| /* |
| * QEMU float support |
| * |
| * The code in this source file is derived from release 2a of the SoftFloat |
| * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and |
| * some later contributions) are provided under that license, as detailed below. |
| * It has subsequently been modified by contributors to the QEMU Project, |
| * so some portions are provided under: |
| * the SoftFloat-2a license |
| * the BSD license |
| * GPL-v2-or-later |
| * |
| * Any future contributions to this file after December 1st 2014 will be |
| * taken to be licensed under the Softfloat-2a license unless specifically |
| * indicated otherwise. |
| */ |
| |
| /* |
| =============================================================================== |
| This C source file is part of the SoftFloat IEC/IEEE Floating-point |
| Arithmetic Package, Release 2a. |
| |
| Written by John R. Hauser. This work was made possible in part by the |
| International Computer Science Institute, located at Suite 600, 1947 Center |
| Street, Berkeley, California 94704. Funding was partially provided by the |
| National Science Foundation under grant MIP-9311980. The original version |
| of this code was written as part of a project to build a fixed-point vector |
| processor in collaboration with the University of California at Berkeley, |
| overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
| arithmetic/SoftFloat.html'. |
| |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT |
| TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. |
| |
| Derivative works are acceptable, even for commercial purposes, so long as |
| (1) they include prominent notice that the work is derivative, and (2) they |
| include prominent notice akin to these four paragraphs for those parts of |
| this code that are retained. |
| |
| =============================================================================== |
| */ |
| |
| /* BSD licensing: |
| * Copyright (c) 2006, Fabrice Bellard |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * 3. Neither the name of the copyright holder nor the names of its contributors |
| * may be used to endorse or promote products derived from this software without |
| * specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* Portions of this work are licensed under the terms of the GNU GPL, |
| * version 2 or later. See the COPYING file in the top-level directory. |
| */ |
| |
| /* softfloat (and in particular the code in softfloat-specialize.h) is |
| * target-dependent and needs the TARGET_* macros. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/bitops.h" |
| #include "fpu/softfloat.h" |
| |
| /* We only need stdlib for abort() */ |
| |
| /*---------------------------------------------------------------------------- |
| | Primitive arithmetic functions, including multi-word arithmetic, and |
| | division and square root approximations. (Can be specialized to target if |
| | desired.) |
| *----------------------------------------------------------------------------*/ |
| #include "fpu/softfloat-macros.h" |
| |
| /*---------------------------------------------------------------------------- |
| | Functions and definitions to determine: (1) whether tininess for underflow |
| | is detected before or after rounding by default, (2) what (if anything) |
| | happens when exceptions are raised, (3) how signaling NaNs are distinguished |
| | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs |
| | are propagated from function inputs to output. These details are target- |
| | specific. |
| *----------------------------------------------------------------------------*/ |
| #include "softfloat-specialize.h" |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the fraction bits of the half-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline uint32_t extractFloat16Frac(float16 a) |
| { |
| return float16_val(a) & 0x3ff; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the exponent bits of the half-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline int extractFloat16Exp(float16 a) |
| { |
| return (float16_val(a) >> 10) & 0x1f; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the sign bit of the single-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline flag extractFloat16Sign(float16 a) |
| { |
| return float16_val(a)>>15; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the fraction bits of the single-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline uint32_t extractFloat32Frac(float32 a) |
| { |
| return float32_val(a) & 0x007FFFFF; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the exponent bits of the single-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline int extractFloat32Exp(float32 a) |
| { |
| return (float32_val(a) >> 23) & 0xFF; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the sign bit of the single-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline flag extractFloat32Sign(float32 a) |
| { |
| return float32_val(a) >> 31; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the fraction bits of the double-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline uint64_t extractFloat64Frac(float64 a) |
| { |
| return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the exponent bits of the double-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline int extractFloat64Exp(float64 a) |
| { |
| return (float64_val(a) >> 52) & 0x7FF; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the sign bit of the double-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline flag extractFloat64Sign(float64 a) |
| { |
| return float64_val(a) >> 63; |
| } |
| |
| /* |
| * Classify a floating point number. Everything above float_class_qnan |
| * is a NaN so cls >= float_class_qnan is any NaN. |
| */ |
| |
| typedef enum __attribute__ ((__packed__)) { |
| float_class_unclassified, |
| float_class_zero, |
| float_class_normal, |
| float_class_inf, |
| float_class_qnan, /* all NaNs from here */ |
| float_class_snan, |
| float_class_dnan, |
| float_class_msnan, /* maybe silenced */ |
| } FloatClass; |
| |
| /* |
| * Structure holding all of the decomposed parts of a float. The |
| * exponent is unbiased and the fraction is normalized. All |
| * calculations are done with a 64 bit fraction and then rounded as |
| * appropriate for the final format. |
| * |
| * Thanks to the packed FloatClass a decent compiler should be able to |
| * fit the whole structure into registers and avoid using the stack |
| * for parameter passing. |
| */ |
| |
| typedef struct { |
| uint64_t frac; |
| int32_t exp; |
| FloatClass cls; |
| bool sign; |
| } FloatParts; |
| |
| #define DECOMPOSED_BINARY_POINT (64 - 2) |
| #define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT) |
| #define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1) |
| |
| /* Structure holding all of the relevant parameters for a format. |
| * exp_size: the size of the exponent field |
| * exp_bias: the offset applied to the exponent field |
| * exp_max: the maximum normalised exponent |
| * frac_size: the size of the fraction field |
| * frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT |
| * The following are computed based the size of fraction |
| * frac_lsb: least significant bit of fraction |
| * fram_lsbm1: the bit bellow the least significant bit (for rounding) |
| * round_mask/roundeven_mask: masks used for rounding |
| */ |
| typedef struct { |
| int exp_size; |
| int exp_bias; |
| int exp_max; |
| int frac_size; |
| int frac_shift; |
| uint64_t frac_lsb; |
| uint64_t frac_lsbm1; |
| uint64_t round_mask; |
| uint64_t roundeven_mask; |
| } FloatFmt; |
| |
| /* Expand fields based on the size of exponent and fraction */ |
| #define FLOAT_PARAMS(E, F) \ |
| .exp_size = E, \ |
| .exp_bias = ((1 << E) - 1) >> 1, \ |
| .exp_max = (1 << E) - 1, \ |
| .frac_size = F, \ |
| .frac_shift = DECOMPOSED_BINARY_POINT - F, \ |
| .frac_lsb = 1ull << (DECOMPOSED_BINARY_POINT - F), \ |
| .frac_lsbm1 = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1), \ |
| .round_mask = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1, \ |
| .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1 |
| |
| static const FloatFmt float16_params = { |
| FLOAT_PARAMS(5, 10) |
| }; |
| |
| static const FloatFmt float32_params = { |
| FLOAT_PARAMS(8, 23) |
| }; |
| |
| static const FloatFmt float64_params = { |
| FLOAT_PARAMS(11, 52) |
| }; |
| |
| /* Unpack a float to parts, but do not canonicalize. */ |
| static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw) |
| { |
| const int sign_pos = fmt.frac_size + fmt.exp_size; |
| |
| return (FloatParts) { |
| .cls = float_class_unclassified, |
| .sign = extract64(raw, sign_pos, 1), |
| .exp = extract64(raw, fmt.frac_size, fmt.exp_size), |
| .frac = extract64(raw, 0, fmt.frac_size), |
| }; |
| } |
| |
| static inline FloatParts float16_unpack_raw(float16 f) |
| { |
| return unpack_raw(float16_params, f); |
| } |
| |
| static inline FloatParts float32_unpack_raw(float32 f) |
| { |
| return unpack_raw(float32_params, f); |
| } |
| |
| static inline FloatParts float64_unpack_raw(float64 f) |
| { |
| return unpack_raw(float64_params, f); |
| } |
| |
| /* Pack a float from parts, but do not canonicalize. */ |
| static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p) |
| { |
| const int sign_pos = fmt.frac_size + fmt.exp_size; |
| uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp); |
| return deposit64(ret, sign_pos, 1, p.sign); |
| } |
| |
| static inline float16 float16_pack_raw(FloatParts p) |
| { |
| return make_float16(pack_raw(float16_params, p)); |
| } |
| |
| static inline float32 float32_pack_raw(FloatParts p) |
| { |
| return make_float32(pack_raw(float32_params, p)); |
| } |
| |
| static inline float64 float64_pack_raw(FloatParts p) |
| { |
| return make_float64(pack_raw(float64_params, p)); |
| } |
| |
| /* Canonicalize EXP and FRAC, setting CLS. */ |
| static FloatParts canonicalize(FloatParts part, const FloatFmt *parm, |
| float_status *status) |
| { |
| if (part.exp == parm->exp_max) { |
| if (part.frac == 0) { |
| part.cls = float_class_inf; |
| } else { |
| #ifdef NO_SIGNALING_NANS |
| part.cls = float_class_qnan; |
| #else |
| int64_t msb = part.frac << (parm->frac_shift + 2); |
| if ((msb < 0) == status->snan_bit_is_one) { |
| part.cls = float_class_snan; |
| } else { |
| part.cls = float_class_qnan; |
| } |
| #endif |
| } |
| } else if (part.exp == 0) { |
| if (likely(part.frac == 0)) { |
| part.cls = float_class_zero; |
| } else if (status->flush_inputs_to_zero) { |
| float_raise(float_flag_input_denormal, status); |
| part.cls = float_class_zero; |
| part.frac = 0; |
| } else { |
| int shift = clz64(part.frac) - 1; |
| part.cls = float_class_normal; |
| part.exp = parm->frac_shift - parm->exp_bias - shift + 1; |
| part.frac <<= shift; |
| } |
| } else { |
| part.cls = float_class_normal; |
| part.exp -= parm->exp_bias; |
| part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift); |
| } |
| return part; |
| } |
| |
| /* Round and uncanonicalize a floating-point number by parts. There |
| * are FRAC_SHIFT bits that may require rounding at the bottom of the |
| * fraction; these bits will be removed. The exponent will be biased |
| * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. |
| */ |
| |
| static FloatParts round_canonical(FloatParts p, float_status *s, |
| const FloatFmt *parm) |
| { |
| const uint64_t frac_lsbm1 = parm->frac_lsbm1; |
| const uint64_t round_mask = parm->round_mask; |
| const uint64_t roundeven_mask = parm->roundeven_mask; |
| const int exp_max = parm->exp_max; |
| const int frac_shift = parm->frac_shift; |
| uint64_t frac, inc; |
| int exp, flags = 0; |
| bool overflow_norm; |
| |
| frac = p.frac; |
| exp = p.exp; |
| |
| switch (p.cls) { |
| case float_class_normal: |
| switch (s->float_rounding_mode) { |
| case float_round_nearest_even: |
| overflow_norm = false; |
| inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); |
| break; |
| case float_round_ties_away: |
| overflow_norm = false; |
| inc = frac_lsbm1; |
| break; |
| case float_round_to_zero: |
| overflow_norm = true; |
| inc = 0; |
| break; |
| case float_round_up: |
| inc = p.sign ? 0 : round_mask; |
| overflow_norm = p.sign; |
| break; |
| case float_round_down: |
| inc = p.sign ? round_mask : 0; |
| overflow_norm = !p.sign; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| exp += parm->exp_bias; |
| if (likely(exp > 0)) { |
| if (frac & round_mask) { |
| flags |= float_flag_inexact; |
| frac += inc; |
| if (frac & DECOMPOSED_OVERFLOW_BIT) { |
| frac >>= 1; |
| exp++; |
| } |
| } |
| frac >>= frac_shift; |
| |
| if (unlikely(exp >= exp_max)) { |
| flags |= float_flag_overflow | float_flag_inexact; |
| if (overflow_norm) { |
| exp = exp_max - 1; |
| frac = -1; |
| } else { |
| p.cls = float_class_inf; |
| goto do_inf; |
| } |
| } |
| } else if (s->flush_to_zero) { |
| flags |= float_flag_output_denormal; |
| p.cls = float_class_zero; |
| goto do_zero; |
| } else { |
| bool is_tiny = (s->float_detect_tininess |
| == float_tininess_before_rounding) |
| || (exp < 0) |
| || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT); |
| |
| shift64RightJamming(frac, 1 - exp, &frac); |
| if (frac & round_mask) { |
| /* Need to recompute round-to-even. */ |
| if (s->float_rounding_mode == float_round_nearest_even) { |
| inc = ((frac & roundeven_mask) != frac_lsbm1 |
| ? frac_lsbm1 : 0); |
| } |
| flags |= float_flag_inexact; |
| frac += inc; |
| } |
| |
| exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0); |
| frac >>= frac_shift; |
| |
| if (is_tiny && (flags & float_flag_inexact)) { |
| flags |= float_flag_underflow; |
| } |
| if (exp == 0 && frac == 0) { |
| p.cls = float_class_zero; |
| } |
| } |
| break; |
| |
| case float_class_zero: |
| do_zero: |
| exp = 0; |
| frac = 0; |
| break; |
| |
| case float_class_inf: |
| do_inf: |
| exp = exp_max; |
| frac = 0; |
| break; |
| |
| case float_class_qnan: |
| case float_class_snan: |
| exp = exp_max; |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| |
| float_raise(flags, s); |
| p.exp = exp; |
| p.frac = frac; |
| return p; |
| } |
| |
| static FloatParts float16_unpack_canonical(float16 f, float_status *s) |
| { |
| return canonicalize(float16_unpack_raw(f), &float16_params, s); |
| } |
| |
| static float16 float16_round_pack_canonical(FloatParts p, float_status *s) |
| { |
| switch (p.cls) { |
| case float_class_dnan: |
| return float16_default_nan(s); |
| case float_class_msnan: |
| return float16_maybe_silence_nan(float16_pack_raw(p), s); |
| default: |
| p = round_canonical(p, s, &float16_params); |
| return float16_pack_raw(p); |
| } |
| } |
| |
| static FloatParts float32_unpack_canonical(float32 f, float_status *s) |
| { |
| return canonicalize(float32_unpack_raw(f), &float32_params, s); |
| } |
| |
| static float32 float32_round_pack_canonical(FloatParts p, float_status *s) |
| { |
| switch (p.cls) { |
| case float_class_dnan: |
| return float32_default_nan(s); |
| case float_class_msnan: |
| return float32_maybe_silence_nan(float32_pack_raw(p), s); |
| default: |
| p = round_canonical(p, s, &float32_params); |
| return float32_pack_raw(p); |
| } |
| } |
| |
| static FloatParts float64_unpack_canonical(float64 f, float_status *s) |
| { |
| return canonicalize(float64_unpack_raw(f), &float64_params, s); |
| } |
| |
| static float64 float64_round_pack_canonical(FloatParts p, float_status *s) |
| { |
| switch (p.cls) { |
| case float_class_dnan: |
| return float64_default_nan(s); |
| case float_class_msnan: |
| return float64_maybe_silence_nan(float64_pack_raw(p), s); |
| default: |
| p = round_canonical(p, s, &float64_params); |
| return float64_pack_raw(p); |
| } |
| } |
| |
| /* Simple helpers for checking if what NaN we have */ |
| static bool is_nan(FloatClass c) |
| { |
| return unlikely(c >= float_class_qnan); |
| } |
| static bool is_snan(FloatClass c) |
| { |
| return c == float_class_snan; |
| } |
| static bool is_qnan(FloatClass c) |
| { |
| return c == float_class_qnan; |
| } |
| |
| static FloatParts return_nan(FloatParts a, float_status *s) |
| { |
| switch (a.cls) { |
| case float_class_snan: |
| s->float_exception_flags |= float_flag_invalid; |
| a.cls = float_class_msnan; |
| /* fall through */ |
| case float_class_qnan: |
| if (s->default_nan_mode) { |
| a.cls = float_class_dnan; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| return a; |
| } |
| |
| static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s) |
| { |
| if (is_snan(a.cls) || is_snan(b.cls)) { |
| s->float_exception_flags |= float_flag_invalid; |
| } |
| |
| if (s->default_nan_mode) { |
| a.cls = float_class_dnan; |
| } else { |
| if (pickNaN(is_qnan(a.cls), is_snan(a.cls), |
| is_qnan(b.cls), is_snan(b.cls), |
| a.frac > b.frac || |
| (a.frac == b.frac && a.sign < b.sign))) { |
| a = b; |
| } |
| a.cls = float_class_msnan; |
| } |
| return a; |
| } |
| |
| static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c, |
| bool inf_zero, float_status *s) |
| { |
| if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) { |
| s->float_exception_flags |= float_flag_invalid; |
| } |
| |
| if (s->default_nan_mode) { |
| a.cls = float_class_dnan; |
| } else { |
| switch (pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls), |
| is_qnan(b.cls), is_snan(b.cls), |
| is_qnan(c.cls), is_snan(c.cls), |
| inf_zero, s)) { |
| case 0: |
| break; |
| case 1: |
| a = b; |
| break; |
| case 2: |
| a = c; |
| break; |
| case 3: |
| a.cls = float_class_dnan; |
| return a; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| a.cls = float_class_msnan; |
| } |
| return a; |
| } |
| |
| /* |
| * Returns the result of adding or subtracting the values of the |
| * floating-point values `a' and `b'. The operation is performed |
| * according to the IEC/IEEE Standard for Binary Floating-Point |
| * Arithmetic. |
| */ |
| |
| static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract, |
| float_status *s) |
| { |
| bool a_sign = a.sign; |
| bool b_sign = b.sign ^ subtract; |
| |
| if (a_sign != b_sign) { |
| /* Subtraction */ |
| |
| if (a.cls == float_class_normal && b.cls == float_class_normal) { |
| if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) { |
| shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); |
| a.frac = a.frac - b.frac; |
