1, bpp, max); \ |
| tight_palette_insert(*palette, ci, bpp, max); \ |
| \ |
| for (i++; i < count; i++) { \ |
| if (data[i] == ci) { \ |
| continue; \ |
| } else { \ |
| if (!tight_palette_insert(*palette, (uint32_t)ci, \ |
| bpp, max)) { \ |
| return 0; \ |
| } \ |
| ci = data[i]; \ |
| } \ |
| } \ |
| \ |
| return qdict_size(*palette); \ |
| } |
| |
| DEFINE_FILL_PALETTE_FUNCTION(8) |
| DEFINE_FILL_PALETTE_FUNCTION(16) |
| DEFINE_FILL_PALETTE_FUNCTION(32) |
| |
| static int tight_fill_palette(VncState *vs, int x, int y, |
| size_t count, uint32_t *bg, uint32_t *fg, |
| struct QDict **palette) |
| { |
| int max; |
| |
| max = count / tight_conf[vs->tight_compression].idx_max_colors_divisor; |
| if (max < 2 && |
| count >= tight_conf[vs->tight_compression].mono_min_rect_size) { |
| max = 2; |
| } |
| if (max >= 256) { |
| max = 256; |
| } |
| |
| switch(vs->clientds.pf.bytes_per_pixel) { |
| case 4: |
| return tight_fill_palette32(vs, x, y, max, count, bg, fg, palette); |
| case 2: |
| return tight_fill_palette16(vs, x, y, max, count, bg, fg, palette); |
| default: |
| max = 2; |
| return tight_fill_palette8(vs, x, y, max, count, bg, fg, palette); |
| } |
| return 0; |
| } |
| |
| /* Callback to dump a palette with qdict_iter |
| static void print_palette(const char *key, QObject *obj, void *opaque) |
| { |
| uint8_t idx = qint_get_int(qobject_to_qint(obj)); |
| uint32_t rgb = tight_palette_buf2rgb(32, (uint8_t *)key); |
| |
| fprintf(stderr, "%.2x ", (unsigned char)*key); |
| while (*key++) |
| fprintf(stderr, "%.2x ", (unsigned char)*key); |
| |
| fprintf(stderr, ": idx: %x rgb: %x\n", idx, rgb); |
| } |
| */ |
| |
| /* |
| * Converting truecolor samples into palette indices. |
| */ |
| #define DEFINE_IDX_ENCODE_FUNCTION(bpp) \ |
| \ |
| static void \ |
| tight_encode_indexed_rect##bpp(uint8_t *buf, int count, \ |
| struct QDict *palette) { \ |
| uint##bpp##_t *src; \ |
| uint##bpp##_t rgb; \ |
| uint8_t key[6]; \ |
| int i, rep; \ |
| uint8_t idx; \ |
| \ |
| src = (uint##bpp##_t *) buf; \ |
| \ |
| for (i = 0; i < count; i++) { \ |
| rgb = *src++; \ |
| rep = 0; \ |
| while (i < count && *src == rgb) { \ |
| rep++, src++, i++; \ |
| } \ |
| tight_palette_rgb2buf(rgb, bpp, key); \ |
| if (!qdict_haskey(palette, (char *)key)) { \ |
| /* \ |
| * Should never happen, but don't break everything \ |
| * if it does, use the first color instead \ |
| */ \ |
| idx = 0; \ |
| } else { \ |
| idx = qdict_get_int(palette, (char *)key); \ |
| } \ |
| while (rep >= 0) { \ |
| *buf++ = idx; \ |
| rep--; \ |
| } \ |
| } \ |
| } |
| |
| DEFINE_IDX_ENCODE_FUNCTION(16) |
| DEFINE_IDX_ENCODE_FUNCTION(32) |
| |
| #define DEFINE_MONO_ENCODE_FUNCTION(bpp) \ |
| \ |
| static void \ |
| tight_encode_mono_rect##bpp(uint8_t *buf, int w, int h, \ |
| uint##bpp##_t bg, uint##bpp##_t fg) { \ |
| uint##bpp##_t *ptr; \ |
| unsigned int value, mask; \ |
| int aligned_width; \ |
| int x, y, bg_bits; \ |
| \ |
| ptr = (uint##bpp##_t *) buf; \ |
