| /* |
| * QEMU ETRAX Ethernet Controller. |
| * |
| * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <stdio.h> |
| #include "hw.h" |
| #include "net.h" |
| |
| #include "etraxfs_dma.h" |
| |
| #define D(x) |
| |
| /* Advertisement control register. */ |
| #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ |
| #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ |
| #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ |
| #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ |
| |
| /* |
| * The MDIO extensions in the TDK PHY model were reversed engineered from the |
| * linux driver (PHYID and Diagnostics reg). |
| * TODO: Add friendly names for the register nums. |
| */ |
| struct qemu_phy |
| { |
| uint32_t regs[32]; |
| |
| unsigned int (*read)(struct qemu_phy *phy, unsigned int req); |
| void (*write)(struct qemu_phy *phy, unsigned int req, |
| unsigned int data); |
| }; |
| |
| static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req) |
| { |
| int regnum; |
| unsigned r = 0; |
| |
| regnum = req & 0x1f; |
| |
| switch (regnum) { |
| case 1: |
| /* MR1. */ |
| /* Speeds and modes. */ |
| r |= (1 << 13) | (1 << 14); |
| r |= (1 << 11) | (1 << 12); |
| r |= (1 << 5); /* Autoneg complete. */ |
| r |= (1 << 3); /* Autoneg able. */ |
| r |= (1 << 2); /* Link. */ |
| break; |
| case 5: |
| /* Link partner ability. |
| We are kind; always agree with whatever best mode |
| the guest advertises. */ |
| r = 1 << 14; /* Success. */ |
| /* Copy advertised modes. */ |
| r |= phy->regs[4] & (15 << 5); |
| /* Autoneg support. */ |
| r |= 1; |
| break; |
| case 18: |
| { |
| /* Diagnostics reg. */ |
| int duplex = 0; |
| int speed_100 = 0; |
| |
| /* Are we advertising 100 half or 100 duplex ? */ |
| speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF); |
| speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL); |
| |
| /* Are we advertising 10 duplex or 100 duplex ? */ |
| duplex = !!(phy->regs[4] & ADVERTISE_100FULL); |
| duplex |= !!(phy->regs[4] & ADVERTISE_10FULL); |
| r = (speed_100 << 10) | (duplex << 11); |
| } |
| break; |
| |
| default: |
| r = phy->regs[regnum]; |
| break; |
| } |
| D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum)); |
| return r; |
| } |
| |
| static void |
| tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data) |
| { |
| int regnum; |
| |
| regnum = req & 0x1f; |
| D(printf("%s reg[%d] = %x\n", __func__, regnum, data)); |
| switch (regnum) { |
| default: |
| phy->regs[regnum] = data; |
| break; |
| } |
| } |
| |
| static void |
| tdk_init(struct qemu_phy *phy) |
| { |
| phy->regs[0] = 0x3100; |
| /* PHY Id. */ |
| phy->regs[2] = 0x0300; |
| phy->regs[3] = 0xe400; |
| /* Autonegotiation advertisement reg. */ |
| phy->regs[4] = 0x01E1; |
| |
| phy->read = tdk_read; |
| phy->write = tdk_write; |
| } |
| |
| struct qemu_mdio |
| { |
| /* bus. */ |
| int mdc; |
| int mdio; |
| |
| /* decoder. */ |
| enum { |
| PREAMBLE, |
| SOF, |
| OPC, |
| ADDR, |
| REQ, |
| TURNAROUND, |
| DATA |
| } state; |
| unsigned int drive; |
| |
| unsigned int cnt; |
| unsigned int addr; |
| unsigned int opc; |
| unsigned int req; |
| unsigned int data; |
| |
| struct qemu_phy *devs[32]; |
| }; |
| |
| static void |
| mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) |
| { |
| bus->devs[addr & 0x1f] = phy; |
| } |
| |
| #ifdef USE_THIS_DEAD_CODE |
| static void |
| mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) |
| { |
| bus->devs[addr & 0x1f] = NULL; |
| } |
| #endif |
| |
| static void mdio_read_req(struct qemu_mdio *bus) |
| { |
| struct qemu_phy *phy; |
| |
| phy = bus->devs[bus->addr]; |
| if (phy && phy->read) |
| bus->data = phy->read(phy, bus->req); |
| else |