| } else { |
| shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); |
| a.frac = b.frac - a.frac; |
| a.exp = b.exp; |
| a_sign ^= 1; |
| } |
| |
| if (a.frac == 0) { |
| a.cls = float_class_zero; |
| a.sign = s->float_rounding_mode == float_round_down; |
| } else { |
| int shift = clz64(a.frac) - 1; |
| a.frac = a.frac << shift; |
| a.exp = a.exp - shift; |
| a.sign = a_sign; |
| } |
| return a; |
| } |
| if (is_nan(a.cls) || is_nan(b.cls)) { |
| return pick_nan(a, b, s); |
| } |
| if (a.cls == float_class_inf) { |
| if (b.cls == float_class_inf) { |
| float_raise(float_flag_invalid, s); |
| a.cls = float_class_dnan; |
| } |
| return a; |
| } |
| if (a.cls == float_class_zero && b.cls == float_class_zero) { |
| a.sign = s->float_rounding_mode == float_round_down; |
| return a; |
| } |
| if (a.cls == float_class_zero || b.cls == float_class_inf) { |
| b.sign = a_sign ^ 1; |
| return b; |
| } |
| if (b.cls == float_class_zero) { |
| return a; |
| } |
| } else { |
| /* Addition */ |
| if (a.cls == float_class_normal && b.cls == float_class_normal) { |
| if (a.exp > b.exp) { |
| shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); |
| } else if (a.exp < b.exp) { |
| shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); |
| a.exp = b.exp; |
| } |
| a.frac += b.frac; |
| if (a.frac & DECOMPOSED_OVERFLOW_BIT) { |
| a.frac >>= 1; |
| a.exp += 1; |
| } |
| return a; |
| } |
| if (is_nan(a.cls) || is_nan(b.cls)) { |
| return pick_nan(a, b, s); |
| } |
| if (a.cls == float_class_inf || b.cls == float_class_zero) { |
| return a; |
| } |
| if (b.cls == float_class_inf || a.cls == float_class_zero) { |
| b.sign = b_sign; |
| return b; |
| } |
| } |
| g_assert_not_reached(); |
| } |
| |
| /* |
| * Returns the result of adding or subtracting the floating-point |
| * values `a' and `b'. The operation is performed according to the |
| * IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| */ |
| |
| float16 __attribute__((flatten)) float16_add(float16 a, float16 b, |
| float_status *status) |
| { |
| FloatParts pa = float16_unpack_canonical(a, status); |
| FloatParts pb = float16_unpack_canonical(b, status); |
| FloatParts pr = addsub_floats(pa, pb, false, status); |
| |
| return float16_round_pack_canonical(pr, status); |
| } |
| |
| float32 __attribute__((flatten)) float32_add(float32 a, float32 b, |
| float_status *status) |
| { |
| FloatParts pa = float32_unpack_canonical(a, status); |
| FloatParts pb = float32_unpack_canonical(b, status); |
| FloatParts pr = addsub_floats(pa, pb, false, status); |
| |
| return float32_round_pack_canonical(pr, status); |
| } |
| |
| float64 __attribute__((flatten)) float64_add(float64 a, float64 b, |
| float_status *status) |
| { |
| FloatParts pa = float64_unpack_canonical(a, status); |
| FloatParts pb = float64_unpack_canonical(b, status); |
| FloatParts pr = addsub_floats(pa, pb, false, status); |
| |
| return float64_round_pack_canonical(pr, status); |
| } |
| |
| float16 __attribute__((flatten)) float16_sub(float16 a, float16 b, |
| float_status *status) |
| { |
| FloatParts pa = float16_unpack_canonical(a, status); |
| FloatParts pb = float16_unpack_canonical(b, status); |
| FloatParts pr = addsub_floats(pa, pb, true, status); |
| |
| return float16_round_pack_canonical(pr, status); |
| } |
| |
| float32 __attribute__((flatten)) float32_sub(float32 a, float32 b, |
| float_status *status) |
| { |
| FloatParts pa = float32_unpack_canonical(a, status); |
| FloatParts pb = float32_unpack_canonical(b, status); |
| FloatParts pr = addsub_floats(pa, pb, true, status); |
| |
| return float32_round_pack_canonical(pr, status); |
| } |
| |
| float64 __attribute__((flatten)) float64_sub(float64 a, float64 b, |
| float_status *status) |
| { |
| FloatParts pa = float64_unpack_canonical(a, status); |
| FloatParts pb = float64_unpack_canonical(b, status); |
| FloatParts pr = addsub_floats(pa, pb, true, status); |
| |
| return float64_round_pack_canonical(pr, status); |
| } |
| |
| /* |
| * Returns the result of multiplying the floating-point values `a' and |
| * `b'. The operation is performed according to the IEC/IEEE Standard |
| * for Binary Floating-Point Arithmetic. |
| */ |
| |
| static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s) |
| { |
| bool sign = a.sign ^ b.sign; |
| |
| if (a.cls == float_class_normal && b.cls == float_class_normal) { |
| uint64_t hi, lo; |
| int exp = a.exp + b.exp; |
| |
| mul64To128(a.frac, b.frac, &hi, &lo); |
| shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); |
| if (lo & DECOMPOSED_OVERFLOW_BIT) { |
| shift64RightJamming(lo, 1, &lo); |
| exp += 1; |
| } |
| |
| /* Re-use a */ |
| a.exp = exp; |
| a.sign = sign; |
| a.frac = lo; |
| return a; |
| } |
| /* handle all the NaN cases */ |
| if (is_nan(a.cls) || is_nan(b.cls)) { |
| return pick_nan(a, b, s); |
| } |
| /* Inf * Zero == NaN */ |
| if ((a.cls == float_class_inf && b.cls == float_class_zero) || |
| (a.cls == float_class_zero && b.cls == float_class_inf)) { |
| s->float_exception_flags |= float_flag_invalid; |
| a.cls = float_class_dnan; |
| a.sign = sign; |
| return a; |
| } |
| /* Multiply by 0 or Inf */ |
| if (a.cls == float_class_inf || a.cls == float_class_zero) { |
| a.sign = sign; |
| return a; |
| } |
| if (b.cls == float_class_inf || b.cls == float_class_zero) { |
| b.sign = sign; |
| return b; |
| } |
| g_assert_not_reached(); |
| } |
| |
| float16 __attribute__((flatten)) float16_mul(float16 a, float16 b, |
| float_status *status) |
| { |
| FloatParts pa = float16_unpack_canonical(a, status); |
| FloatParts pb = float16_unpack_canonical(b, status); |
| FloatParts pr = mul_floats(pa, pb, status); |
| |
| return float16_round_pack_canonical(pr, status); |
| } |
| |
| float32 __attribute__((flatten)) float32_mul(float32 a, float32 b, |
| float_status *status) |
| { |
| FloatParts pa = float32_unpack_canonical(a, status); |
| FloatParts pb = float32_unpack_canonical(b, status); |
| FloatParts pr = mul_floats(pa, pb, status); |
| |
| return float32_round_pack_canonical(pr, status); |
| } |
| |
| float64 __attribute__((flatten)) float64_mul(float64 a, float64 b, |
| float_status *status) |
| { |
| FloatParts pa = float64_unpack_canonical(a, status); |
| FloatParts pb = float64_unpack_canonical(b, status); |
| FloatParts pr = mul_floats(pa, pb, status); |
| |
| return float64_round_pack_canonical(pr, status); |
| } |
| |
| /* |
| * Returns the result of multiplying the floating-point values `a' and |
| * `b' then adding 'c', with no intermediate rounding step after the |
| * multiplication. The operation is performed according to the |
| * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008. |
| * The flags argument allows the caller to select negation of the |
| * addend, the intermediate product, or the final result. (The |
| * difference between this and having the caller do a separate |
| * negation is that negating externally will flip the sign bit on |
| * NaNs.) |
| */ |
| |
| static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c, |
| int flags, float_status *s) |
| { |
| bool inf_zero = ((1 << a.cls) | (1 << b.cls)) == |
| ((1 << float_class_inf) | (1 << float_class_zero)); |
| bool p_sign; |
| bool sign_flip = flags & float_muladd_negate_result; |
| FloatClass p_class; |
| uint64_t hi, lo; |
| int p_exp; |
| |
| /* It is implementation-defined whether the cases of (0,inf,qnan) |
| * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN |
| * they return if they do), so we have to hand this information |
| * off to the target-specific pick-a-NaN routine. |
| */ |
| if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) { |
| return pick_nan_muladd(a, b, c, inf_zero, s); |
| } |
| |
| if (inf_zero) { |
| s->float_exception_flags |= float_flag_invalid; |
| a.cls = float_class_dnan; |
| return a; |
| } |
| |
| if (flags & float_muladd_negate_c) { |
| c.sign ^= 1; |
| } |
| |
| p_sign = a.sign ^ b.sign; |
| |
| if (flags & float_muladd_negate_product) { |
| p_sign ^= 1; |
| } |
| |
| if (a.cls == float_class_inf || b.cls == float_class_inf) { |
| p_class = float_class_inf; |
| } else if (a.cls == float_class_zero || b.cls == float_class_zero) { |
| p_class = float_class_zero; |
| } else { |
| p_class = float_class_normal; |
| } |
| |
| if (c.cls == float_class_inf) { |
| if (p_class == float_class_inf && p_sign != c.sign) { |
| s->float_exception_flags |= float_flag_invalid; |
| a.cls = float_class_dnan; |
| } else { |
| a.cls = float_class_inf; |
| a.sign = c.sign ^ sign_flip; |
| } |
| return a; |
| } |
| |
| if (p_class == float_class_inf) { |
| a.cls = float_class_inf; |
| a.sign = p_sign ^ sign_flip; |
| return a; |
| } |
| |
| if (p_class == float_class_zero) { |
| if (c.cls == float_class_zero) { |
| if (p_sign != c.sign) { |
| p_sign = s->float_rounding_mode == float_round_down; |
| } |
| c.sign = p_sign; |
| } else if (flags & float_muladd_halve_result) { |
| c.exp -= 1; |
| } |
| c.sign ^= sign_flip; |
| return c; |
| } |
| |
| /* a & b should be normals now... */ |
| assert(a.cls == float_class_normal && |
| b.cls == float_class_normal); |
| |
| p_exp = a.exp + b.exp; |
| |
| /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit |
| * result. |
| */ |
| mul64To128(a.frac, b.frac, &hi, &lo); |
| /* binary point now at bit 124 */ |
| |
| /* check for overflow */ |
| if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) { |
| shift128RightJamming(hi, lo, 1, &hi, &lo); |
| p_exp += 1; |
| } |
| |
| /* + add/sub */ |
| if (c.cls == float_class_zero) { |
| /* move binary point back to 62 */ |
| shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); |
| } else { |
| int exp_diff = p_exp - c.exp; |
| if (p_sign == c.sign) { |
| /* Addition */ |
| if (exp_diff <= 0) { |
| shift128RightJamming(hi, lo, |
| DECOMPOSED_BINARY_POINT - exp_diff, |
| &hi, &lo); |
| lo += c.frac; |
| p_exp = c.exp; |
| } else { |
| uint64_t c_hi, c_lo; |
| /* shift c to the same binary point as the product (124) */ |
| c_hi = c.frac >> 2; |
| c_lo = 0; |
| shift128RightJamming(c_hi, c_lo, |
| exp_diff, |
| &c_hi, &c_lo); |
| add128(hi, lo, c_hi, c_lo, &hi, &lo); |
| /* move binary point back to 62 */ |
| shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); |
| } |
| |
| if (lo & DECOMPOSED_OVERFLOW_BIT) { |
| shift64RightJamming(lo, 1, &lo); |
| p_exp += 1; |
| } |
| |
| } else { |
| /* Subtraction */ |
| uint64_t c_hi, c_lo; |
| /* make C binary point match product at bit 124 */ |
| c_hi = c.frac >> 2; |
| c_lo = 0; |
| |
| if (exp_diff <= 0) { |
| shift128RightJamming(hi, lo, -exp_diff, &hi, &lo); |
| if (exp_diff == 0 |
| && |
| (hi > c_hi || (hi == c_hi && lo >= c_lo))) { |
| sub128(hi, lo, c_hi, c_lo, &hi, &lo); |
| } else { |
| sub128(c_hi, c_lo, hi, lo, &hi, &lo); |
| p_sign ^= 1; |
| p_exp = c.exp; |
| } |
| } else { |
| shift128RightJamming(c_hi, c_lo, |
| exp_diff, |
| &c_hi, &c_lo); |
| sub128(hi, lo, c_hi, c_lo, &hi, &lo); |
| } |
| |
| if (hi == 0 && lo == 0) { |
| a.cls = float_class_zero; |
| a.sign = s->float_rounding_mode == float_round_down; |
| a.sign ^= sign_flip; |
| return a; |
| } else { |
| int shift; |
| if (hi != 0) { |
| shift = clz64(hi); |
| } else { |
| shift = clz64(lo) + 64; |
| } |
| /* Normalizing to a binary point of 124 is the |
| correct adjust for the exponent. However since we're |
| shifting, we might as well put the binary point back |
| at 62 where we really want it. Therefore shift as |
| if we're leaving 1 bit at the top of the word, but |
| adjust the exponent as if we're leaving 3 bits. */ |
| shift -= 1; |
| if (shift >= 64) { |
| lo = lo << (shift - 64); |
| } else { |
| hi = (hi << shift) | (lo >> (64 - shift)); |
| lo = hi | ((lo << shift) != 0); |
| } |
| p_exp -= shift - 2; |
| } |
| } |
| } |
| |
| if (flags & float_muladd_halve_result) { |
| p_exp -= 1; |
| } |
| |
| /* finally prepare our result */ |
| a.cls = float_class_normal; |
| a.sign = p_sign ^ sign_flip; |
| a.exp = p_exp; |
| a.frac = lo; |
| |
| return a; |
| } |
| |
| float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c, |
| int flags, float_status *status) |
| { |
| FloatParts pa = float16_unpack_canonical(a, status); |
| FloatParts pb = float16_unpack_canonical(b, status); |
| FloatParts pc = float16_unpack_canonical(c, status); |
| FloatParts pr = muladd_floats(pa, pb, pc, flags, status); |
| |
| return float16_round_pack_canonical(pr, status); |
| } |
| |
| float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c, |
| int flags, float_status *status) |
| { |
| FloatParts pa = float32_unpack_canonical(a, status); |
| FloatParts pb = float32_unpack_canonical(b, status); |
| FloatParts pc = float32_unpack_canonical(c, status); |
| FloatParts pr = muladd_floats(pa, pb, pc, flags, status); |
| |
| return float32_round_pack_canonical(pr, status); |
| } |
| |
| float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c, |
| int flags, float_status *status) |
| { |
| FloatParts pa = float64_unpack_canonical(a, status); |
| FloatParts pb = float64_unpack_canonical(b, status); |
| FloatParts pc = float64_unpack_canonical(c, status); |
| FloatParts pr = muladd_floats(pa, pb, pc, flags, status); |
| |
| return float64_round_pack_canonical(pr, status); |
| } |
| |
| /* |
| * Returns the result of dividing the floating-point value `a' by the |
| * corresponding value `b'. The operation is performed according to |
| * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| */ |
| |
| static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s) |
| { |
| bool sign = a.sign ^ b.sign; |
| |
| if (a.cls == float_class_normal && b.cls == float_class_normal) { |
| uint64_t temp_lo, temp_hi; |
| int exp = a.exp - b.exp; |
| if (a.frac < b.frac) { |
| exp -= 1; |
| shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, |
| &temp_hi, &temp_lo); |
| } else { |
| shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT, |
| &temp_hi, &temp_lo); |
| } |
| /* LSB of quot is set if inexact which roundandpack will use |
| * to set flags. Yet again we re-use a for the result */ |
| a.frac = div128To64(temp_lo, temp_hi, b.frac); |
| a.sign = sign; |
| a.exp = exp; |
| return a; |
| } |
| /* handle all the NaN cases */ |
| if (is_nan(a.cls) || is_nan(b.cls)) { |
| return pick_nan(a, b, s); |
| } |
| /* 0/0 or Inf/Inf */ |
| if (a.cls == b.cls |
| && |
| (a.cls == float_class_inf || a.cls == float_class_zero)) { |
| s->float_exception_flags |= float_flag_invalid; |
| a.cls = float_class_dnan; |
| return a; |
| } |
| /* Div 0 => Inf */ |
| if (b.cls == float_class_zero) { |
| s->float_exception_flags |= float_flag_divbyzero; |
| a.cls = float_class_inf; |
| a.sign = sign; |
| return a; |
| } |
| /* Inf / x or 0 / x */ |
| if (a.cls == float_class_inf || a.cls == float_class_zero) { |
| a.sign = sign; |
| return a; |
| } |
| /* Div by Inf */ |
| if (b.cls == float_class_inf) { |
| a.cls = float_class_zero; |
| a.sign = sign; |
| return a; |
| } |
| g_assert_not_reached(); |
| } |
| |
| float16 float16_div(float16 a, float16 b, float_status *status) |
| { |
| FloatParts pa = float16_unpack_canonical(a, status); |
| FloatParts pb = float16_unpack_canonical(b, status); |
| FloatParts pr = div_floats(pa, pb, status); |
| |
| return float16_round_pack_canonical(pr, status); |
| } |
| |
| float32 float32_div(float32 a, float32 b, float_status *status) |
| { |
| FloatParts pa = float32_unpack_canonical(a, status); |
| FloatParts pb = float32_unpack_canonical(b, status); |
| FloatParts pr = div_floats(pa, pb, status); |
| |
| return float32_round_pack_canonical(pr, status); |
| } |
| |
| float64 float64_div(float64 a, float64 b, float_status *status) |
| { |
| FloatParts pa = float64_unpack_canonical(a, status); |
| FloatParts pb = float64_unpack_canonical(b, status); |
| FloatParts pr = div_floats(pa, pb, status); |
| |
| return float64_round_pack_canonical(pr, status); |
| } |
| |
| /* |
| * Rounds the floating-point value `a' to an integer, and returns the |
| * result as a floating-point value. The operation is performed |
| * according to the IEC/IEEE Standard for Binary Floating-Point |
| * Arithmetic. |
| */ |
| |
| static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s) |
| { |
| if (is_nan(a.cls)) { |
| return return_nan(a, s); |
| } |
| |
| switch (a.cls) { |
| case float_class_zero: |
| case float_class_inf: |
| case float_class_qnan: |
| /* already "integral" */ |
| break; |
| case float_class_normal: |
| if (a.exp >= DECOMPOSED_BINARY_POINT) { |
| /* already integral */ |
| break; |
| } |
| if (a.exp < 0) { |
| bool one; |
| /* all fractional */ |
| s->float_exception_flags |= float_flag_inexact; |
| switch (rounding_mode) { |
| case float_round_nearest_even: |
| one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT; |
| break; |
| case float_round_ties_away: |
| one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT; |
| break; |
| case float_round_to_zero: |
| one = false; |
| break; |
| case float_round_up: |
| one = !a.sign; |
| break; |
| case float_round_down: |
| one = a.sign; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (one) { |
| a.frac = DECOMPOSED_IMPLICIT_BIT; |
| a.exp = 0; |
| } else { |
| a.cls = float_class_zero; |
| } |
| } else { |
| uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp; |
| uint64_t frac_lsbm1 = frac_lsb >> 1; |
| uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb; |
| uint64_t rnd_mask = rnd_even_mask >> 1; |
| uint64_t inc; |
| |
| switch (rounding_mode) { |
| case float_round_nearest_even: |
| inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); |
| break; |
| case float_round_ties_away: |
| inc = frac_lsbm1; |
| break; |
| case float_round_to_zero: |
| inc = 0; |
| break; |
| case float_round_up: |
| inc = a.sign ? 0 : rnd_mask; |
| break; |
| case float_round_down: |
| inc = a.sign ? rnd_mask : 0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (a.frac & rnd_mask) { |
| s->float_exception_flags |= float_flag_inexact; |
| a.frac += inc; |
| a.frac &= ~rnd_mask; |
| if (a.frac & DECOMPOSED_OVERFLOW_BIT) { |
| a.frac >>= 1; |
| a.exp++; |
| } |
| } |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return a; |
| } |
| |
| float16 float16_round_to_int(float16 a, float_status *s) |
| { |
| FloatParts pa = float16_unpack_canonical(a, s); |
| FloatParts pr = round_to_int(pa, s->float_rounding_mode, s); |