| aligned_width = w - w % 8; \ |
| \ |
| for (y = 0; y < h; y++) { \ |
| for (x = 0; x < aligned_width; x += 8) { \ |
| for (bg_bits = 0; bg_bits < 8; bg_bits++) { \ |
| if (*ptr++ != bg) { \ |
| break; \ |
| } \ |
| } \ |
| if (bg_bits == 8) { \ |
| *buf++ = 0; \ |
| continue; \ |
| } \ |
| mask = 0x80 >> bg_bits; \ |
| value = mask; \ |
| for (bg_bits++; bg_bits < 8; bg_bits++) { \ |
| mask >>= 1; \ |
| if (*ptr++ != bg) { \ |
| value |= mask; \ |
| } \ |
| } \ |
| *buf++ = (uint8_t)value; \ |
| } \ |
| \ |
| mask = 0x80; \ |
| value = 0; \ |
| if (x >= w) { \ |
| continue; \ |
| } \ |
| \ |
| for (; x < w; x++) { \ |
| if (*ptr++ != bg) { \ |
| value |= mask; \ |
| } \ |
| mask >>= 1; \ |
| } \ |
| *buf++ = (uint8_t)value; \ |
| } \ |
| } |
| |
| DEFINE_MONO_ENCODE_FUNCTION(8) |
| DEFINE_MONO_ENCODE_FUNCTION(16) |
| DEFINE_MONO_ENCODE_FUNCTION(32) |
| |
| /* |
| * Check if a rectangle is all of the same color. If needSameColor is |
| * set to non-zero, then also check that its color equals to the |
| * *colorPtr value. The result is 1 if the test is successfull, and in |
| * that case new color will be stored in *colorPtr. |
| */ |
| |
| #define DEFINE_CHECK_SOLID_FUNCTION(bpp) \ |
| \ |
| static bool \ |
| check_solid_tile##bpp(VncState *vs, int x, int y, int w, int h, \ |
| uint32_t* color, bool samecolor) \ |
| { \ |
| VncDisplay *vd = vs->vd; \ |
| uint##bpp##_t *fbptr; \ |
| uint##bpp##_t c; \ |
| int dx, dy; \ |
| \ |
| fbptr = (uint##bpp##_t *) \ |
| (vd->server->data + y * ds_get_linesize(vs->ds) + \ |
| x * ds_get_bytes_per_pixel(vs->ds)); \ |
| \ |
| c = *fbptr; \ |
| if (samecolor && (uint32_t)c != *color) { \ |
| return false; \ |
| } \ |
| \ |
| for (dy = 0; dy < h; dy++) { \ |
| for (dx = 0; dx < w; dx++) { \ |
| if (c != fbptr[dx]) { \ |
| return false; \ |
| } \ |
| } \ |
| fbptr = (uint##bpp##_t *) \ |
| ((uint8_t *)fbptr + ds_get_linesize(vs->ds)); \ |
| } \ |
| \ |
| *color = (uint32_t)c; \ |
| return true; \ |
| } |
| |
| DEFINE_CHECK_SOLID_FUNCTION(32) |
| DEFINE_CHECK_SOLID_FUNCTION(16) |
| DEFINE_CHECK_SOLID_FUNCTION(8) |
| |
| static bool check_solid_tile(VncState *vs, int x, int y, int w, int h, |
| uint32_t* color, bool samecolor) |
| { |
| VncDisplay *vd = vs->vd; |
| |
| switch(vd->server->pf.bytes_per_pixel) { |
| case 4: |
| return check_solid_tile32(vs, x, y, w, h, color, samecolor); |
| case 2: |
| return check_solid_tile16(vs, x, y, w, h, color, samecolor); |
| default: |
| return check_solid_tile8(vs, x, y, w, h, color, samecolor); |
| } |
| } |
| |
| static void find_best_solid_area(VncState *vs, int x, int y, int w, int h, |
| uint32_t color, int *w_ptr, int *h_ptr) |
| { |
| int dx, dy, dw, dh; |
| int w_prev; |
| int w_best = 0, h_best = 0; |
| |
| w_prev = w; |
| |
| for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) { |
| |
| dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, y + h - dy); |
| dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, w_prev); |
| |