| bus->data = 0xffff; |
| } |
| |
| static void mdio_write_req(struct qemu_mdio *bus) |
| { |
| struct qemu_phy *phy; |
| |
| phy = bus->devs[bus->addr]; |
| if (phy && phy->write) |
| phy->write(phy, bus->req, bus->data); |
| } |
| |
| static void mdio_cycle(struct qemu_mdio *bus) |
| { |
| bus->cnt++; |
| |
| D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n", |
| bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive)); |
| #if 0 |
| if (bus->mdc) |
| printf("%d", bus->mdio); |
| #endif |
| switch (bus->state) |
| { |
| case PREAMBLE: |
| if (bus->mdc) { |
| if (bus->cnt >= (32 * 2) && !bus->mdio) { |
| bus->cnt = 0; |
| bus->state = SOF; |
| bus->data = 0; |
| } |
| } |
| break; |
| case SOF: |
| if (bus->mdc) { |
| if (bus->mdio != 1) |
| printf("WARNING: no SOF\n"); |
| if (bus->cnt == 1*2) { |
| bus->cnt = 0; |
| bus->opc = 0; |
| bus->state = OPC; |
| } |
| } |
| break; |
| case OPC: |
| if (bus->mdc) { |
| bus->opc <<= 1; |
| bus->opc |= bus->mdio & 1; |
| if (bus->cnt == 2*2) { |
| bus->cnt = 0; |
| bus->addr = 0; |
| bus->state = ADDR; |
| } |
| } |
| break; |
| case ADDR: |
| if (bus->mdc) { |
| bus->addr <<= 1; |
| bus->addr |= bus->mdio & 1; |
| |
| if (bus->cnt == 5*2) { |
| bus->cnt = 0; |
| bus->req = 0; |
| bus->state = REQ; |
| } |
| } |
| break; |
| case REQ: |
| if (bus->mdc) { |
| bus->req <<= 1; |
| bus->req |= bus->mdio & 1; |
| if (bus->cnt == 5*2) { |
| bus->cnt = 0; |
| bus->state = TURNAROUND; |
| } |
| } |
| break; |
| case TURNAROUND: |
| if (bus->mdc && bus->cnt == 2*2) { |
| bus->mdio = 0; |
| bus->cnt = 0; |
| |
| if (bus->opc == 2) { |
| bus->drive = 1; |
| mdio_read_req(bus); |
| bus->mdio = bus->data & 1; |
| } |
| bus->state = DATA; |
| } |
| break; |
| case DATA: |
| if (!bus->mdc) { |
| if (bus->drive) { |
| bus->mdio = !!(bus->data & (1 << 15)); |
| bus->data <<= 1; |
| } |
| } else { |
| if (!bus->drive) { |
| bus->data <<= 1; |
| bus->data |= bus->mdio; |
| } |
| if (bus->cnt == 16 * 2) { |
| bus->cnt = 0; |
| bus->state = PREAMBLE; |
| if (!bus->drive) |
| mdio_write_req(bus); |
| bus->drive = 0; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* ETRAX-FS Ethernet MAC block starts here. */ |
| |
| #define RW_MA0_LO 0x00 |
| #define RW_MA0_HI 0x04 |
| #define RW_MA1_LO 0x08 |
| #define RW_MA1_HI 0x0c |
| #define RW_GA_LO 0x10 |
| #define RW_GA_HI 0x14 |
| #define RW_GEN_CTRL 0x18 |
| #define RW_REC_CTRL 0x1c |
| #define RW_TR_CTRL 0x20 |
| #define RW_CLR_ERR 0x24 |
| #define RW_MGM_CTRL 0x28 |
| #define R_STAT 0x2c |
| #define FS_ETH_MAX_REGS 0x5c |
| |
| struct fs_eth |
| { |
| CPUState *env; |
| qemu_irq *irq; |
| target_phys_addr_t base; |
| VLANClientState *vc; |
| int ethregs; |
| |
| /* Two addrs in the filter. */ |
| uint8_t macaddr[2][6]; |
| uint32_t regs[FS_ETH_MAX_REGS]; |
| |
| unsigned char rx_fifo[1536]; |
| int rx_fifo_len; |
| int rx_fifo_pos; |
| |
| struct etraxfs_dma_client *dma_out; |
| struct etraxfs_dma_client *dma_in; |
| |
| /* MDIO bus. */ |
| struct qemu_mdio mdio_bus; |
| unsigned int phyaddr; |
| int duplex_mismatch; |
| |
| /* PHY. */ |
| struct qemu_phy phy; |
| }; |
| |
| static void eth_validate_duplex(struct fs_eth *eth) |
| { |
| struct qemu_phy *phy; |
| unsigned int phy_duplex; |
| unsigned int mac_duplex; |
| int new_mm = 0; |
| |
| phy = eth->mdio_bus.devs[eth->phyaddr]; |
| phy_duplex = !!(phy->read(phy, 18) & (1 << 11)); |
| mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128); |
| |
| if (mac_duplex != phy_duplex) |
| new_mm = 1; |
| |
| if (eth->regs[RW_GEN_CTRL] & 1) { |
| if (new_mm != eth->duplex_mismatch) { |
| if (new_mm) |
| printf("HW: WARNING " |
| "ETH duplex mismatch MAC=%d PHY=%d\n", |
| mac_duplex, phy_duplex); |