| return float16_round_pack_canonical(pr, s); |
| } |
| |
| float32 float32_round_to_int(float32 a, float_status *s) |
| { |
| FloatParts pa = float32_unpack_canonical(a, s); |
| FloatParts pr = round_to_int(pa, s->float_rounding_mode, s); |
| return float32_round_pack_canonical(pr, s); |
| } |
| |
| float64 float64_round_to_int(float64 a, float_status *s) |
| { |
| FloatParts pa = float64_unpack_canonical(a, s); |
| FloatParts pr = round_to_int(pa, s->float_rounding_mode, s); |
| return float64_round_pack_canonical(pr, s); |
| } |
| |
| float64 float64_trunc_to_int(float64 a, float_status *s) |
| { |
| FloatParts pa = float64_unpack_canonical(a, s); |
| FloatParts pr = round_to_int(pa, float_round_to_zero, s); |
| return float64_round_pack_canonical(pr, s); |
| } |
| |
| /* |
| * Returns the result of converting the floating-point value `a' to |
| * the two's complement integer format. The conversion is performed |
| * according to the IEC/IEEE Standard for Binary Floating-Point |
| * Arithmetic---which means in particular that the conversion is |
| * rounded according to the current rounding mode. If `a' is a NaN, |
| * the largest positive integer is returned. Otherwise, if the |
| * conversion overflows, the largest integer with the same sign as `a' |
| * is returned. |
| */ |
| |
| static int64_t round_to_int_and_pack(FloatParts in, int rmode, |
| int64_t min, int64_t max, |
| float_status *s) |
| { |
| uint64_t r; |
| int orig_flags = get_float_exception_flags(s); |
| FloatParts p = round_to_int(in, rmode, s); |
| |
| switch (p.cls) { |
| case float_class_snan: |
| case float_class_qnan: |
| case float_class_dnan: |
| case float_class_msnan: |
| return max; |
| case float_class_inf: |
| return p.sign ? min : max; |
| case float_class_zero: |
| return 0; |
| case float_class_normal: |
| if (p.exp < DECOMPOSED_BINARY_POINT) { |
| r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); |
| } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { |
| r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); |
| } else { |
| r = UINT64_MAX; |
| } |
| if (p.sign) { |
| if (r < -(uint64_t) min) { |
| return -r; |
| } else { |
| s->float_exception_flags = orig_flags | float_flag_invalid; |
| return min; |
| } |
| } else { |
| if (r < max) { |
| return r; |
| } else { |
| s->float_exception_flags = orig_flags | float_flag_invalid; |
| return max; |
| } |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| #define FLOAT_TO_INT(fsz, isz) \ |
| int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a, \ |
| float_status *s) \ |
| { \ |
| FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ |
| return round_to_int_and_pack(p, s->float_rounding_mode, \ |
| INT ## isz ## _MIN, INT ## isz ## _MAX,\ |
| s); \ |
| } \ |
| \ |
| int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero \ |
| (float ## fsz a, float_status *s) \ |
| { \ |
| FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ |
| return round_to_int_and_pack(p, float_round_to_zero, \ |
| INT ## isz ## _MIN, INT ## isz ## _MAX,\ |
| s); \ |
| } |
| |
| FLOAT_TO_INT(16, 16) |
| FLOAT_TO_INT(16, 32) |
| FLOAT_TO_INT(16, 64) |
| |
| FLOAT_TO_INT(32, 16) |
| FLOAT_TO_INT(32, 32) |
| FLOAT_TO_INT(32, 64) |
| |
| FLOAT_TO_INT(64, 16) |
| FLOAT_TO_INT(64, 32) |
| FLOAT_TO_INT(64, 64) |
| |
| #undef FLOAT_TO_INT |
| |
| /* |
| * Returns the result of converting the floating-point value `a' to |
| * the unsigned integer format. The conversion is performed according |
| * to the IEC/IEEE Standard for Binary Floating-Point |
| * Arithmetic---which means in particular that the conversion is |
| * rounded according to the current rounding mode. If `a' is a NaN, |
| * the largest unsigned integer is returned. Otherwise, if the |
| * conversion overflows, the largest unsigned integer is returned. If |
| * the 'a' is negative, the result is rounded and zero is returned; |
| * values that do not round to zero will raise the inexact exception |
| * flag. |
| */ |
| |
| static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max, |
| float_status *s) |
| { |
| int orig_flags = get_float_exception_flags(s); |
| FloatParts p = round_to_int(in, rmode, s); |
| |
| switch (p.cls) { |
| case float_class_snan: |
| case float_class_qnan: |
| case float_class_dnan: |
| case float_class_msnan: |
| s->float_exception_flags = orig_flags | float_flag_invalid; |
| return max; |
| case float_class_inf: |
| return p.sign ? 0 : max; |
| case float_class_zero: |
| return 0; |
| case float_class_normal: |
| { |
| uint64_t r; |
| if (p.sign) { |
| s->float_exception_flags = orig_flags | float_flag_invalid; |
| return 0; |
| } |
| |
| if (p.exp < DECOMPOSED_BINARY_POINT) { |
| r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); |
| } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { |
| r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); |
| } else { |
| s->float_exception_flags = orig_flags | float_flag_invalid; |
| return max; |
| } |
| |
| /* For uint64 this will never trip, but if p.exp is too large |
| * to shift a decomposed fraction we shall have exited via the |
| * 3rd leg above. |
| */ |
| if (r > max) { |
| s->float_exception_flags = orig_flags | float_flag_invalid; |
| return max; |
| } else { |
| return r; |
| } |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| #define FLOAT_TO_UINT(fsz, isz) \ |
| uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a, \ |
| float_status *s) \ |
| { \ |
| FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ |
| return round_to_uint_and_pack(p, s->float_rounding_mode, \ |
| UINT ## isz ## _MAX, s); \ |
| } \ |
| \ |
| uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero \ |
| (float ## fsz a, float_status *s) \ |
| { \ |
| FloatParts p = float ## fsz ## _unpack_canonical(a, s); \ |
| return round_to_uint_and_pack(p, s->float_rounding_mode, \ |
| UINT ## isz ## _MAX, s); \ |
| } |
| |
| FLOAT_TO_UINT(16, 16) |
| FLOAT_TO_UINT(16, 32) |
| FLOAT_TO_UINT(16, 64) |
| |
| FLOAT_TO_UINT(32, 16) |
| FLOAT_TO_UINT(32, 32) |
| FLOAT_TO_UINT(32, 64) |
| |
| FLOAT_TO_UINT(64, 16) |
| FLOAT_TO_UINT(64, 32) |
| FLOAT_TO_UINT(64, 64) |
| |
| #undef FLOAT_TO_UINT |
| |
| /* |
| * Integer to float conversions |
| * |
| * Returns the result of converting the two's complement integer `a' |
| * to the floating-point format. The conversion is performed according |
| * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| */ |
| |
| static FloatParts int_to_float(int64_t a, float_status *status) |
| { |
| FloatParts r; |
| if (a == 0) { |
| r.cls = float_class_zero; |
| r.sign = false; |
| } else if (a == (1ULL << 63)) { |
| r.cls = float_class_normal; |
| r.sign = true; |
| r.frac = DECOMPOSED_IMPLICIT_BIT; |
| r.exp = 63; |
| } else { |
| uint64_t f; |
| if (a < 0) { |
| f = -a; |
| r.sign = true; |
| } else { |
| f = a; |
| r.sign = false; |
| } |
| int shift = clz64(f) - 1; |
| r.cls = float_class_normal; |
| r.exp = (DECOMPOSED_BINARY_POINT - shift); |
| r.frac = f << shift; |
| } |
| |
| return r; |
| } |
| |
| float16 int64_to_float16(int64_t a, float_status *status) |
| { |
| FloatParts pa = int_to_float(a, status); |
| return float16_round_pack_canonical(pa, status); |
| } |
| |
| float16 int32_to_float16(int32_t a, float_status *status) |
| { |
| return int64_to_float16(a, status); |
| } |
| |
| float16 int16_to_float16(int16_t a, float_status *status) |
| { |
| return int64_to_float16(a, status); |
| } |
| |
| float32 int64_to_float32(int64_t a, float_status *status) |
| { |
| FloatParts pa = int_to_float(a, status); |
| return float32_round_pack_canonical(pa, status); |
| } |
| |
| float32 int32_to_float32(int32_t a, float_status *status) |
| { |
| return int64_to_float32(a, status); |
| } |
| |
| float32 int16_to_float32(int16_t a, float_status *status) |
| { |
| return int64_to_float32(a, status); |
| } |
| |
| float64 int64_to_float64(int64_t a, float_status *status) |
| { |
| FloatParts pa = int_to_float(a, status); |
| return float64_round_pack_canonical(pa, status); |
| } |
| |
| float64 int32_to_float64(int32_t a, float_status *status) |
| { |
| return int64_to_float64(a, status); |
| } |
| |
| float64 int16_to_float64(int16_t a, float_status *status) |
| { |
| return int64_to_float64(a, status); |
| } |
| |
| |
| /* |
| * Unsigned Integer to float conversions |
| * |
| * Returns the result of converting the unsigned integer `a' to the |
| * floating-point format. The conversion is performed according to the |
| * IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| */ |
| |
| static FloatParts uint_to_float(uint64_t a, float_status *status) |
| { |
| FloatParts r = { .sign = false}; |
| |
| if (a == 0) { |
| r.cls = float_class_zero; |
| } else { |
| int spare_bits = clz64(a) - 1; |
| r.cls = float_class_normal; |
| r.exp = DECOMPOSED_BINARY_POINT - spare_bits; |
| if (spare_bits < 0) { |
| shift64RightJamming(a, -spare_bits, &a); |
| r.frac = a; |
| } else { |
| r.frac = a << spare_bits; |
| } |
| } |
| |
| return r; |
| } |
| |
| float16 uint64_to_float16(uint64_t a, float_status *status) |
| { |
| FloatParts pa = uint_to_float(a, status); |
| return float16_round_pack_canonical(pa, status); |
| } |
| |
| float16 uint32_to_float16(uint32_t a, float_status *status) |
| { |
| return uint64_to_float16(a, status); |
| } |
| |
| float16 uint16_to_float16(uint16_t a, float_status *status) |
| { |
| return uint64_to_float16(a, status); |
| } |
| |
| float32 uint64_to_float32(uint64_t a, float_status *status) |
| { |
| FloatParts pa = uint_to_float(a, status); |
| return float32_round_pack_canonical(pa, status); |
| } |
| |
| float32 uint32_to_float32(uint32_t a, float_status *status) |
| { |
| return uint64_to_float32(a, status); |
| } |
| |
| float32 uint16_to_float32(uint16_t a, float_status *status) |
| { |
| return uint64_to_float32(a, status); |
| } |
| |
| float64 uint64_to_float64(uint64_t a, float_status *status) |
| { |
| FloatParts pa = uint_to_float(a, status); |
| return float64_round_pack_canonical(pa, status); |
| } |
| |
| float64 uint32_to_float64(uint32_t a, float_status *status) |
| { |
| return uint64_to_float64(a, status); |
| } |
| |
| float64 uint16_to_float64(uint16_t a, float_status *status) |
| { |
| return uint64_to_float64(a, status); |
| } |
| |
| /* Float Min/Max */ |
| /* min() and max() functions. These can't be implemented as |
| * 'compare and pick one input' because that would mishandle |
| * NaNs and +0 vs -0. |
| * |
| * minnum() and maxnum() functions. These are similar to the min() |
| * and max() functions but if one of the arguments is a QNaN and |
| * the other is numerical then the numerical argument is returned. |
| * SNaNs will get quietened before being returned. |
| * minnum() and maxnum correspond to the IEEE 754-2008 minNum() |
| * and maxNum() operations. min() and max() are the typical min/max |
| * semantics provided by many CPUs which predate that specification. |
| * |
| * minnummag() and maxnummag() functions correspond to minNumMag() |
| * and minNumMag() from the IEEE-754 2008. |
| */ |
| static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin, |
| bool ieee, bool ismag, float_status *s) |
| { |
| if (unlikely(is_nan(a.cls) || is_nan(b.cls))) { |
| if (ieee) { |
| /* Takes two floating-point values `a' and `b', one of |
| * which is a NaN, and returns the appropriate NaN |
| * result. If either `a' or `b' is a signaling NaN, |
| * the invalid exception is raised. |
| */ |
| if (is_snan(a.cls) || is_snan(b.cls)) { |
| return pick_nan(a, b, s); |
| } else if (is_nan(a.cls) && !is_nan(b.cls)) { |
| return b; |
| } else if (is_nan(b.cls) && !is_nan(a.cls)) { |
| return a; |
| } |
| } |
| return pick_nan(a, b, s); |
| } else { |
| int a_exp, b_exp; |
| bool a_sign, b_sign; |
| |
| switch (a.cls) { |
| case float_class_normal: |
| a_exp = a.exp; |
| break; |
| case float_class_inf: |
| a_exp = INT_MAX; |
| break; |
| case float_class_zero: |
| a_exp = INT_MIN; |
| break; |
| default: |
| g_assert_not_reached(); |
| break; |
| } |
| switch (b.cls) { |
| case float_class_normal: |
| b_exp = b.exp; |
| break; |
| case float_class_inf: |
| b_exp = INT_MAX; |
| break; |
| case float_class_zero: |
| b_exp = INT_MIN; |
| break; |
| default: |
| g_assert_not_reached(); |
| break; |
| } |
| |
| a_sign = a.sign; |
| b_sign = b.sign; |
| if (ismag) { |
| a_sign = b_sign = 0; |
| } |
| |
| if (a_sign == b_sign) { |
| bool a_less = a_exp < b_exp; |
| if (a_exp == b_exp) { |
| a_less = a.frac < b.frac; |
| } |
| return a_sign ^ a_less ^ ismin ? b : a; |
| } else { |
| return a_sign ^ ismin ? b : a; |
| } |
| } |
| } |
| |
| #define MINMAX(sz, name, ismin, isiee, ismag) \ |
| float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b, \ |
| float_status *s) \ |
| { \ |
| FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ |
| FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ |
| FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \ |
| \ |
| return float ## sz ## _round_pack_canonical(pr, s); \ |
| } |
| |
| MINMAX(16, min, true, false, false) |
| MINMAX(16, minnum, true, true, false) |
| MINMAX(16, minnummag, true, true, true) |
| MINMAX(16, max, false, false, false) |
| MINMAX(16, maxnum, false, true, false) |
| MINMAX(16, maxnummag, false, true, true) |
| |
| MINMAX(32, min, true, false, false) |
| MINMAX(32, minnum, true, true, false) |
| MINMAX(32, minnummag, true, true, true) |
| MINMAX(32, max, false, false, false) |
| MINMAX(32, maxnum, false, true, false) |
| MINMAX(32, maxnummag, false, true, true) |
| |
| MINMAX(64, min, true, false, false) |
| MINMAX(64, minnum, true, true, false) |
| MINMAX(64, minnummag, true, true, true) |
| MINMAX(64, max, false, false, false) |
| MINMAX(64, maxnum, false, true, false) |
| MINMAX(64, maxnummag, false, true, true) |
| |
| #undef MINMAX |
| |
| /* Floating point compare */ |
| static int compare_floats(FloatParts a, FloatParts b, bool is_quiet, |
| float_status *s) |
| { |
| if (is_nan(a.cls) || is_nan(b.cls)) { |
| if (!is_quiet || |
| a.cls == float_class_snan || |
| b.cls == float_class_snan) { |
| s->float_exception_flags |= float_flag_invalid; |
| } |
| return float_relation_unordered; |
| } |
| |
| if (a.cls == float_class_zero) { |
| if (b.cls == float_class_zero) { |
| return float_relation_equal; |
| } |
| return b.sign ? float_relation_greater : float_relation_less; |
| } else if (b.cls == float_class_zero) { |
| return a.sign ? float_relation_less : float_relation_greater; |
| } |
| |
| /* The only really important thing about infinity is its sign. If |
| * both are infinities the sign marks the smallest of the two. |
| */ |
| if (a.cls == float_class_inf) { |
| if ((b.cls == float_class_inf) && (a.sign == b.sign)) { |
| return float_relation_equal; |
| } |
| return a.sign ? float_relation_less : float_relation_greater; |
| } else if (b.cls == float_class_inf) { |
| return b.sign ? float_relation_greater : float_relation_less; |
| } |
| |
| if (a.sign != b.sign) { |
| return a.sign ? float_relation_less : float_relation_greater; |
| } |
| |
| if (a.exp == b.exp) { |
| if (a.frac == b.frac) { |
| return float_relation_equal; |
| } |
| if (a.sign) { |
| return a.frac > b.frac ? |
| float_relation_less : float_relation_greater; |
| } else { |
| return a.frac > b.frac ? |
| float_relation_greater : float_relation_less; |
| } |
| } else { |
| if (a.sign) { |
| return a.exp > b.exp ? float_relation_less : float_relation_greater; |
| } else { |
| return a.exp > b.exp ? float_relation_greater : float_relation_less; |
| } |
| } |
| } |
| |
| #define COMPARE(sz) \ |
| int float ## sz ## _compare(float ## sz a, float ## sz b, \ |
| float_status *s) \ |
| { \ |
| FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ |
| FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ |
| return compare_floats(pa, pb, false, s); \ |
| } \ |
| int float ## sz ## _compare_quiet(float ## sz a, float ## sz b, \ |
| float_status *s) \ |
| { \ |
| FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ |
| FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ |
| return compare_floats(pa, pb, true, s); \ |
| } |
| |
| COMPARE(16) |
| COMPARE(32) |
| COMPARE(64) |
| |
| #undef COMPARE |
| |
| /* Multiply A by 2 raised to the power N. */ |
| static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s) |
| { |
| if (unlikely(is_nan(a.cls))) { |
| return return_nan(a, s); |
| } |
| if (a.cls == float_class_normal) { |
| a.exp += n; |
| } |
| return a; |
| } |
| |
| float16 float16_scalbn(float16 a, int n, float_status *status) |
| { |
| FloatParts pa = float16_unpack_canonical(a, status); |
| FloatParts pr = scalbn_decomposed(pa, n, status); |
| return float16_round_pack_canonical(pr, status); |
| } |
| |
| float32 float32_scalbn(float32 a, int n, float_status *status) |
| { |
| FloatParts pa = float32_unpack_canonical(a, status); |
| FloatParts pr = scalbn_decomposed(pa, n, status); |
| return float32_round_pack_canonical(pr, status); |
| } |
| |
| float64 float64_scalbn(float64 a, int n, float_status *status) |
| { |
| FloatParts pa = float64_unpack_canonical(a, status); |
| FloatParts pr = scalbn_decomposed(pa, n, status); |
| return float64_round_pack_canonical(pr, status); |
| } |
| |
| /* |
| * Square Root |
| * |
| * The old softfloat code did an approximation step before zeroing in |
| * on the final result. However for simpleness we just compute the |
| * square root by iterating down from the implicit bit to enough extra |
| * bits to ensure we get a correctly rounded result. |
| * |
| * This does mean however the calculation is slower than before, |
| * especially for 64 bit floats. |
| */ |
| |
| static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p) |
| { |
| uint64_t a_frac, r_frac, s_frac; |
| int bit, last_bit; |
| |
| if (is_nan(a.cls)) { |
| return return_nan(a, s); |
| } |
| if (a.cls == float_class_zero) { |
| return a; /* sqrt(+-0) = +-0 */ |
| } |
| if (a.sign) { |
| s->float_exception_flags |= float_flag_invalid; |
| a.cls = float_class_dnan; |
| return a; |
| } |
| if (a.cls == float_class_inf) { |
| return a; /* sqrt(+inf) = +inf */ |
| } |
| |
| assert(a.cls == float_class_normal); |
| |
| /* We need two overflow bits at the top. Adding room for that is a |
| * right shift. If the exponent is odd, we can discard the low bit |
| * by multiplying the fraction by 2; that's a left shift. Combine |