| if (!check_solid_tile(vs, x, dy, dw, dh, &color, true)) { |
| break; |
| } |
| |
| for (dx = x + dw; dx < x + w_prev;) { |
| dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, x + w_prev - dx); |
| |
| if (!check_solid_tile(vs, dx, dy, dw, dh, &color, true)) { |
| break; |
| } |
| dx += dw; |
| } |
| |
| w_prev = dx - x; |
| if (w_prev * (dy + dh - y) > w_best * h_best) { |
| w_best = w_prev; |
| h_best = dy + dh - y; |
| } |
| } |
| |
| *w_ptr = w_best; |
| *h_ptr = h_best; |
| } |
| |
| static void extend_solid_area(VncState *vs, int x, int y, int w, int h, |
| uint32_t color, int *x_ptr, int *y_ptr, |
| int *w_ptr, int *h_ptr) |
| { |
| int cx, cy; |
| |
| /* Try to extend the area upwards. */ |
| for ( cy = *y_ptr - 1; |
| cy >= y && check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true); |
| cy-- ); |
| *h_ptr += *y_ptr - (cy + 1); |
| *y_ptr = cy + 1; |
| |
| /* ... downwards. */ |
| for ( cy = *y_ptr + *h_ptr; |
| cy < y + h && |
| check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true); |
| cy++ ); |
| *h_ptr += cy - (*y_ptr + *h_ptr); |
| |
| /* ... to the left. */ |
| for ( cx = *x_ptr - 1; |
| cx >= x && check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true); |
| cx-- ); |
| *w_ptr += *x_ptr - (cx + 1); |
| *x_ptr = cx + 1; |
| |
| /* ... to the right. */ |
| for ( cx = *x_ptr + *w_ptr; |
| cx < x + w && |
| check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true); |
| cx++ ); |
| *w_ptr += cx - (*x_ptr + *w_ptr); |
| } |
| |
| static int tight_init_stream(VncState *vs, int stream_id, |
| int level, int strategy) |
| { |
| z_streamp zstream = &vs->tight_stream[stream_id]; |
| |
| if (zstream->opaque == NULL) { |
| int err; |
| |
| VNC_DEBUG("VNC: TIGHT: initializing zlib stream %d\n", stream_id); |
| VNC_DEBUG("VNC: TIGHT: opaque = %p | vs = %p\n", zstream->opaque, vs); |
| zstream->zalloc = vnc_zlib_zalloc; |
| zstream->zfree = vnc_zlib_zfree; |
| |
| err = deflateInit2(zstream, level, Z_DEFLATED, MAX_WBITS, |
| MAX_MEM_LEVEL, strategy); |
| |
| if (err != Z_OK) { |
| fprintf(stderr, "VNC: error initializing zlib\n"); |
| return -1; |
| } |
| |
| vs->tight_levels[stream_id] = level; |
| zstream->opaque = vs; |
| } |
| |
| if (vs->tight_levels[stream_id] != level) { |
| if (deflateParams(zstream, level, strategy) != Z_OK) { |
| return -1; |
| } |
| vs->tight_levels[stream_id] = level; |
| } |
| return 0; |
| } |
| |
| static void tight_send_compact_size(VncState *vs, size_t len) |
| { |
| int lpc = 0; |
| int bytes = 0; |
| char buf[3] = {0, 0, 0}; |
| |
| buf[bytes++] = len & 0x7F; |
| if (len > 0x7F) { |
| buf[bytes-1] |= 0x80; |
| buf[bytes++] = (len >> 7) & 0x7F; |
| if (len > 0x3FFF) { |
| buf[bytes-1] |= 0x80; |
| buf[bytes++] = (len >> 14) & 0xFF; |
| } |
| } |
| for (lpc = 0; lpc < bytes; lpc++) { |
| vnc_write_u8(vs, buf[lpc]); |
| } |
| } |
| |
| static int tight_compress_data(VncState *vs, int stream_id, size_t bytes, |
| int level, int strategy) |