| else |
| printf("HW: ETH duplex ok.\n"); |
| } |
| eth->duplex_mismatch = new_mm; |
| } |
| } |
| |
| static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr) |
| { |
| struct fs_eth *eth = opaque; |
| CPUState *env = eth->env; |
| cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n", |
| addr); |
| return 0; |
| } |
| |
| static uint32_t eth_readl (void *opaque, target_phys_addr_t addr) |
| { |
| struct fs_eth *eth = opaque; |
| uint32_t r = 0; |
| |
| /* Make addr relative to this instances base. */ |
| addr -= eth->base; |
| switch (addr) { |
| case R_STAT: |
| /* Attach an MDIO/PHY abstraction. */ |
| r = eth->mdio_bus.mdio & 1; |
| break; |
| default: |
| r = eth->regs[addr]; |
| D(printf ("%s %x\n", __func__, addr)); |
| break; |
| } |
| return r; |
| } |
| |
| static void |
| eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value) |
| { |
| struct fs_eth *eth = opaque; |
| CPUState *env = eth->env; |
| cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n", |
| addr); |
| } |
| |
| static void eth_update_ma(struct fs_eth *eth, int ma) |
| { |
| int reg; |
| int i = 0; |
| |
| ma &= 1; |
| |
| reg = RW_MA0_LO; |
| if (ma) |
| reg = RW_MA1_LO; |
| |
| eth->macaddr[ma][i++] = eth->regs[reg]; |
| eth->macaddr[ma][i++] = eth->regs[reg] >> 8; |
| eth->macaddr[ma][i++] = eth->regs[reg] >> 16; |
| eth->macaddr[ma][i++] = eth->regs[reg] >> 24; |
| eth->macaddr[ma][i++] = eth->regs[reg + 4]; |
| eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8; |
| |
| D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma, |
| eth->macaddr[ma][0], eth->macaddr[ma][1], |
| eth->macaddr[ma][2], eth->macaddr[ma][3], |
| eth->macaddr[ma][4], eth->macaddr[ma][5])); |
| } |
| |
| static void |
| eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value) |
| { |
| struct fs_eth *eth = opaque; |
| |
| /* Make addr relative to this instances base. */ |
| addr -= eth->base; |
| switch (addr) |
| { |
| case RW_MA0_LO: |
| eth->regs[addr] = value; |
| eth_update_ma(eth, 0); |
| break; |
| case RW_MA0_HI: |
| eth->regs[addr] = value; |
| eth_update_ma(eth, 0); |
| break; |
| case RW_MA1_LO: |
| eth->regs[addr] = value; |
| eth_update_ma(eth, 1); |
| break; |
| case RW_MA1_HI: |
| eth->regs[addr] = value; |
| eth_update_ma(eth, 1); |
| break; |
| |
| case RW_MGM_CTRL: |
| /* Attach an MDIO/PHY abstraction. */ |
| if (value & 2) |
| eth->mdio_bus.mdio = value & 1; |
| if (eth->mdio_bus.mdc != (value & 4)) { |
| mdio_cycle(ð->mdio_bus); |
| eth_validate_duplex(eth); |
| } |
| eth->mdio_bus.mdc = !!(value & 4); |
| break; |
| |
| case RW_REC_CTRL: |
| eth->regs[addr] = value; |
| eth_validate_duplex(eth); |
| break; |
| |
| default: |
| eth->regs[addr] = value; |
| D(printf ("%s %x %x\n", |
| __func__, addr, value)); |
| break; |
| } |
| } |
| |
| /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom |
| filter dropping group addresses we have not joined. The filter has 64 |
| bits (m). The has function is a simple nible xor of the group addr. */ |
| static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa) |
| { |
| unsigned int hsh; |
| int m_individual = eth->regs[RW_REC_CTRL] & 4; |
| int match; |
| |
| /* First bit on the wire of a MAC address signals multicast or |
| physical address. */ |
| if (!m_individual && !sa[0] & 1) |
| return 0; |
| |
| /* Calculate the hash index for the GA registers. */ |
| hsh = 0; |
| hsh ^= (*sa) & 0x3f; |
| hsh ^= ((*sa) >> 6) & 0x03; |
| ++sa; |
| hsh ^= ((*sa) << 2) & 0x03c; |
| hsh ^= ((*sa) >> 4) & 0xf; |
| ++sa; |
| hsh ^= ((*sa) << 4) & 0x30; |
| hsh ^= ((*sa) >> 2) & 0x3f; |
| ++sa; |
| hsh ^= (*sa) & 0x3f; |
| hsh ^= ((*sa) >> 6) & 0x03; |
| ++sa; |
| hsh ^= ((*sa) << 2) & 0x03c; |