| * those and we shift right if the exponent is even. |
| */ |
| a_frac = a.frac; |
| if (!(a.exp & 1)) { |
| a_frac >>= 1; |
| } |
| a.exp >>= 1; |
| |
| /* Bit-by-bit computation of sqrt. */ |
| r_frac = 0; |
| s_frac = 0; |
| |
| /* Iterate from implicit bit down to the 3 extra bits to compute a |
| * properly rounded result. Remember we've inserted one more bit |
| * at the top, so these positions are one less. |
| */ |
| bit = DECOMPOSED_BINARY_POINT - 1; |
| last_bit = MAX(p->frac_shift - 4, 0); |
| do { |
| uint64_t q = 1ULL << bit; |
| uint64_t t_frac = s_frac + q; |
| if (t_frac <= a_frac) { |
| s_frac = t_frac + q; |
| a_frac -= t_frac; |
| r_frac += q; |
| } |
| a_frac <<= 1; |
| } while (--bit >= last_bit); |
| |
| /* Undo the right shift done above. If there is any remaining |
| * fraction, the result is inexact. Set the sticky bit. |
| */ |
| a.frac = (r_frac << 1) + (a_frac != 0); |
| |
| return a; |
| } |
| |
| float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status) |
| { |
| FloatParts pa = float16_unpack_canonical(a, status); |
| FloatParts pr = sqrt_float(pa, status, &float16_params); |
| return float16_round_pack_canonical(pr, status); |
| } |
| |
| float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status) |
| { |
| FloatParts pa = float32_unpack_canonical(a, status); |
| FloatParts pr = sqrt_float(pa, status, &float32_params); |
| return float32_round_pack_canonical(pr, status); |
| } |
| |
| float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status) |
| { |
| FloatParts pa = float64_unpack_canonical(a, status); |
| FloatParts pr = sqrt_float(pa, status, &float64_params); |
| return float64_round_pack_canonical(pr, status); |
| } |
| |
| |
| /*---------------------------------------------------------------------------- |
| | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 |
| | and 7, and returns the properly rounded 32-bit integer corresponding to the |
| | input. If `zSign' is 1, the input is negated before being converted to an |
| | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input |
| | is simply rounded to an integer, with the inexact exception raised if the |
| | input cannot be represented exactly as an integer. However, if the fixed- |
| | point input is too large, the invalid exception is raised and the largest |
| | positive or negative integer is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) |
| { |
| int8_t roundingMode; |
| flag roundNearestEven; |
| int8_t roundIncrement, roundBits; |
| int32_t z; |
| |
| roundingMode = status->float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| roundIncrement = 0x40; |
| break; |
| case float_round_to_zero: |
| roundIncrement = 0; |
| break; |
| case float_round_up: |
| roundIncrement = zSign ? 0 : 0x7f; |
| break; |
| case float_round_down: |
| roundIncrement = zSign ? 0x7f : 0; |
| break; |
| default: |
| abort(); |
| } |
| roundBits = absZ & 0x7F; |
| absZ = ( absZ + roundIncrement )>>7; |
| absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); |
| z = absZ; |
| if ( zSign ) z = - z; |
| if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { |
| float_raise(float_flag_invalid, status); |
| return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
| } |
| if (roundBits) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and |
| | `absZ1', with binary point between bits 63 and 64 (between the input words), |
| | and returns the properly rounded 64-bit integer corresponding to the input. |
| | If `zSign' is 1, the input is negated before being converted to an integer. |
| | Ordinarily, the fixed-point input is simply rounded to an integer, with |
| | the inexact exception raised if the input cannot be represented exactly as |
| | an integer. However, if the fixed-point input is too large, the invalid |
| | exception is raised and the largest positive or negative integer is |
| | returned. |
| *----------------------------------------------------------------------------*/ |
| |
| static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, |
| float_status *status) |
| { |
| int8_t roundingMode; |
| flag roundNearestEven, increment; |
| int64_t z; |
| |
| roundingMode = status->float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| increment = ((int64_t) absZ1 < 0); |
| break; |
| case float_round_to_zero: |
| increment = 0; |
| break; |
| case float_round_up: |
| increment = !zSign && absZ1; |
| break; |
| case float_round_down: |
| increment = zSign && absZ1; |
| break; |
| default: |
| abort(); |
| } |
| if ( increment ) { |
| ++absZ0; |
| if ( absZ0 == 0 ) goto overflow; |
| absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); |
| } |
| z = absZ0; |
| if ( zSign ) z = - z; |
| if ( z && ( ( z < 0 ) ^ zSign ) ) { |
| overflow: |
| float_raise(float_flag_invalid, status); |
| return |
| zSign ? (int64_t) LIT64( 0x8000000000000000 ) |
| : LIT64( 0x7FFFFFFFFFFFFFFF ); |
| } |
| if (absZ1) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and |
| | `absZ1', with binary point between bits 63 and 64 (between the input words), |
| | and returns the properly rounded 64-bit unsigned integer corresponding to the |
| | input. Ordinarily, the fixed-point input is simply rounded to an integer, |
| | with the inexact exception raised if the input cannot be represented exactly |
| | as an integer. However, if the fixed-point input is too large, the invalid |
| | exception is raised and the largest unsigned integer is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0, |
| uint64_t absZ1, float_status *status) |
| { |
| int8_t roundingMode; |
| flag roundNearestEven, increment; |
| |
| roundingMode = status->float_rounding_mode; |
| roundNearestEven = (roundingMode == float_round_nearest_even); |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| increment = ((int64_t)absZ1 < 0); |
| break; |
| case float_round_to_zero: |
| increment = 0; |
| break; |
| case float_round_up: |
| increment = !zSign && absZ1; |
| break; |
| case float_round_down: |
| increment = zSign && absZ1; |
| break; |
| default: |
| abort(); |
| } |
| if (increment) { |
| ++absZ0; |
| if (absZ0 == 0) { |
| float_raise(float_flag_invalid, status); |
| return LIT64(0xFFFFFFFFFFFFFFFF); |
| } |
| absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); |
| } |
| |
| if (zSign && absZ0) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| |
| if (absZ1) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return absZ0; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | If `a' is denormal and we are in flush-to-zero mode then set the |
| | input-denormal exception and return zero. Otherwise just return the value. |
| *----------------------------------------------------------------------------*/ |
| float32 float32_squash_input_denormal(float32 a, float_status *status) |
| { |
| if (status->flush_inputs_to_zero) { |
| if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { |
| float_raise(float_flag_input_denormal, status); |
| return make_float32(float32_val(a) & 0x80000000); |
| } |
| } |
| return a; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Normalizes the subnormal single-precision floating-point value represented |
| | by the denormalized significand `aSig'. The normalized exponent and |
| | significand are stored at the locations pointed to by `zExpPtr' and |
| | `zSigPtr', respectively. |
| *----------------------------------------------------------------------------*/ |
| |
| static void |
| normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) |
| { |
| int8_t shiftCount; |
| |
| shiftCount = countLeadingZeros32( aSig ) - 8; |
| *zSigPtr = aSig<<shiftCount; |
| *zExpPtr = 1 - shiftCount; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and significand `zSig', and returns the proper single-precision floating- |
| | point value corresponding to the abstract input. Ordinarily, the abstract |
| | value is simply rounded and packed into the single-precision format, with |
| | the inexact exception raised if the abstract input cannot be represented |
| | exactly. However, if the abstract value is too large, the overflow and |
| | inexact exceptions are raised and an infinity or maximal finite value is |
| | returned. If the abstract value is too small, the input value is rounded to |
| | a subnormal number, and the underflow and inexact exceptions are raised if |
| | the abstract input cannot be represented exactly as a subnormal single- |
| | precision floating-point number. |
| | The input significand `zSig' has its binary point between bits 30 |
| | and 29, which is 7 bits to the left of the usual location. This shifted |
| | significand must be normalized or smaller. If `zSig' is not normalized, |
| | `zExp' must be 0; in that case, the result returned is a subnormal number, |
| | and it must not require rounding. In the usual case that `zSig' is |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for |
| | Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
| float_status *status) |
| { |
| int8_t roundingMode; |
| flag roundNearestEven; |
| int8_t roundIncrement, roundBits; |
| flag isTiny; |
| |
| roundingMode = status->float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| roundIncrement = 0x40; |
| break; |
| case float_round_to_zero: |
| roundIncrement = 0; |
| break; |
| case float_round_up: |
| roundIncrement = zSign ? 0 : 0x7f; |
| break; |
| case float_round_down: |
| roundIncrement = zSign ? 0x7f : 0; |
| break; |
| default: |
| abort(); |
| break; |
| } |
| roundBits = zSig & 0x7F; |
| if ( 0xFD <= (uint16_t) zExp ) { |
| if ( ( 0xFD < zExp ) |
| || ( ( zExp == 0xFD ) |
| && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) |
| ) { |
| float_raise(float_flag_overflow | float_flag_inexact, status); |
| return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
| } |
| if ( zExp < 0 ) { |
| if (status->flush_to_zero) { |
| float_raise(float_flag_output_denormal, status); |
| return packFloat32(zSign, 0, 0); |
| } |
| isTiny = |
| (status->float_detect_tininess |
| == float_tininess_before_rounding) |
| || ( zExp < -1 ) |
| || ( zSig + roundIncrement < 0x80000000 ); |
| shift32RightJamming( zSig, - zExp, &zSig ); |
| zExp = 0; |
| roundBits = zSig & 0x7F; |
| if (isTiny && roundBits) { |
| float_raise(float_flag_underflow, status); |
| } |
| } |
| } |
| if (roundBits) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| zSig = ( zSig + roundIncrement )>>7; |
| zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); |
| if ( zSig == 0 ) zExp = 0; |
| return packFloat32( zSign, zExp, zSig ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and significand `zSig', and returns the proper single-precision floating- |
| | point value corresponding to the abstract input. This routine is just like |
| | `roundAndPackFloat32' except that `zSig' does not have to be normalized. |
| | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' |
| | floating-point exponent. |
| *----------------------------------------------------------------------------*/ |
| |
| static float32 |
| normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, |
| float_status *status) |
| { |
| int8_t shiftCount; |
| |
| shiftCount = countLeadingZeros32( zSig ) - 1; |
| return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, |
| status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | If `a' is denormal and we are in flush-to-zero mode then set the |
| | input-denormal exception and return zero. Otherwise just return the value. |
| *----------------------------------------------------------------------------*/ |
| float64 float64_squash_input_denormal(float64 a, float_status *status) |
| { |
| if (status->flush_inputs_to_zero) { |
| if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { |
| float_raise(float_flag_input_denormal, status); |
| return make_float64(float64_val(a) & (1ULL << 63)); |
| } |
| } |
| return a; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Normalizes the subnormal double-precision floating-point value represented |
| | by the denormalized significand `aSig'. The normalized exponent and |
| | significand are stored at the locations pointed to by `zExpPtr' and |
| | `zSigPtr', respectively. |
| *----------------------------------------------------------------------------*/ |
| |
| static void |
| normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) |
| { |
| int8_t shiftCount; |
| |
| shiftCount = countLeadingZeros64( aSig ) - 11; |
| *zSigPtr = aSig<<shiftCount; |
| *zExpPtr = 1 - shiftCount; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a |
| | double-precision floating-point value, returning the result. After being |
| | shifted into the proper positions, the three fields are simply added |
| | together to form the result. This means that any integer portion of `zSig' |
| | will be added into the exponent. Since a properly normalized significand |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less |
| | than the desired result exponent whenever `zSig' is a complete, normalized |
| | significand. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig) |
| { |
| |
| return make_float64( |
| ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and significand `zSig', and returns the proper double-precision floating- |
| | point value corresponding to the abstract input. Ordinarily, the abstract |
| | value is simply rounded and packed into the double-precision format, with |
| | the inexact exception raised if the abstract input cannot be represented |
| | exactly. However, if the abstract value is too large, the overflow and |
| | inexact exceptions are raised and an infinity or maximal finite value is |
| | returned. If the abstract value is too small, the input value is rounded to |
| | a subnormal number, and the underflow and inexact exceptions are raised if |
| | the abstract input cannot be represented exactly as a subnormal double- |
| | precision floating-point number. |
| | The input significand `zSig' has its binary point between bits 62 |
| | and 61, which is 10 bits to the left of the usual location. This shifted |
| | significand must be normalized or smaller. If `zSig' is not normalized, |
| | `zExp' must be 0; in that case, the result returned is a subnormal number, |
| | and it must not require rounding. In the usual case that `zSig' is |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for |
| | Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
| float_status *status) |
| { |
| int8_t roundingMode; |
| flag roundNearestEven; |
| int roundIncrement, roundBits; |
| flag isTiny; |
| |
| roundingMode = status->float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| roundIncrement = 0x200; |
| break; |
| case float_round_to_zero: |
| roundIncrement = 0; |
| break; |
| case float_round_up: |
| roundIncrement = zSign ? 0 : 0x3ff; |
| break; |
| case float_round_down: |
| roundIncrement = zSign ? 0x3ff : 0; |
| break; |
| case float_round_to_odd: |
| roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; |
| break; |
| default: |
| abort(); |
| } |
| roundBits = zSig & 0x3FF; |
| if ( 0x7FD <= (uint16_t) zExp ) { |
| if ( ( 0x7FD < zExp ) |
| || ( ( zExp == 0x7FD ) |
| && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) |
| ) { |
| bool overflow_to_inf = roundingMode != float_round_to_odd && |
| roundIncrement != 0; |
| float_raise(float_flag_overflow | float_flag_inexact, status); |
| return packFloat64(zSign, 0x7FF, -(!overflow_to_inf)); |
| } |
| if ( zExp < 0 ) { |
| if (status->flush_to_zero) { |
| float_raise(float_flag_output_denormal, status); |
| return packFloat64(zSign, 0, 0); |
| } |
| isTiny = |
| (status->float_detect_tininess |
| == float_tininess_before_rounding) |
| || ( zExp < -1 ) |
| || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); |
| shift64RightJamming( zSig, - zExp, &zSig ); |
| zExp = 0; |
| roundBits = zSig & 0x3FF; |
| if (isTiny && roundBits) { |
| float_raise(float_flag_underflow, status); |
| } |
| if (roundingMode == float_round_to_odd) { |
| /* |
| * For round-to-odd case, the roundIncrement depends on |
| * zSig which just changed. |
| */ |
| roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; |
| } |
| } |
| } |
| if (roundBits) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| zSig = ( zSig + roundIncrement )>>10; |
| zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); |
| if ( zSig == 0 ) zExp = 0; |
| return packFloat64( zSign, zExp, zSig ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and significand `zSig', and returns the proper double-precision floating- |
| | point value corresponding to the abstract input. This routine is just like |
| | `roundAndPackFloat64' except that `zSig' does not have to be normalized. |
| | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' |
| | floating-point exponent. |
| *----------------------------------------------------------------------------*/ |
| |
| static float64 |
| normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, |
| float_status *status) |
| { |
| int8_t shiftCount; |
| |
| shiftCount = countLeadingZeros64( zSig ) - 1; |
| return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, |
| status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Normalizes the subnormal extended double-precision floating-point value |
| | represented by the denormalized significand `aSig'. The normalized exponent |
| | and significand are stored at the locations pointed to by `zExpPtr' and |
| | `zSigPtr', respectively. |
| *----------------------------------------------------------------------------*/ |
| |
| void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, |
| uint64_t *zSigPtr) |
| { |
| int8_t shiftCount; |
| |
| shiftCount = countLeadingZeros64( aSig ); |
| *zSigPtr = aSig<<shiftCount; |
| *zExpPtr = 1 - shiftCount; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and extended significand formed by the concatenation of `zSig0' and `zSig1', |
| | and returns the proper extended double-precision floating-point value |
| | corresponding to the abstract input. Ordinarily, the abstract value is |
| | rounded and packed into the extended double-precision format, with the |
| | inexact exception raised if the abstract input cannot be represented |
| | exactly. However, if the abstract value is too large, the overflow and |