| { |
| z_streamp zstream = &vs->tight_stream[stream_id]; |
| int previous_out; |
| |
| if (bytes < VNC_TIGHT_MIN_TO_COMPRESS) { |
| vnc_write(vs, vs->tight.buffer, vs->tight.offset); |
| return bytes; |
| } |
| |
| if (tight_init_stream(vs, stream_id, level, strategy)) { |
| return -1; |
| } |
| |
| /* reserve memory in output buffer */ |
| buffer_reserve(&vs->tight_zlib, bytes + 64); |
| |
| /* set pointers */ |
| zstream->next_in = vs->tight.buffer; |
| zstream->avail_in = vs->tight.offset; |
| zstream->next_out = vs->tight_zlib.buffer + vs->tight_zlib.offset; |
| zstream->avail_out = vs->tight_zlib.capacity - vs->tight_zlib.offset; |
| zstream->data_type = Z_BINARY; |
| previous_out = zstream->total_out; |
| |
| /* start encoding */ |
| if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) { |
| fprintf(stderr, "VNC: error during tight compression\n"); |
| return -1; |
| } |
| |
| vs->tight_zlib.offset = vs->tight_zlib.capacity - zstream->avail_out; |
| bytes = zstream->total_out - previous_out; |
| |
| tight_send_compact_size(vs, bytes); |
| vnc_write(vs, vs->tight_zlib.buffer, bytes); |
| |
| buffer_reset(&vs->tight_zlib); |
| |
| return bytes; |
| } |
| |
| /* |
| * Subencoding implementations. |
| */ |
| static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret) |
| { |
| uint32_t *buf32; |
| uint32_t pix; |
| int rshift, gshift, bshift; |
| |
| buf32 = (uint32_t *)buf; |
| |
| if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) == |
| (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) { |
| rshift = vs->clientds.pf.rshift; |
| gshift = vs->clientds.pf.gshift; |
| bshift = vs->clientds.pf.bshift; |
| } else { |
| rshift = 24 - vs->clientds.pf.rshift; |
| gshift = 24 - vs->clientds.pf.gshift; |
| bshift = 24 - vs->clientds.pf.bshift; |
| } |
| |
| if (ret) { |
| *ret = count * 3; |
| } |
| |
| while (count--) { |
| pix = *buf32++; |
| *buf++ = (char)(pix >> rshift); |
| *buf++ = (char)(pix >> gshift); |
| *buf++ = (char)(pix >> bshift); |
| } |
| } |
| |
| static int send_full_color_rect(VncState *vs, int w, int h) |
| { |
| int stream = 0; |
| size_t bytes; |
| |
| vnc_write_u8(vs, stream << 4); /* no flushing, no filter */ |
| |
| if (vs->tight_pixel24) { |
| tight_pack24(vs, vs->tight.buffer, w * h, &vs->tight.offset); |
| bytes = 3; |
| } else { |
| bytes = vs->clientds.pf.bytes_per_pixel; |
| } |
| |
| bytes = tight_compress_data(vs, stream, w * h * bytes, |
| tight_conf[vs->tight_compression].raw_zlib_level, |
| Z_DEFAULT_STRATEGY); |
| |
| return (bytes >= 0); |
| } |
| |
| static int send_solid_rect(VncState *vs) |
| { |
| size_t bytes; |
| |
| vnc_write_u8(vs, VNC_TIGHT_FILL << 4); /* no flushing, no filter */ |
| |
| if (vs->tight_pixel24) { |
| tight_pack24(vs, vs->tight.buffer, 1, &vs->tight.offset); |
| bytes = 3; |
| } else { |
| bytes = vs->clientds.pf.bytes_per_pixel; |
| } |
| |
| vnc_write(vs, vs->tight.buffer, bytes); |
| return 1; |
| } |
| |