| hsh ^= ((*sa) >> 4) & 0xf; |
| ++sa; |
| hsh ^= ((*sa) << 4) & 0x30; |
| hsh ^= ((*sa) >> 2) & 0x3f; |
| |
| hsh &= 63; |
| if (hsh > 31) |
| match = eth->regs[RW_GA_HI] & (1 << (hsh - 32)); |
| else |
| match = eth->regs[RW_GA_LO] & (1 << hsh); |
| D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh, |
| eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match)); |
| return match; |
| } |
| |
| static int eth_can_receive(void *opaque) |
| { |
| struct fs_eth *eth = opaque; |
| int r; |
| |
| r = eth->rx_fifo_len == 0; |
| if (!r) { |
| /* TODO: signal fifo overrun. */ |
| printf("PACKET LOSS!\n"); |
| } |
| return r; |
| } |
| |
| static void eth_receive(void *opaque, const uint8_t *buf, int size) |
| { |
| unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
| struct fs_eth *eth = opaque; |
| int use_ma0 = eth->regs[RW_REC_CTRL] & 1; |
| int use_ma1 = eth->regs[RW_REC_CTRL] & 2; |
| int r_bcast = eth->regs[RW_REC_CTRL] & 8; |
| |
| if (size < 12) |
| return; |
| |
| D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n", |
| buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], |
| use_ma0, use_ma1, r_bcast)); |
| |
| /* Does the frame get through the address filters? */ |
| if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6)) |
| && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6)) |
| && (!r_bcast || memcmp(buf, sa_bcast, 6)) |
| && !eth_match_groupaddr(eth, buf)) |
| return; |
| |
| if (size > sizeof(eth->rx_fifo)) { |
| /* TODO: signal error. */ |
| } else if (eth->rx_fifo_len) { |
| /* FIFO overrun. */ |
| } else { |
| memcpy(eth->rx_fifo, buf, size); |
| /* +4, HW passes the CRC to sw. */ |
| eth->rx_fifo_len = size + 4; |
| eth->rx_fifo_pos = 0; |
| } |
| } |
| |
| static void eth_rx_pull(void *opaque) |
| { |
| struct fs_eth *eth = opaque; |
| int len; |
| if (eth->rx_fifo_len) { |
| D(printf("%s %d\n", __func__, eth->rx_fifo_len)); |
| #if 0 |
| { |
| int i; |
| for (i = 0; i < 32; i++) |
| printf("%2.2x", eth->rx_fifo[i]); |
| printf("\n"); |
| } |
| #endif |
| len = etraxfs_dmac_input(eth->dma_in, |
| eth->rx_fifo + eth->rx_fifo_pos, |
| eth->rx_fifo_len, 1); |
| eth->rx_fifo_len -= len; |
| eth->rx_fifo_pos += len; |
| } |
| } |
| |
| static int eth_tx_push(void *opaque, unsigned char *buf, int len) |
| { |
| struct fs_eth *eth = opaque; |
| |
| D(printf("%s buf=%p len=%d\n", __func__, buf, len)); |
| qemu_send_packet(eth->vc, buf, len); |
| return len; |
| } |
| |
| static CPUReadMemoryFunc *eth_read[] = { |
| ð_rinvalid, |
| ð_rinvalid, |
| ð_readl, |
| }; |
| |
| static CPUWriteMemoryFunc *eth_write[] = { |
| ð_winvalid, |
| ð_winvalid, |
| ð_writel, |
| }; |
| |
| void *etraxfs_eth_init(NICInfo *nd, CPUState *env, |
| qemu_irq *irq, target_phys_addr_t base) |
| { |
| struct etraxfs_dma_client *dma = NULL; |
| struct fs_eth *eth = NULL; |
| |
| dma = qemu_mallocz(sizeof *dma * 2); |
| if (!dma) |
| return NULL; |
| |
| eth = qemu_mallocz(sizeof *eth); |
| if (!eth) |
| goto err; |
| |
| dma[0].client.push = eth_tx_push; |
| dma[0].client.opaque = eth; |
| dma[1].client.opaque = eth; |
| dma[1].client.pull = eth_rx_pull; |
| |
| eth->env = env; |
| eth->base = base; |
| eth->irq = irq; |
| eth->dma_out = dma; |
| eth->dma_in = dma + 1; |
| |
| /* Connect the phy. */ |
| eth->phyaddr = 1; |
| tdk_init(ð->phy); |
| mdio_attach(ð->mdio_bus, ð->phy, eth->phyaddr); |
| |
| eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth); |
| cpu_register_physical_memory (base, 0x5c, eth->ethregs); |
| |
| eth->vc = qemu_new_vlan_client(nd->vlan, |
| eth_receive, eth_can_receive, eth); |
| |
| return dma; |
| err: |
| qemu_free(eth); |
| qemu_free(dma); |
| return NULL; |
| } |