| | inexact exceptions are raised and an infinity or maximal finite value is |
| | returned. If the abstract value is too small, the input value is rounded to |
| | a subnormal number, and the underflow and inexact exceptions are raised if |
| | the abstract input cannot be represented exactly as a subnormal extended |
| | double-precision floating-point number. |
| | If `roundingPrecision' is 32 or 64, the result is rounded to the same |
| | number of bits as single or double precision, respectively. Otherwise, the |
| | result is rounded to the full precision of the extended double-precision |
| | format. |
| | The input significand must be normalized or smaller. If the input |
| | significand is not normalized, `zExp' must be 0; in that case, the result |
| | returned is a subnormal number, and it must not require rounding. The |
| | handling of underflow and overflow follows the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign, |
| int32_t zExp, uint64_t zSig0, uint64_t zSig1, |
| float_status *status) |
| { |
| int8_t roundingMode; |
| flag roundNearestEven, increment, isTiny; |
| int64_t roundIncrement, roundMask, roundBits; |
| |
| roundingMode = status->float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| if ( roundingPrecision == 80 ) goto precision80; |
| if ( roundingPrecision == 64 ) { |
| roundIncrement = LIT64( 0x0000000000000400 ); |
| roundMask = LIT64( 0x00000000000007FF ); |
| } |
| else if ( roundingPrecision == 32 ) { |
| roundIncrement = LIT64( 0x0000008000000000 ); |
| roundMask = LIT64( 0x000000FFFFFFFFFF ); |
| } |
| else { |
| goto precision80; |
| } |
| zSig0 |= ( zSig1 != 0 ); |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| break; |
| case float_round_to_zero: |
| roundIncrement = 0; |
| break; |
| case float_round_up: |
| roundIncrement = zSign ? 0 : roundMask; |
| break; |
| case float_round_down: |
| roundIncrement = zSign ? roundMask : 0; |
| break; |
| default: |
| abort(); |
| } |
| roundBits = zSig0 & roundMask; |
| if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
| if ( ( 0x7FFE < zExp ) |
| || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) |
| ) { |
| goto overflow; |
| } |
| if ( zExp <= 0 ) { |
| if (status->flush_to_zero) { |
| float_raise(float_flag_output_denormal, status); |
| return packFloatx80(zSign, 0, 0); |
| } |
| isTiny = |
| (status->float_detect_tininess |
| == float_tininess_before_rounding) |
| || ( zExp < 0 ) |
| || ( zSig0 <= zSig0 + roundIncrement ); |
| shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); |
| zExp = 0; |
| roundBits = zSig0 & roundMask; |
| if (isTiny && roundBits) { |
| float_raise(float_flag_underflow, status); |
| } |
| if (roundBits) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| zSig0 += roundIncrement; |
| if ( (int64_t) zSig0 < 0 ) zExp = 1; |
| roundIncrement = roundMask + 1; |
| if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { |
| roundMask |= roundIncrement; |
| } |
| zSig0 &= ~ roundMask; |
| return packFloatx80( zSign, zExp, zSig0 ); |
| } |
| } |
| if (roundBits) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| zSig0 += roundIncrement; |
| if ( zSig0 < roundIncrement ) { |
| ++zExp; |
| zSig0 = LIT64( 0x8000000000000000 ); |
| } |
| roundIncrement = roundMask + 1; |
| if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { |
| roundMask |= roundIncrement; |
| } |
| zSig0 &= ~ roundMask; |
| if ( zSig0 == 0 ) zExp = 0; |
| return packFloatx80( zSign, zExp, zSig0 ); |
| precision80: |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| increment = ((int64_t)zSig1 < 0); |
| break; |
| case float_round_to_zero: |
| increment = 0; |
| break; |
| case float_round_up: |
| increment = !zSign && zSig1; |
| break; |
| case float_round_down: |
| increment = zSign && zSig1; |
| break; |
| default: |
| abort(); |
| } |
| if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { |
| if ( ( 0x7FFE < zExp ) |
| || ( ( zExp == 0x7FFE ) |
| && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) |
| && increment |
| ) |
| ) { |
| roundMask = 0; |
| overflow: |
| float_raise(float_flag_overflow | float_flag_inexact, status); |
| if ( ( roundingMode == float_round_to_zero ) |
| || ( zSign && ( roundingMode == float_round_up ) ) |
| || ( ! zSign && ( roundingMode == float_round_down ) ) |
| ) { |
| return packFloatx80( zSign, 0x7FFE, ~ roundMask ); |
| } |
| return packFloatx80(zSign, |
| floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( zExp <= 0 ) { |
| isTiny = |
| (status->float_detect_tininess |
| == float_tininess_before_rounding) |
| || ( zExp < 0 ) |
| || ! increment |
| || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); |
| shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); |
| zExp = 0; |
| if (isTiny && zSig1) { |
| float_raise(float_flag_underflow, status); |
| } |
| if (zSig1) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| increment = ((int64_t)zSig1 < 0); |
| break; |
| case float_round_to_zero: |
| increment = 0; |
| break; |
| case float_round_up: |
| increment = !zSign && zSig1; |
| break; |
| case float_round_down: |
| increment = zSign && zSig1; |
| break; |
| default: |
| abort(); |
| } |
| if ( increment ) { |
| ++zSig0; |
| zSig0 &= |
| ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
| if ( (int64_t) zSig0 < 0 ) zExp = 1; |
| } |
| return packFloatx80( zSign, zExp, zSig0 ); |
| } |
| } |
| if (zSig1) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| if ( increment ) { |
| ++zSig0; |
| if ( zSig0 == 0 ) { |
| ++zExp; |
| zSig0 = LIT64( 0x8000000000000000 ); |
| } |
| else { |
| zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); |
| } |
| } |
| else { |
| if ( zSig0 == 0 ) zExp = 0; |
| } |
| return packFloatx80( zSign, zExp, zSig0 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent |
| | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', |
| | and returns the proper extended double-precision floating-point value |
| | corresponding to the abstract input. This routine is just like |
| | `roundAndPackFloatx80' except that the input significand does not have to be |
| | normalized. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, |
| flag zSign, int32_t zExp, |
| uint64_t zSig0, uint64_t zSig1, |
| float_status *status) |
| { |
| int8_t shiftCount; |
| |
| if ( zSig0 == 0 ) { |
| zSig0 = zSig1; |
| zSig1 = 0; |
| zExp -= 64; |
| } |
| shiftCount = countLeadingZeros64( zSig0 ); |
| shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); |
| zExp -= shiftCount; |
| return roundAndPackFloatx80(roundingPrecision, zSign, zExp, |
| zSig0, zSig1, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the least-significant 64 fraction bits of the quadruple-precision |
| | floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline uint64_t extractFloat128Frac1( float128 a ) |
| { |
| |
| return a.low; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the most-significant 48 fraction bits of the quadruple-precision |
| | floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline uint64_t extractFloat128Frac0( float128 a ) |
| { |
| |
| return a.high & LIT64( 0x0000FFFFFFFFFFFF ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the exponent bits of the quadruple-precision floating-point value |
| | `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline int32_t extractFloat128Exp( float128 a ) |
| { |
| |
| return ( a.high>>48 ) & 0x7FFF; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the sign bit of the quadruple-precision floating-point value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline flag extractFloat128Sign( float128 a ) |
| { |
| |
| return a.high>>63; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Normalizes the subnormal quadruple-precision floating-point value |
| | represented by the denormalized significand formed by the concatenation of |
| | `aSig0' and `aSig1'. The normalized exponent is stored at the location |
| | pointed to by `zExpPtr'. The most significant 49 bits of the normalized |
| | significand are stored at the location pointed to by `zSig0Ptr', and the |
| | least significant 64 bits of the normalized significand are stored at the |
| | location pointed to by `zSig1Ptr'. |
| *----------------------------------------------------------------------------*/ |
| |
| static void |
| normalizeFloat128Subnormal( |
| uint64_t aSig0, |
| uint64_t aSig1, |
| int32_t *zExpPtr, |
| uint64_t *zSig0Ptr, |
| uint64_t *zSig1Ptr |
| ) |
| { |
| int8_t shiftCount; |
| |
| if ( aSig0 == 0 ) { |
| shiftCount = countLeadingZeros64( aSig1 ) - 15; |
| if ( shiftCount < 0 ) { |
| *zSig0Ptr = aSig1>>( - shiftCount ); |
| *zSig1Ptr = aSig1<<( shiftCount & 63 ); |
| } |
| else { |
| *zSig0Ptr = aSig1<<shiftCount; |
| *zSig1Ptr = 0; |
| } |
| *zExpPtr = - shiftCount - 63; |
| } |
| else { |
| shiftCount = countLeadingZeros64( aSig0 ) - 15; |
| shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); |
| *zExpPtr = 1 - shiftCount; |
| } |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Packs the sign `zSign', the exponent `zExp', and the significand formed |
| | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision |
| | floating-point value, returning the result. After being shifted into the |
| | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply |
| | added together to form the most significant 32 bits of the result. This |
| | means that any integer portion of `zSig0' will be added into the exponent. |
| | Since a properly normalized significand will have an integer portion equal |
| | to 1, the `zExp' input should be 1 less than the desired result exponent |
| | whenever `zSig0' and `zSig1' concatenated form a complete, normalized |
| | significand. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline float128 |
| packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 ) |
| { |
| float128 z; |
| |
| z.low = zSig1; |
| z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and extended significand formed by the concatenation of `zSig0', `zSig1', |
| | and `zSig2', and returns the proper quadruple-precision floating-point value |
| | corresponding to the abstract input. Ordinarily, the abstract value is |
| | simply rounded and packed into the quadruple-precision format, with the |
| | inexact exception raised if the abstract input cannot be represented |
| | exactly. However, if the abstract value is too large, the overflow and |
| | inexact exceptions are raised and an infinity or maximal finite value is |
| | returned. If the abstract value is too small, the input value is rounded to |
| | a subnormal number, and the underflow and inexact exceptions are raised if |
| | the abstract input cannot be represented exactly as a subnormal quadruple- |
| | precision floating-point number. |
| | The input significand must be normalized or smaller. If the input |
| | significand is not normalized, `zExp' must be 0; in that case, the result |
| | returned is a subnormal number, and it must not require rounding. In the |
| | usual case that the input significand is normalized, `zExp' must be 1 less |
| | than the ``true'' floating-point exponent. The handling of underflow and |
| | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static float128 roundAndPackFloat128(flag zSign, int32_t zExp, |
| uint64_t zSig0, uint64_t zSig1, |
| uint64_t zSig2, float_status *status) |
| { |
| int8_t roundingMode; |
| flag roundNearestEven, increment, isTiny; |
| |
| roundingMode = status->float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| increment = ((int64_t)zSig2 < 0); |
| break; |
| case float_round_to_zero: |
| increment = 0; |
| break; |
| case float_round_up: |
| increment = !zSign && zSig2; |
| break; |
| case float_round_down: |
| increment = zSign && zSig2; |
| break; |
| case float_round_to_odd: |
| increment = !(zSig1 & 0x1) && zSig2; |
| break; |
| default: |
| abort(); |
| } |
| if ( 0x7FFD <= (uint32_t) zExp ) { |
| if ( ( 0x7FFD < zExp ) |
| || ( ( zExp == 0x7FFD ) |
| && eq128( |
| LIT64( 0x0001FFFFFFFFFFFF ), |
| LIT64( 0xFFFFFFFFFFFFFFFF ), |
| zSig0, |
| zSig1 |
| ) |
| && increment |
| ) |
| ) { |
| float_raise(float_flag_overflow | float_flag_inexact, status); |
| if ( ( roundingMode == float_round_to_zero ) |
| || ( zSign && ( roundingMode == float_round_up ) ) |
| || ( ! zSign && ( roundingMode == float_round_down ) ) |
| || (roundingMode == float_round_to_odd) |
| ) { |
| return |
| packFloat128( |
| zSign, |
| 0x7FFE, |
| LIT64( 0x0000FFFFFFFFFFFF ), |
| LIT64( 0xFFFFFFFFFFFFFFFF ) |
| ); |
| } |
| return packFloat128( zSign, 0x7FFF, 0, 0 ); |
| } |
| if ( zExp < 0 ) { |
| if (status->flush_to_zero) { |
| float_raise(float_flag_output_denormal, status); |
| return packFloat128(zSign, 0, 0, 0); |
| } |
| isTiny = |
| (status->float_detect_tininess |
| == float_tininess_before_rounding) |
| || ( zExp < -1 ) |
| || ! increment |
| || lt128( |
| zSig0, |
| zSig1, |
| LIT64( 0x0001FFFFFFFFFFFF ), |
| LIT64( 0xFFFFFFFFFFFFFFFF ) |
| ); |
| shift128ExtraRightJamming( |
| zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); |
| zExp = 0; |
| if (isTiny && zSig2) { |
| float_raise(float_flag_underflow, status); |
| } |
| switch (roundingMode) { |
| case float_round_nearest_even: |
| case float_round_ties_away: |
| increment = ((int64_t)zSig2 < 0); |
| break; |
| case float_round_to_zero: |
| increment = 0; |
| break; |
| case float_round_up: |
| increment = !zSign && zSig2; |
| break; |
| case float_round_down: |
| increment = zSign && zSig2; |
| break; |
| case float_round_to_odd: |
| increment = !(zSig1 & 0x1) && zSig2; |
| break; |
| default: |
| abort(); |
| } |
| } |
| } |
| if (zSig2) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| if ( increment ) { |
| add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); |
| zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); |
| } |
| else { |
| if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; |
| } |
| return packFloat128( zSign, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and significand formed by the concatenation of `zSig0' and `zSig1', and |
| | returns the proper quadruple-precision floating-point value corresponding |
| | to the abstract input. This routine is just like `roundAndPackFloat128' |
| | except that the input significand has fewer bits and does not have to be |
| | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- |
| | point exponent. |
| *----------------------------------------------------------------------------*/ |
| |
| static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp, |
| uint64_t zSig0, uint64_t zSig1, |
| float_status *status) |
| { |
| int8_t shiftCount; |
| uint64_t zSig2; |
| |
| if ( zSig0 == 0 ) { |
| zSig0 = zSig1; |
| zSig1 = 0; |
| zExp -= 64; |
| } |
| shiftCount = countLeadingZeros64( zSig0 ) - 15; |
| if ( 0 <= shiftCount ) { |
| zSig2 = 0; |
| shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); |
| } |
| else { |
| shift128ExtraRightJamming( |
| zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); |
| } |
| zExp -= shiftCount; |
| return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
| |
| } |
| |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the 32-bit two's complement integer `a' |
| | to the extended double-precision floating-point format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 int32_to_floatx80(int32_t a, float_status *status) |
| { |
| flag zSign; |
| uint32_t absA; |
| int8_t shiftCount; |
| uint64_t zSig; |
| |
| if ( a == 0 ) return packFloatx80( 0, 0, 0 ); |
| zSign = ( a < 0 ); |
| absA = zSign ? - a : a; |
| shiftCount = countLeadingZeros32( absA ) + 32; |
| zSig = absA; |
| return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the 32-bit two's complement integer `a' to |
| | the quadruple-precision floating-point format. The conversion is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 int32_to_float128(int32_t a, float_status *status) |
| { |
| flag zSign; |
| uint32_t absA; |
| int8_t shiftCount; |
| uint64_t zSig0; |
| |
| if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); |
| zSign = ( a < 0 ); |
| absA = zSign ? - a : a; |
| shiftCount = countLeadingZeros32( absA ) + 17; |
| zSig0 = absA; |
| return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the 64-bit two's complement integer `a' |
| | to the extended double-precision floating-point format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 int64_to_floatx80(int64_t a, float_status *status) |
| { |
| flag zSign; |
| uint64_t absA; |
| int8_t shiftCount; |
| |
| if ( a == 0 ) return packFloatx80( 0, 0, 0 ); |
| zSign = ( a < 0 ); |
| absA = zSign ? - a : a; |
| shiftCount = countLeadingZeros64( absA ); |
| return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the 64-bit two's complement integer `a' to |
| | the quadruple-precision floating-point format. The conversion is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 int64_to_float128(int64_t a, float_status *status) |
| { |
| flag zSign; |
| uint64_t absA; |
| int8_t shiftCount; |
| int32_t zExp; |
| uint64_t zSig0, zSig1; |
| |
| if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); |
| zSign = ( a < 0 ); |
| absA = zSign ? - a : a; |
| shiftCount = countLeadingZeros64( absA ) + 49; |
| zExp = 0x406E - shiftCount; |
| if ( 64 <= shiftCount ) { |
| zSig1 = 0; |
| zSig0 = absA; |
| shiftCount -= 64; |
| } |
| else { |
| zSig1 = absA; |
| zSig0 = 0; |
| } |
| shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); |
| return packFloat128( zSign, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the 64-bit unsigned integer `a' |
| | to the quadruple-precision floating-point format. The conversion is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 uint64_to_float128(uint64_t a, float_status *status) |
| { |
| if (a == 0) { |
| return float128_zero; |
| } |
| return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status); |
| } |
| |
| |
| |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the single-precision floating-point value |
| | `a' to the double-precision floating-point format. The conversion is |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float64 float32_to_float64(float32 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint32_t aSig; |
| a = float32_squash_input_denormal(a, status); |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( aExp == 0xFF ) { |