| static int send_mono_rect(VncState *vs, int w, int h, uint32_t bg, uint32_t fg) |
| { |
| size_t bytes; |
| int stream = 1; |
| int level = tight_conf[vs->tight_compression].mono_zlib_level; |
| |
| bytes = ((w + 7) / 8) * h; |
| |
| vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4); |
| vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE); |
| vnc_write_u8(vs, 1); |
| |
| switch(vs->clientds.pf.bytes_per_pixel) { |
| case 4: |
| { |
| uint32_t buf[2] = {bg, fg}; |
| size_t ret = sizeof (buf); |
| |
| if (vs->tight_pixel24) { |
| tight_pack24(vs, (unsigned char*)buf, 2, &ret); |
| } |
| vnc_write(vs, buf, ret); |
| |
| tight_encode_mono_rect32(vs->tight.buffer, w, h, bg, fg); |
| break; |
| } |
| case 2: |
| vnc_write(vs, &bg, 2); |
| vnc_write(vs, &fg, 2); |
| tight_encode_mono_rect16(vs->tight.buffer, w, h, bg, fg); |
| break; |
| default: |
| vnc_write_u8(vs, bg); |
| vnc_write_u8(vs, fg); |
| tight_encode_mono_rect8(vs->tight.buffer, w, h, bg, fg); |
| break; |
| } |
| vs->tight.offset = bytes; |
| |
| bytes = tight_compress_data(vs, stream, bytes, level, Z_DEFAULT_STRATEGY); |
| return (bytes >= 0); |
| } |
| |
| struct palette_cb_priv { |
| VncState *vs; |
| uint8_t *header; |
| }; |
| |
| static void write_palette(const char *key, QObject *obj, void *opaque) |
| { |
| struct palette_cb_priv *priv = opaque; |
| VncState *vs = priv->vs; |
| uint32_t bytes = vs->clientds.pf.bytes_per_pixel; |
| uint8_t idx = qint_get_int(qobject_to_qint(obj)); |
| |
| if (bytes == 4) { |
| uint32_t color = tight_palette_buf2rgb(32, (uint8_t *)key); |
| |
| ((uint32_t*)priv->header)[idx] = color; |
| } else { |
| uint16_t color = tight_palette_buf2rgb(16, (uint8_t *)key); |
| |
| ((uint16_t*)priv->header)[idx] = color; |
| } |
| } |
| |
| static int send_palette_rect(VncState *vs, int w, int h, struct QDict *palette) |
| { |
| int stream = 2; |
| int level = tight_conf[vs->tight_compression].idx_zlib_level; |
| int colors; |
| size_t bytes; |
| |
| colors = qdict_size(palette); |
| |
| vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4); |
| vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE); |
| vnc_write_u8(vs, colors - 1); |
| |
| switch(vs->clientds.pf.bytes_per_pixel) { |
| case 4: |
| { |
| size_t old_offset, offset; |
| uint32_t header[qdict_size(palette)]; |
| struct palette_cb_priv priv = { vs, (uint8_t *)header }; |
| |
| old_offset = vs->output.offset; |
| qdict_iter(palette, write_palette, &priv); |
| vnc_write(vs, header, sizeof(header)); |
| |
| if (vs->tight_pixel24) { |
| tight_pack24(vs, vs->output.buffer + old_offset, colors, &offset); |
| vs->output.offset = old_offset + offset; |
| } |
| |
| tight_encode_indexed_rect32(vs->tight.buffer, w * h, palette); |
| break; |
| } |
| case 2: |
| { |
| uint16_t header[qdict_size(palette)]; |
| struct palette_cb_priv priv = { vs, (uint8_t *)header }; |
| |
| qdict_iter(palette, write_palette, &priv); |
| vnc_write(vs, header, sizeof(header)); |