| if (aSig) { |
| return commonNaNToFloat64(float32ToCommonNaN(a, status), status); |
| } |
| return packFloat64( aSign, 0x7FF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| --aExp; |
| } |
| return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the single-precision floating-point value |
| | `a' to the extended double-precision floating-point format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 float32_to_floatx80(float32 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint32_t aSig; |
| |
| a = float32_squash_input_denormal(a, status); |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( aExp == 0xFF ) { |
| if (aSig) { |
| return commonNaNToFloatx80(float32ToCommonNaN(a, status), status); |
| } |
| return packFloatx80(aSign, |
| floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| aSig |= 0x00800000; |
| return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the single-precision floating-point value |
| | `a' to the double-precision floating-point format. The conversion is |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float32_to_float128(float32 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint32_t aSig; |
| |
| a = float32_squash_input_denormal(a, status); |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( aExp == 0xFF ) { |
| if (aSig) { |
| return commonNaNToFloat128(float32ToCommonNaN(a, status), status); |
| } |
| return packFloat128( aSign, 0x7FFF, 0, 0 ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| --aExp; |
| } |
| return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the remainder of the single-precision floating-point value `a' |
| | with respect to the corresponding value `b'. The operation is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float32 float32_rem(float32 a, float32 b, float_status *status) |
| { |
| flag aSign, zSign; |
| int aExp, bExp, expDiff; |
| uint32_t aSig, bSig; |
| uint32_t q; |
| uint64_t aSig64, bSig64, q64; |
| uint32_t alternateASig; |
| int32_t sigMean; |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| bSig = extractFloat32Frac( b ); |
| bExp = extractFloat32Exp( b ); |
| if ( aExp == 0xFF ) { |
| if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { |
| return propagateFloat32NaN(a, b, status); |
| } |
| float_raise(float_flag_invalid, status); |
| return float32_default_nan(status); |
| } |
| if ( bExp == 0xFF ) { |
| if (bSig) { |
| return propagateFloat32NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| float_raise(float_flag_invalid, status); |
| return float32_default_nan(status); |
| } |
| normalizeFloat32Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return a; |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| expDiff = aExp - bExp; |
| aSig |= 0x00800000; |
| bSig |= 0x00800000; |
| if ( expDiff < 32 ) { |
| aSig <<= 8; |
| bSig <<= 8; |
| if ( expDiff < 0 ) { |
| if ( expDiff < -1 ) return a; |
| aSig >>= 1; |
| } |
| q = ( bSig <= aSig ); |
| if ( q ) aSig -= bSig; |
| if ( 0 < expDiff ) { |
| q = ( ( (uint64_t) aSig )<<32 ) / bSig; |
| q >>= 32 - expDiff; |
| bSig >>= 2; |
| aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; |
| } |
| else { |
| aSig >>= 2; |
| bSig >>= 2; |
| } |
| } |
| else { |
| if ( bSig <= aSig ) aSig -= bSig; |
| aSig64 = ( (uint64_t) aSig )<<40; |
| bSig64 = ( (uint64_t) bSig )<<40; |
| expDiff -= 64; |
| while ( 0 < expDiff ) { |
| q64 = estimateDiv128To64( aSig64, 0, bSig64 ); |
| q64 = ( 2 < q64 ) ? q64 - 2 : 0; |
| aSig64 = - ( ( bSig * q64 )<<38 ); |
| expDiff -= 62; |
| } |
| expDiff += 64; |
| q64 = estimateDiv128To64( aSig64, 0, bSig64 ); |
| q64 = ( 2 < q64 ) ? q64 - 2 : 0; |
| q = q64>>( 64 - expDiff ); |
| bSig <<= 6; |
| aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; |
| } |
| do { |
| alternateASig = aSig; |
| ++q; |
| aSig -= bSig; |
| } while ( 0 <= (int32_t) aSig ); |
| sigMean = aSig + alternateASig; |
| if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { |
| aSig = alternateASig; |
| } |
| zSign = ( (int32_t) aSig < 0 ); |
| if ( zSign ) aSig = - aSig; |
| return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); |
| } |
| |
| |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the binary exponential of the single-precision floating-point value |
| | `a'. The operation is performed according to the IEC/IEEE Standard for |
| | Binary Floating-Point Arithmetic. |
| | |
| | Uses the following identities: |
| | |
| | 1. ------------------------------------------------------------------------- |
| | x x*ln(2) |
| | 2 = e |
| | |
| | 2. ------------------------------------------------------------------------- |
| | 2 3 4 5 n |
| | x x x x x x x |
| | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... |
| | 1! 2! 3! 4! 5! n! |
| *----------------------------------------------------------------------------*/ |
| |
| static const float64 float32_exp2_coefficients[15] = |
| { |
| const_float64( 0x3ff0000000000000ll ), /* 1 */ |
| const_float64( 0x3fe0000000000000ll ), /* 2 */ |
| const_float64( 0x3fc5555555555555ll ), /* 3 */ |
| const_float64( 0x3fa5555555555555ll ), /* 4 */ |
| const_float64( 0x3f81111111111111ll ), /* 5 */ |
| const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ |
| const_float64( 0x3f2a01a01a01a01all ), /* 7 */ |
| const_float64( 0x3efa01a01a01a01all ), /* 8 */ |
| const_float64( 0x3ec71de3a556c734ll ), /* 9 */ |
| const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ |
| const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ |
| const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ |
| const_float64( 0x3de6124613a86d09ll ), /* 13 */ |
| const_float64( 0x3da93974a8c07c9dll ), /* 14 */ |
| const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ |
| }; |
| |
| float32 float32_exp2(float32 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint32_t aSig; |
| float64 r, x, xn; |
| int i; |
| a = float32_squash_input_denormal(a, status); |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| |
| if ( aExp == 0xFF) { |
| if (aSig) { |
| return propagateFloat32NaN(a, float32_zero, status); |
| } |
| return (aSign) ? float32_zero : a; |
| } |
| if (aExp == 0) { |
| if (aSig == 0) return float32_one; |
| } |
| |
| float_raise(float_flag_inexact, status); |
| |
| /* ******************************* */ |
| /* using float64 for approximation */ |
| /* ******************************* */ |
| x = float32_to_float64(a, status); |
| x = float64_mul(x, float64_ln2, status); |
| |
| xn = x; |
| r = float64_one; |
| for (i = 0 ; i < 15 ; i++) { |
| float64 f; |
| |
| f = float64_mul(xn, float32_exp2_coefficients[i], status); |
| r = float64_add(r, f, status); |
| |
| xn = float64_mul(xn, x, status); |
| } |
| |
| return float64_to_float32(r, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the binary log of the single-precision floating-point value `a'. |
| | The operation is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| float32 float32_log2(float32 a, float_status *status) |
| { |
| flag aSign, zSign; |
| int aExp; |
| uint32_t aSig, zSig, i; |
| |
| a = float32_squash_input_denormal(a, status); |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| if ( aSign ) { |
| float_raise(float_flag_invalid, status); |
| return float32_default_nan(status); |
| } |
| if ( aExp == 0xFF ) { |
| if (aSig) { |
| return propagateFloat32NaN(a, float32_zero, status); |
| } |
| return a; |
| } |
| |
| aExp -= 0x7F; |
| aSig |= 0x00800000; |
| zSign = aExp < 0; |
| zSig = aExp << 23; |
| |
| for (i = 1 << 22; i > 0; i >>= 1) { |
| aSig = ( (uint64_t)aSig * aSig ) >> 23; |
| if ( aSig & 0x01000000 ) { |
| aSig >>= 1; |
| zSig |= i; |
| } |
| } |
| |
| if ( zSign ) |
| zSig = -zSig; |
| |
| return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is equal to |
| | the corresponding value `b', and 0 otherwise. The invalid exception is |
| | raised if either operand is a NaN. Otherwise, the comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_eq(float32 a, float32 b, float_status *status) |
| { |
| uint32_t av, bv; |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| av = float32_val(a); |
| bv = float32_val(b); |
| return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is less than |
| | or equal to the corresponding value `b', and 0 otherwise. The invalid |
| | exception is raised if either operand is a NaN. The comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_le(float32 a, float32 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint32_t av, bv; |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| av = float32_val(a); |
| bv = float32_val(b); |
| if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
| return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is less than |
| | the corresponding value `b', and 0 otherwise. The invalid exception is |
| | raised if either operand is a NaN. The comparison is performed according |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_lt(float32 a, float32 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint32_t av, bv; |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| av = float32_val(a); |
| bv = float32_val(b); |
| if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
| return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point values `a' and `b' cannot |
| | be compared, and 0 otherwise. The invalid exception is raised if either |
| | operand is a NaN. The comparison is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_unordered(float32 a, float32 b, float_status *status) |
| { |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is equal to |
| | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| | exception. The comparison is performed according to the IEC/IEEE Standard |
| | for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_eq_quiet(float32 a, float32 b, float_status *status) |
| { |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| if (float32_is_signaling_nan(a, status) |
| || float32_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| return ( float32_val(a) == float32_val(b) ) || |
| ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is less than or |
| | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
| | cause an exception. Otherwise, the comparison is performed according to the |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_le_quiet(float32 a, float32 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint32_t av, bv; |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| if (float32_is_signaling_nan(a, status) |
| || float32_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| av = float32_val(a); |
| bv = float32_val(b); |
| if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); |
| return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point value `a' is less than |
| | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| | exception. Otherwise, the comparison is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_lt_quiet(float32 a, float32 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint32_t av, bv; |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| if (float32_is_signaling_nan(a, status) |
| || float32_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| av = float32_val(a); |
| bv = float32_val(b); |
| if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); |
| return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the single-precision floating-point values `a' and `b' cannot |
| | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The |
| | comparison is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float32_unordered_quiet(float32 a, float32 b, float_status *status) |
| { |
| a = float32_squash_input_denormal(a, status); |
| b = float32_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| if (float32_is_signaling_nan(a, status) |
| || float32_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the double-precision floating-point value |
| | `a' to the single-precision floating-point format. The conversion is |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float32 float64_to_float32(float64 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint64_t aSig; |
| uint32_t zSig; |
| a = float64_squash_input_denormal(a, status); |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| if ( aExp == 0x7FF ) { |
| if (aSig) { |
| return commonNaNToFloat32(float64ToCommonNaN(a, status), status); |
| } |
| return packFloat32( aSign, 0xFF, 0 ); |
| } |
| shift64RightJamming( aSig, 22, &aSig ); |
| zSig = aSig; |
| if ( aExp || zSig ) { |
| zSig |= 0x40000000; |
| aExp -= 0x381; |
| } |
| return roundAndPackFloat32(aSign, aExp, zSig, status); |
| |
| } |
| |
| |
| /*---------------------------------------------------------------------------- |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a |
| | half-precision floating-point value, returning the result. After being |
| | shifted into the proper positions, the three fields are simply added |
| | together to form the result. This means that any integer portion of `zSig' |
| | will be added into the exponent. Since a properly normalized significand |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less |
| | than the desired result exponent whenever `zSig' is a complete, normalized |
| | significand. |
| *----------------------------------------------------------------------------*/ |
| static float16 packFloat16(flag zSign, int zExp, uint16_t zSig) |
| { |
| return make_float16( |
| (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and significand `zSig', and returns the proper half-precision floating- |
| | point value corresponding to the abstract input. Ordinarily, the abstract |
| | value is simply rounded and packed into the half-precision format, with |
| | the inexact exception raised if the abstract input cannot be represented |
| | exactly. However, if the abstract value is too large, the overflow and |
| | inexact exceptions are raised and an infinity or maximal finite value is |
| | returned. If the abstract value is too small, the input value is rounded to |
| | a subnormal number, and the underflow and inexact exceptions are raised if |
| | the abstract input cannot be represented exactly as a subnormal half- |
| | precision floating-point number. |
| | The `ieee' flag indicates whether to use IEEE standard half precision, or |
| | ARM-style "alternative representation", which omits the NaN and Inf |
| | encodings in order to raise the maximum representable exponent by one. |
| | The input significand `zSig' has its binary point between bits 22 |
| | and 23, which is 13 bits to the left of the usual location. This shifted |
| | significand must be normalized or smaller. If `zSig' is not normalized, |
| | `zExp' must be 0; in that case, the result returned is a subnormal number, |
| | and it must not require rounding. In the usual case that `zSig' is |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. |
| | Note the slightly odd position of the binary point in zSig compared with the |
| | other roundAndPackFloat functions. This should probably be fixed if we |
| | need to implement more float16 routines than just conversion. |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for |
| | Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static float16 roundAndPackFloat16(flag zSign, int zExp, |
| uint32_t zSig, flag ieee, |
| float_status *status) |
| { |
| int maxexp = ieee ? 29 : 30; |
| uint32_t mask; |
| uint32_t increment; |
| bool rounding_bumps_exp; |
| bool is_tiny = false; |
| |
| /* Calculate the mask of bits of the mantissa which are not |
| * representable in half-precision and will be lost. |
| */ |
| if (zExp < 1) { |
| /* Will be denormal in halfprec */ |
| mask = 0x00ffffff; |
| if (zExp >= -11) { |
| mask >>= 11 + zExp; |
| } |
| } else { |
| /* Normal number in halfprec */ |
| mask = 0x00001fff; |
| } |
| |
| switch (status->float_rounding_mode) { |
| case float_round_nearest_even: |
| increment = (mask + 1) >> 1; |
| if ((zSig & mask) == increment) { |
| increment = zSig & (increment << 1); |
| } |
| break; |
| case float_round_ties_away: |
| increment = (mask + 1) >> 1; |
| break; |
| case float_round_up: |
| increment = zSign ? 0 : mask; |
| break; |
| case float_round_down: |
| increment = zSign ? mask : 0; |
| break; |
| default: /* round_to_zero */ |
| increment = 0; |
| break; |
| } |
| |
| rounding_bumps_exp = (zSig + increment >= 0x01000000); |
| |
| if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) { |
| if (ieee) { |
| float_raise(float_flag_overflow | float_flag_inexact, status); |
| return packFloat16(zSign, 0x1f, 0); |
| } else { |
| float_raise(float_flag_invalid, status); |
| return packFloat16(zSign, 0x1f, 0x3ff); |
| } |
| } |
| |
| if (zExp < 0) { |
| /* Note that flush-to-zero does not affect half-precision results */ |
| is_tiny = |
| (status->float_detect_tininess == float_tininess_before_rounding) |
| || (zExp < -1) |
| || (!rounding_bumps_exp); |
| } |
| if (zSig & mask) { |
| float_raise(float_flag_inexact, status); |
| if (is_tiny) { |
| float_raise(float_flag_underflow, status); |
| } |
| } |
| |
| zSig += increment; |
| if (rounding_bumps_exp) { |
| zSig >>= 1; |
| zExp++; |
| } |
| |
| if (zExp < -10) { |
| return packFloat16(zSign, 0, 0); |
| } |
| if (zExp < 0) { |
| zSig >>= -zExp; |
| zExp = 0; |
| } |
| return packFloat16(zSign, zExp, zSig >> 13); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | If `a' is denormal and we are in flush-to-zero mode then set the |
| | input-denormal exception and return zero. Otherwise just return the value. |
| *----------------------------------------------------------------------------*/ |
| float16 float16_squash_input_denormal(float16 a, float_status *status) |
| { |
| if (status->flush_inputs_to_zero) { |
| if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) { |
| float_raise(float_flag_input_denormal, status); |
| return make_float16(float16_val(a) & 0x8000); |
| } |
| } |
| return a; |
| } |
| |
| static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr, |
| uint32_t *zSigPtr) |
| { |
| int8_t shiftCount = countLeadingZeros32(aSig) - 21; |
| *zSigPtr = aSig << shiftCount; |
| *zExpPtr = 1 - shiftCount; |
| } |
| |
| /* Half precision floats come in two formats: standard IEEE and "ARM" format. |
| The latter gains extra exponent range by omitting the NaN/Inf encodings. */ |
| |
| float32 float16_to_float32(float16 a, flag ieee, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint32_t aSig; |
| |
| aSign = extractFloat16Sign(a); |
| aExp = extractFloat16Exp(a); |
| aSig = extractFloat16Frac(a); |
| |
| if (aExp == 0x1f && ieee) { |
| if (aSig) { |
| return commonNaNToFloat32(float16ToCommonNaN(a, status), status); |
| } |
| return packFloat32(aSign, 0xff, 0); |
| } |
| if (aExp == 0) { |
| if (aSig == 0) { |
| return packFloat32(aSign, 0, 0); |
| } |
| |
| normalizeFloat16Subnormal(aSig, &aExp, &aSig); |
| aExp--; |
| } |
| return packFloat32( aSign, aExp + 0x70, aSig << 13); |
| } |
| |
| float16 float32_to_float16(float32 a, flag ieee, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint32_t aSig; |
| |
| a = float32_squash_input_denormal(a, status); |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( aExp == 0xFF ) { |
| if (aSig) { |
| /* Input is a NaN */ |
| if (!ieee) { |
| float_raise(float_flag_invalid, status); |
| return packFloat16(aSign, 0, 0); |
| } |
| return commonNaNToFloat16( |
| float32ToCommonNaN(a, status), status); |
| } |
| /* Infinity */ |
| if (!ieee) { |
| float_raise(float_flag_invalid, status); |
| return packFloat16(aSign, 0x1f, 0x3ff); |
| } |
| return packFloat16(aSign, 0x1f, 0); |
| } |
| if (aExp == 0 && aSig == 0) { |
| return packFloat16(aSign, 0, 0); |
| } |
| /* Decimal point between bits 22 and 23. Note that we add the 1 bit |
| * even if the input is denormal; however this is harmless because |
| * the largest possible single-precision denormal is still smaller |
| * than the smallest representable half-precision denormal, and so we |
| * will end up ignoring aSig and returning via the "always return zero" |
| * codepath. |
| */ |
| aSig |= 0x00800000; |
| aExp -= 0x71; |
| |
| return roundAndPackFloat16(aSign, aExp, aSig, ieee, status); |
| } |
| |
| float64 float16_to_float64(float16 a, flag ieee, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint32_t aSig; |
| |
| aSign = extractFloat16Sign(a); |
| aExp = extractFloat16Exp(a); |
| aSig = extractFloat16Frac(a); |
| |
| if (aExp == 0x1f && ieee) { |
| if (aSig) { |
| return commonNaNToFloat64( |
| float16ToCommonNaN(a, status), status); |
| } |
| return packFloat64(aSign, 0x7ff, 0); |
| } |
| if (aExp == 0) { |
| if (aSig == 0) { |
| return packFloat64(aSign, 0, 0); |
| } |
| |
| normalizeFloat16Subnormal(aSig, &aExp, &aSig); |
| aExp--; |
| } |
| return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42); |
| } |
| |
| float16 float64_to_float16(float64 a, flag ieee, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint64_t aSig; |
| uint32_t zSig; |
| |
| a = float64_squash_input_denormal(a, status); |
| |
| aSig = extractFloat64Frac(a); |
| aExp = extractFloat64Exp(a); |
| aSign = extractFloat64Sign(a); |
| if (aExp == 0x7FF) { |
| if (aSig) { |
| /* Input is a NaN */ |
| if (!ieee) { |
| float_raise(float_flag_invalid, status); |
| return packFloat16(aSign, 0, 0); |
| } |
| return commonNaNToFloat16( |
| float64ToCommonNaN(a, status), status); |
| } |
| /* Infinity */ |
| if (!ieee) { |
| float_raise(float_flag_invalid, status); |
| return packFloat16(aSign, 0x1f, 0x3ff); |
| } |
| return packFloat16(aSign, 0x1f, 0); |
| } |
| shift64RightJamming(aSig, 29, &aSig); |
| zSig = aSig; |
| if (aExp == 0 && zSig == 0) { |
| return packFloat16(aSign, 0, 0); |
| } |
| /* Decimal point between bits 22 and 23. Note that we add the 1 bit |
| * even if the input is denormal; however this is harmless because |
| * the largest possible single-precision denormal is still smaller |
| * than the smallest representable half-precision denormal, and so we |
| * will end up ignoring aSig and returning via the "always return zero" |
| * codepath. |
| */ |
| zSig |= 0x00800000; |
| aExp -= 0x3F1; |
| |
| return roundAndPackFloat16(aSign, aExp, zSig, ieee, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the double-precision floating-point value |
| | `a' to the extended double-precision floating-point format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 float64_to_floatx80(float64 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint64_t aSig; |
| |
| a = float64_squash_input_denormal(a, status); |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| if ( aExp == 0x7FF ) { |
| if (aSig) { |
| return commonNaNToFloatx80(float64ToCommonNaN(a, status), status); |
| } |
| return packFloatx80(aSign, |
| floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| return |
| packFloatx80( |
| aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the double-precision floating-point value |
| | `a' to the quadruple-precision floating-point format. The conversion is |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float64_to_float128(float64 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint64_t aSig, zSig0, zSig1; |
| |
| a = float64_squash_input_denormal(a, status); |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| if ( aExp == 0x7FF ) { |
| if (aSig) { |
| return commonNaNToFloat128(float64ToCommonNaN(a, status), status); |
| } |
| return packFloat128( aSign, 0x7FFF, 0, 0 ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| --aExp; |
| } |
| shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); |
| return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); |
| |
| } |
| |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the remainder of the double-precision floating-point value `a' |
| | with respect to the corresponding value `b'. The operation is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float64 float64_rem(float64 a, float64 b, float_status *status) |
| { |
| flag aSign, zSign; |
| int aExp, bExp, expDiff; |
| uint64_t aSig, bSig; |
| uint64_t q, alternateASig; |
| int64_t sigMean; |
| |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| bSig = extractFloat64Frac( b ); |
| bExp = extractFloat64Exp( b ); |
| if ( aExp == 0x7FF ) { |
| if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { |
| return propagateFloat64NaN(a, b, status); |
| } |
| float_raise(float_flag_invalid, status); |
| return float64_default_nan(status); |
| } |
| if ( bExp == 0x7FF ) { |
| if (bSig) { |
| return propagateFloat64NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| float_raise(float_flag_invalid, status); |
| return float64_default_nan(status); |
| } |
| normalizeFloat64Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return a; |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| expDiff = aExp - bExp; |
| aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; |
| bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; |
| if ( expDiff < 0 ) { |
| if ( expDiff < -1 ) return a; |
| aSig >>= 1; |
| } |
| q = ( bSig <= aSig ); |
| if ( q ) aSig -= bSig; |
| expDiff -= 64; |
| while ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig, 0, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| aSig = - ( ( bSig>>2 ) * q ); |
| expDiff -= 62; |
| } |
| expDiff += 64; |
| if ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig, 0, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| q >>= 64 - expDiff; |
| bSig >>= 2; |
| aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; |
| } |
| else { |
| aSig >>= 2; |
| bSig >>= 2; |
| } |
| do { |
| alternateASig = aSig; |
| ++q; |
| aSig -= bSig; |
| } while ( 0 <= (int64_t) aSig ); |
| sigMean = aSig + alternateASig; |
| if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { |
| aSig = alternateASig; |
| } |
| zSign = ( (int64_t) aSig < 0 ); |
| if ( zSign ) aSig = - aSig; |
| return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the binary log of the double-precision floating-point value `a'. |
| | The operation is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| float64 float64_log2(float64 a, float_status *status) |
| { |
| flag aSign, zSign; |
| int aExp; |
| uint64_t aSig, aSig0, aSig1, zSig, i; |
| a = float64_squash_input_denormal(a, status); |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| if ( aSign ) { |
| float_raise(float_flag_invalid, status); |
| return float64_default_nan(status); |
| } |
| if ( aExp == 0x7FF ) { |
| if (aSig) { |
| return propagateFloat64NaN(a, float64_zero, status); |
| } |
| return a; |
| } |
| |
| aExp -= 0x3FF; |
| aSig |= LIT64( 0x0010000000000000 ); |
| zSign = aExp < 0; |
| zSig = (uint64_t)aExp << 52; |
| for (i = 1LL << 51; i > 0; i >>= 1) { |
| mul64To128( aSig, aSig, &aSig0, &aSig1 ); |
| aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); |
| if ( aSig & LIT64( 0x0020000000000000 ) ) { |
| aSig >>= 1; |
| zSig |= i; |
| } |
| } |
| |
| if ( zSign ) |
| zSig = -zSig; |
| return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is equal to the |
| | corresponding value `b', and 0 otherwise. The invalid exception is raised |
| | if either operand is a NaN. Otherwise, the comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_eq(float64 a, float64 b, float_status *status) |
| { |
| uint64_t av, bv; |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| av = float64_val(a); |
| bv = float64_val(b); |
| return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is less than or |
| | equal to the corresponding value `b', and 0 otherwise. The invalid |
| | exception is raised if either operand is a NaN. The comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_le(float64 a, float64 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint64_t av, bv; |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| av = float64_val(a); |
| bv = float64_val(b); |
| if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
| return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is less than |
| | the corresponding value `b', and 0 otherwise. The invalid exception is |
| | raised if either operand is a NaN. The comparison is performed according |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_lt(float64 a, float64 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint64_t av, bv; |
| |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| av = float64_val(a); |
| bv = float64_val(b); |
| if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
| return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point values `a' and `b' cannot |
| | be compared, and 0 otherwise. The invalid exception is raised if either |
| | operand is a NaN. The comparison is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_unordered(float64 a, float64 b, float_status *status) |
| { |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is equal to the |
| | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| | exception.The comparison is performed according to the IEC/IEEE Standard |
| | for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_eq_quiet(float64 a, float64 b, float_status *status) |
| { |
| uint64_t av, bv; |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| if (float64_is_signaling_nan(a, status) |
| || float64_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| av = float64_val(a); |
| bv = float64_val(b); |
| return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is less than or |
| | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
| | cause an exception. Otherwise, the comparison is performed according to the |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_le_quiet(float64 a, float64 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint64_t av, bv; |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| if (float64_is_signaling_nan(a, status) |
| || float64_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| av = float64_val(a); |
| bv = float64_val(b); |
| if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); |
| return ( av == bv ) || ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point value `a' is less than |
| | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| | exception. Otherwise, the comparison is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_lt_quiet(float64 a, float64 b, float_status *status) |
| { |
| flag aSign, bSign; |
| uint64_t av, bv; |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| if (float64_is_signaling_nan(a, status) |
| || float64_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| av = float64_val(a); |
| bv = float64_val(b); |
| if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); |
| return ( av != bv ) && ( aSign ^ ( av < bv ) ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the double-precision floating-point values `a' and `b' cannot |
| | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The |
| | comparison is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float64_unordered_quiet(float64 a, float64 b, float_status *status) |
| { |
| a = float64_squash_input_denormal(a, status); |
| b = float64_squash_input_denormal(b, status); |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| if (float64_is_signaling_nan(a, status) |
| || float64_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point value `a' to the 32-bit two's complement integer format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic---which means in particular that the conversion |
| | is rounded according to the current rounding mode. If `a' is a NaN, the |
| | largest positive integer is returned. Otherwise, if the conversion |
| | overflows, the largest integer with the same sign as `a' is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int32_t floatx80_to_int32(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return 1 << 31; |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
| shiftCount = 0x4037 - aExp; |
| if ( shiftCount <= 0 ) shiftCount = 1; |
| shift64RightJamming( aSig, shiftCount, &aSig ); |
| return roundAndPackInt32(aSign, aSig, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point value `a' to the 32-bit two's complement integer format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic, except that the conversion is always rounded |
| | toward zero. If `a' is a NaN, the largest positive integer is returned. |
| | Otherwise, if the conversion overflows, the largest integer with the same |
| | sign as `a' is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig, savedASig; |
| int32_t z; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return 1 << 31; |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( 0x401E < aExp ) { |
| if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; |
| goto invalid; |
| } |
| else if ( aExp < 0x3FFF ) { |
| if (aExp || aSig) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return 0; |
| } |
| shiftCount = 0x403E - aExp; |
| savedASig = aSig; |
| aSig >>= shiftCount; |
| z = aSig; |
| if ( aSign ) z = - z; |
| if ( ( z < 0 ) ^ aSign ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
| } |
| if ( ( aSig<<shiftCount ) != savedASig ) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point value `a' to the 64-bit two's complement integer format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic---which means in particular that the conversion |
| | is rounded according to the current rounding mode. If `a' is a NaN, |
| | the largest positive integer is returned. Otherwise, if the conversion |
| | overflows, the largest integer with the same sign as `a' is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int64_t floatx80_to_int64(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig, aSigExtra; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return 1ULL << 63; |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| shiftCount = 0x403E - aExp; |
| if ( shiftCount <= 0 ) { |
| if ( shiftCount ) { |
| float_raise(float_flag_invalid, status); |
| if (!aSign || floatx80_is_any_nan(a)) { |
| return LIT64( 0x7FFFFFFFFFFFFFFF ); |
| } |
| return (int64_t) LIT64( 0x8000000000000000 ); |
| } |
| aSigExtra = 0; |
| } |
| else { |
| shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); |
| } |
| return roundAndPackInt64(aSign, aSig, aSigExtra, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point value `a' to the 64-bit two's complement integer format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic, except that the conversion is always rounded |
| | toward zero. If `a' is a NaN, the largest positive integer is returned. |
| | Otherwise, if the conversion overflows, the largest integer with the same |
| | sign as `a' is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig; |
| int64_t z; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return 1ULL << 63; |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| shiftCount = aExp - 0x403E; |
| if ( 0 <= shiftCount ) { |
| aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); |
| if ( ( a.high != 0xC03E ) || aSig ) { |
| float_raise(float_flag_invalid, status); |
| if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { |
| return LIT64( 0x7FFFFFFFFFFFFFFF ); |
| } |
| } |
| return (int64_t) LIT64( 0x8000000000000000 ); |
| } |
| else if ( aExp < 0x3FFF ) { |
| if (aExp | aSig) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return 0; |
| } |
| z = aSig>>( - shiftCount ); |
| if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| if ( aSign ) z = - z; |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point value `a' to the single-precision floating-point format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float32 floatx80_to_float32(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t aSig; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return float32_default_nan(status); |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( (uint64_t) ( aSig<<1 ) ) { |
| return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status); |
| } |
| return packFloat32( aSign, 0xFF, 0 ); |
| } |
| shift64RightJamming( aSig, 33, &aSig ); |
| if ( aExp || aSig ) aExp -= 0x3F81; |
| return roundAndPackFloat32(aSign, aExp, aSig, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point value `a' to the double-precision floating-point format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float64 floatx80_to_float64(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t aSig, zSig; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return float64_default_nan(status); |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( (uint64_t) ( aSig<<1 ) ) { |
| return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status); |