| tight_encode_indexed_rect16(vs->tight.buffer, w * h, palette); |
| break; |
| } |
| default: |
| return -1; /* No palette for 8bits colors */ |
| break; |
| } |
| bytes = w * h; |
| vs->tight.offset = bytes; |
| |
| bytes = tight_compress_data(vs, stream, bytes, |
| level, Z_DEFAULT_STRATEGY); |
| return (bytes >= 0); |
| } |
| |
| static void vnc_tight_start(VncState *vs) |
| { |
| buffer_reset(&vs->tight); |
| |
| // make the output buffer be the zlib buffer, so we can compress it later |
| vs->tight_tmp = vs->output; |
| vs->output = vs->tight; |
| } |
| |
| static void vnc_tight_stop(VncState *vs) |
| { |
| // switch back to normal output/zlib buffers |
| vs->tight = vs->output; |
| vs->output = vs->tight_tmp; |
| } |
| |
| static int send_sub_rect(VncState *vs, int x, int y, int w, int h) |
| { |
| struct QDict *palette = NULL; |
| uint32_t bg = 0, fg = 0; |
| int colors; |
| int ret = 0; |
| |
| vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_TIGHT); |
| |
| vnc_tight_start(vs); |
| vnc_raw_send_framebuffer_update(vs, x, y, w, h); |
| vnc_tight_stop(vs); |
| |
| colors = tight_fill_palette(vs, x, y, w * h, &fg, &bg, &palette); |
| |
| if (colors == 0) { |
| ret = send_full_color_rect(vs, w, h); |
| } else if (colors == 1) { |
| ret = send_solid_rect(vs); |
| } else if (colors == 2) { |
| ret = send_mono_rect(vs, w, h, bg, fg); |
| } else if (colors <= 256) { |
| ret = send_palette_rect(vs, w, h, palette); |
| } |
| QDECREF(palette); |
| return ret; |
| } |
| |
| static int send_sub_rect_solid(VncState *vs, int x, int y, int w, int h) |
| { |
| vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_TIGHT); |
| |
| vnc_tight_start(vs); |
| vnc_raw_send_framebuffer_update(vs, x, y, w, h); |
| vnc_tight_stop(vs); |
| |
| return send_solid_rect(vs); |
| } |
| |
| static int send_rect_simple(VncState *vs, int x, int y, int w, int h) |
| { |
| int max_size, max_width; |
| int max_sub_width, max_sub_height; |
| int dx, dy; |
| int rw, rh; |
| int n = 0; |
| |
| max_size = tight_conf[vs->tight_compression].max_rect_size; |
| max_width = tight_conf[vs->tight_compression].max_rect_width; |
| |
| if (w > max_width || w * h > max_size) { |
| max_sub_width = (w > max_width) ? max_width : w; |
| max_sub_height = max_size / max_sub_width; |
| |
| for (dy = 0; dy < h; dy += max_sub_height) { |
| for (dx = 0; dx < w; dx += max_width) { |
| rw = MIN(max_sub_width, w - dx); |
| rh = MIN(max_sub_height, h - dy); |
| n += send_sub_rect(vs, x+dx, y+dy, rw, rh); |
| } |
| } |
| } else { |
| n += send_sub_rect(vs, x, y, w, h); |
| } |
| |
| return n; |
| } |
| |
| static int find_large_solid_color_rect(VncState *vs, int x, int y, |
| int w, int h, int max_rows) |
| { |
| int dx, dy, dw, dh; |
| int n = 0; |
| |
| /* Try to find large solid-color areas and send them separately. */ |
| |
| for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) { |
| |
| /* If a rectangle becomes too large, send its upper part now. */ |
| |
| if (dy - y >= max_rows) { |
| n += send_rect_simple(vs, x, y, w, max_rows); |
| y += max_rows; |
| h -= max_rows; |
| } |
| |
| dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (y + h - dy)); |
| |
| for (dx = x; dx < x + w; dx += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) { |
| uint32_t color_value; |
| int x_best, y_best, w_best, h_best; |
| |
| dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (x + w - dx)); |
| |
| if (!check_solid_tile(vs, dx, dy, dw, dh, &color_value, false)) { |
| continue ; |
| } |
| |
| /* Get dimensions of solid-color area. */ |
| |
| find_best_solid_area(vs, dx, dy, w - (dx - x), h - (dy - y), |
| color_value, &w_best, &h_best); |
| |
| /* Make sure a solid rectangle is large enough |
| (or the whole rectangle is of the same color). */ |
| |
| if (w_best * h_best != w * h && |
| w_best * h_best < VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE) { |
| continue; |
| } |
| |
| /* Try to extend solid rectangle to maximum size. */ |
| |
| x_best = dx; y_best = dy; |
| extend_solid_area(vs, x, y, w, h, color_value, |
| &x_best, &y_best, &w_best, &h_best); |
| |
| /* Send rectangles at top and left to solid-color area. */ |
| |
| if (y_best != y) { |
| n += send_rect_simple(vs, x, y, w, y_best-y); |
| } |
| if (x_best != x) { |
| n += vnc_tight_send_framebuffer_update(vs, x, y_best, |
| x_best-x, h_best); |
| } |
| |
| /* Send solid-color rectangle. */ |
| n += send_sub_rect_solid(vs, x_best, y_best, w_best, h_best); |
| |
| /* Send remaining rectangles (at right and bottom). */ |
| |
| if (x_best + w_best != x + w) { |
| n += vnc_tight_send_framebuffer_update(vs, x_best+w_best, |
| y_best, |
| w-(x_best-x)-w_best, |
| h_best); |
| } |
| if (y_best + h_best != y + h) { |
| n += vnc_tight_send_framebuffer_update(vs, x, y_best+h_best, |
| w, h-(y_best-y)-h_best); |
| } |
| |
| /* Return after all recursive calls are done. */ |
| return n; |
| } |
| } |
| return n + send_rect_simple(vs, x, y, w, h); |
| } |
| |
| int vnc_tight_send_framebuffer_update(VncState *vs, int x, int y, |
| int w, int h) |
| { |
| int max_rows; |
| |
| if (vs->clientds.pf.bytes_per_pixel == 4 && vs->clientds.pf.rmax == 0xFF && |
| vs->clientds.pf.bmax == 0xFF && vs->clientds.pf.gmax == 0xFF) { |
| vs->tight_pixel24 = true; |
| } else { |
| vs->tight_pixel24 = false; |
| } |
| |
| if (w * h < VNC_TIGHT_MIN_SPLIT_RECT_SIZE) |
| return send_rect_simple(vs, x, y, w, h); |
| |
| /* Calculate maximum number of rows in one non-solid rectangle. */ |
| |
| max_rows = tight_conf[vs->tight_compression].max_rect_size; |
| max_rows /= MIN(tight_conf[vs->tight_compression].max_rect_width, w); |
| |
| return find_large_solid_color_rect(vs, x, y, w, h, max_rows); |
| } |
| |
| void vnc_tight_clear(VncState *vs) |
| { |
| int i; |
| for (i=0; i<ARRAY_SIZE(vs->tight_stream); i++) { |
| if (vs->tight_stream[i].opaque) { |
| deflateEnd(&vs->tight_stream[i]); |
| } |
| } |
| |
| buffer_free(&vs->tight); |
| buffer_free(&vs->tight_zlib); |
| } |