| } |
| return packFloat64( aSign, 0x7FF, 0 ); |
| } |
| shift64RightJamming( aSig, 1, &zSig ); |
| if ( aExp || aSig ) aExp -= 0x3C01; |
| return roundAndPackFloat64(aSign, aExp, zSig, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the extended double-precision floating- |
| | point value `a' to the quadruple-precision floating-point format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 floatx80_to_float128(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| uint64_t aSig, zSig0, zSig1; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return float128_default_nan(status); |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { |
| return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status); |
| } |
| shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); |
| return packFloat128( aSign, aExp, zSig0, zSig1 ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Rounds the extended double-precision floating-point value `a' |
| | to the precision provided by floatx80_rounding_precision and returns the |
| | result as an extended double-precision floating-point value. |
| | The operation is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_round(floatx80 a, float_status *status) |
| { |
| return roundAndPackFloatx80(status->floatx80_rounding_precision, |
| extractFloatx80Sign(a), |
| extractFloatx80Exp(a), |
| extractFloatx80Frac(a), 0, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Rounds the extended double-precision floating-point value `a' to an integer, |
| | and returns the result as an extended quadruple-precision floating-point |
| | value. The operation is performed according to the IEC/IEEE Standard for |
| | Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_round_to_int(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t lastBitMask, roundBitsMask; |
| floatx80 z; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aExp = extractFloatx80Exp( a ); |
| if ( 0x403E <= aExp ) { |
| if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { |
| return propagateFloatx80NaN(a, a, status); |
| } |
| return a; |
| } |
| if ( aExp < 0x3FFF ) { |
| if ( ( aExp == 0 ) |
| && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
| return a; |
| } |
| status->float_exception_flags |= float_flag_inexact; |
| aSign = extractFloatx80Sign( a ); |
| switch (status->float_rounding_mode) { |
| case float_round_nearest_even: |
| if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) |
| ) { |
| return |
| packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| break; |
| case float_round_ties_away: |
| if (aExp == 0x3FFE) { |
| return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); |
| } |
| break; |
| case float_round_down: |
| return |
| aSign ? |
| packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) |
| : packFloatx80( 0, 0, 0 ); |
| case float_round_up: |
| return |
| aSign ? packFloatx80( 1, 0, 0 ) |
| : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| return packFloatx80( aSign, 0, 0 ); |
| } |
| lastBitMask = 1; |
| lastBitMask <<= 0x403E - aExp; |
| roundBitsMask = lastBitMask - 1; |
| z = a; |
| switch (status->float_rounding_mode) { |
| case float_round_nearest_even: |
| z.low += lastBitMask>>1; |
| if ((z.low & roundBitsMask) == 0) { |
| z.low &= ~lastBitMask; |
| } |
| break; |
| case float_round_ties_away: |
| z.low += lastBitMask >> 1; |
| break; |
| case float_round_to_zero: |
| break; |
| case float_round_up: |
| if (!extractFloatx80Sign(z)) { |
| z.low += roundBitsMask; |
| } |
| break; |
| case float_round_down: |
| if (extractFloatx80Sign(z)) { |
| z.low += roundBitsMask; |
| } |
| break; |
| default: |
| abort(); |
| } |
| z.low &= ~ roundBitsMask; |
| if ( z.low == 0 ) { |
| ++z.high; |
| z.low = LIT64( 0x8000000000000000 ); |
| } |
| if (z.low != a.low) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of adding the absolute values of the extended double- |
| | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is |
| | negated before being returned. `zSign' is ignored if the result is a NaN. |
| | The addition is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
| float_status *status) |
| { |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig, bSig, zSig0, zSig1; |
| int32_t expDiff; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| expDiff = aExp - bExp; |
| if ( 0 < expDiff ) { |
| if ( aExp == 0x7FFF ) { |
| if ((uint64_t)(aSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) --expDiff; |
| shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); |
| zExp = aExp; |
| } |
| else if ( expDiff < 0 ) { |
| if ( bExp == 0x7FFF ) { |
| if ((uint64_t)(bSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| return packFloatx80(zSign, |
| floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( aExp == 0 ) ++expDiff; |
| shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); |
| zExp = bExp; |
| } |
| else { |
| if ( aExp == 0x7FFF ) { |
| if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| return a; |
| } |
| zSig1 = 0; |
| zSig0 = aSig + bSig; |
| if ( aExp == 0 ) { |
| normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); |
| goto roundAndPack; |
| } |
| zExp = aExp; |
| goto shiftRight1; |
| } |
| zSig0 = aSig + bSig; |
| if ( (int64_t) zSig0 < 0 ) goto roundAndPack; |
| shiftRight1: |
| shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
| zSig0 |= LIT64( 0x8000000000000000 ); |
| ++zExp; |
| roundAndPack: |
| return roundAndPackFloatx80(status->floatx80_rounding_precision, |
| zSign, zExp, zSig0, zSig1, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of subtracting the absolute values of the extended |
| | double-precision floating-point values `a' and `b'. If `zSign' is 1, the |
| | difference is negated before being returned. `zSign' is ignored if the |
| | result is a NaN. The subtraction is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, |
| float_status *status) |
| { |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig, bSig, zSig0, zSig1; |
| int32_t expDiff; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| expDiff = aExp - bExp; |
| if ( 0 < expDiff ) goto aExpBigger; |
| if ( expDiff < 0 ) goto bExpBigger; |
| if ( aExp == 0x7FFF ) { |
| if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| if ( aExp == 0 ) { |
| aExp = 1; |
| bExp = 1; |
| } |
| zSig1 = 0; |
| if ( bSig < aSig ) goto aBigger; |
| if ( aSig < bSig ) goto bBigger; |
| return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); |
| bExpBigger: |
| if ( bExp == 0x7FFF ) { |
| if ((uint64_t)(bSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| return packFloatx80(zSign ^ 1, floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( aExp == 0 ) ++expDiff; |
| shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); |
| bBigger: |
| sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); |
| zExp = bExp; |
| zSign ^= 1; |
| goto normalizeRoundAndPack; |
| aExpBigger: |
| if ( aExp == 0x7FFF ) { |
| if ((uint64_t)(aSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) --expDiff; |
| shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); |
| aBigger: |
| sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); |
| zExp = aExp; |
| normalizeRoundAndPack: |
| return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
| zSign, zExp, zSig0, zSig1, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of adding the extended double-precision floating-point |
| | values `a' and `b'. The operation is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign == bSign ) { |
| return addFloatx80Sigs(a, b, aSign, status); |
| } |
| else { |
| return subFloatx80Sigs(a, b, aSign, status); |
| } |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of subtracting the extended double-precision floating- |
| | point values `a' and `b'. The operation is performed according to the |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign == bSign ) { |
| return subFloatx80Sigs(a, b, aSign, status); |
| } |
| else { |
| return addFloatx80Sigs(a, b, aSign, status); |
| } |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of multiplying the extended double-precision floating- |
| | point values `a' and `b'. The operation is performed according to the |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign, zSign; |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig, bSig, zSig0, zSig1; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| bSign = extractFloatx80Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FFF ) { |
| if ( (uint64_t) ( aSig<<1 ) |
| || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| if ( ( bExp | bSig ) == 0 ) goto invalid; |
| return packFloatx80(zSign, floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( bExp == 0x7FFF ) { |
| if ((uint64_t)(bSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| if ( ( aExp | aSig ) == 0 ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| return packFloatx80(zSign, floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); |
| normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); |
| normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); |
| } |
| zExp = aExp + bExp - 0x3FFE; |
| mul64To128( aSig, bSig, &zSig0, &zSig1 ); |
| if ( 0 < (int64_t) zSig0 ) { |
| shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
| --zExp; |
| } |
| return roundAndPackFloatx80(status->floatx80_rounding_precision, |
| zSign, zExp, zSig0, zSig1, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of dividing the extended double-precision floating-point |
| | value `a' by the corresponding value `b'. The operation is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign, zSign; |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig, bSig, zSig0, zSig1; |
| uint64_t rem0, rem1, rem2, term0, term1, term2; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| bSign = extractFloatx80Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FFF ) { |
| if ((uint64_t)(aSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| if ( bExp == 0x7FFF ) { |
| if ((uint64_t)(bSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| goto invalid; |
| } |
| return packFloatx80(zSign, floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( bExp == 0x7FFF ) { |
| if ((uint64_t)(bSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| return packFloatx80( zSign, 0, 0 ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| if ( ( aExp | aSig ) == 0 ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| float_raise(float_flag_divbyzero, status); |
| return packFloatx80(zSign, floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); |
| normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); |
| } |
| zExp = aExp - bExp + 0x3FFE; |
| rem1 = 0; |
| if ( bSig <= aSig ) { |
| shift128Right( aSig, 0, 1, &aSig, &rem1 ); |
| ++zExp; |
| } |
| zSig0 = estimateDiv128To64( aSig, rem1, bSig ); |
| mul64To128( bSig, zSig0, &term0, &term1 ); |
| sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); |
| while ( (int64_t) rem0 < 0 ) { |
| --zSig0; |
| add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); |
| } |
| zSig1 = estimateDiv128To64( rem1, 0, bSig ); |
| if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { |
| mul64To128( bSig, zSig1, &term1, &term2 ); |
| sub128( rem1, 0, term1, term2, &rem1, &rem2 ); |
| while ( (int64_t) rem1 < 0 ) { |
| --zSig1; |
| add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); |
| } |
| zSig1 |= ( ( rem1 | rem2 ) != 0 ); |
| } |
| return roundAndPackFloatx80(status->floatx80_rounding_precision, |
| zSign, zExp, zSig0, zSig1, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the remainder of the extended double-precision floating-point value |
| | `a' with respect to the corresponding value `b'. The operation is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, zSign; |
| int32_t aExp, bExp, expDiff; |
| uint64_t aSig0, aSig1, bSig; |
| uint64_t q, term0, term1, alternateASig0, alternateASig1; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aSig0 = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| if ( aExp == 0x7FFF ) { |
| if ( (uint64_t) ( aSig0<<1 ) |
| || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| goto invalid; |
| } |
| if ( bExp == 0x7FFF ) { |
| if ((uint64_t)(bSig << 1)) { |
| return propagateFloatx80NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; |
| normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
| } |
| bSig |= LIT64( 0x8000000000000000 ); |
| zSign = aSign; |
| expDiff = aExp - bExp; |
| aSig1 = 0; |
| if ( expDiff < 0 ) { |
| if ( expDiff < -1 ) return a; |
| shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); |
| expDiff = 0; |
| } |
| q = ( bSig <= aSig0 ); |
| if ( q ) aSig0 -= bSig; |
| expDiff -= 64; |
| while ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig0, aSig1, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| mul64To128( bSig, q, &term0, &term1 ); |
| sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); |
| shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); |
| expDiff -= 62; |
| } |
| expDiff += 64; |
| if ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig0, aSig1, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| q >>= 64 - expDiff; |
| mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); |
| sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); |
| shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); |
| while ( le128( term0, term1, aSig0, aSig1 ) ) { |
| ++q; |
| sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); |
| } |
| } |
| else { |
| term1 = 0; |
| term0 = bSig; |
| } |
| sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); |
| if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) |
| || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) |
| && ( q & 1 ) ) |
| ) { |
| aSig0 = alternateASig0; |
| aSig1 = alternateASig1; |
| zSign = ! zSign; |
| } |
| return |
| normalizeRoundAndPackFloatx80( |
| 80, zSign, bExp + expDiff, aSig0, aSig1, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the square root of the extended double-precision floating-point |
| | value `a'. The operation is performed according to the IEC/IEEE Standard |
| | for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 floatx80_sqrt(floatx80 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, zExp; |
| uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; |
| uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aSig0 = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ((uint64_t)(aSig0 << 1)) { |
| return propagateFloatx80NaN(a, a, status); |
| } |
| if ( ! aSign ) return a; |
| goto invalid; |
| } |
| if ( aSign ) { |
| if ( ( aExp | aSig0 ) == 0 ) return a; |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); |
| normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
| } |
| zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; |
| zSig0 = estimateSqrt32( aExp, aSig0>>32 ); |
| shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); |
| zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); |
| doubleZSig0 = zSig0<<1; |
| mul64To128( zSig0, zSig0, &term0, &term1 ); |
| sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); |
| while ( (int64_t) rem0 < 0 ) { |
| --zSig0; |
| doubleZSig0 -= 2; |
| add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); |
| } |
| zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); |
| if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { |
| if ( zSig1 == 0 ) zSig1 = 1; |
| mul64To128( doubleZSig0, zSig1, &term1, &term2 ); |
| sub128( rem1, 0, term1, term2, &rem1, &rem2 ); |
| mul64To128( zSig1, zSig1, &term2, &term3 ); |
| sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); |
| while ( (int64_t) rem1 < 0 ) { |
| --zSig1; |
| shortShift128Left( 0, zSig1, 1, &term2, &term3 ); |
| term3 |= 1; |
| term2 |= doubleZSig0; |
| add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); |
| } |
| zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); |
| } |
| shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); |
| zSig0 |= doubleZSig0; |
| return roundAndPackFloatx80(status->floatx80_rounding_precision, |
| 0, zExp, zSig0, zSig1, status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is equal |
| | to the corresponding value `b', and 0 otherwise. The invalid exception is |
| | raised if either operand is a NaN. Otherwise, the comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_eq(floatx80 a, floatx80 b, float_status *status) |
| { |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
| || (extractFloatx80Exp(a) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(a) << 1)) |
| || (extractFloatx80Exp(b) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(b) << 1)) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| return |
| ( a.low == b.low ) |
| && ( ( a.high == b.high ) |
| || ( ( a.low == 0 ) |
| && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
| ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is |
| | less than or equal to the corresponding value `b', and 0 otherwise. The |
| | invalid exception is raised if either operand is a NaN. The comparison is |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_le(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
| || (extractFloatx80Exp(a) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(a) << 1)) |
| || (extractFloatx80Exp(b) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(b) << 1)) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| == 0 ); |
| } |
| return |
| aSign ? le128( b.high, b.low, a.high, a.low ) |
| : le128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is |
| | less than the corresponding value `b', and 0 otherwise. The invalid |
| | exception is raised if either operand is a NaN. The comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_lt(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
| || (extractFloatx80Exp(a) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(a) << 1)) |
| || (extractFloatx80Exp(b) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(b) << 1)) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| != 0 ); |
| } |
| return |
| aSign ? lt128( b.high, b.low, a.high, a.low ) |
| : lt128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point values `a' and `b' |
| | cannot be compared, and 0 otherwise. The invalid exception is raised if |
| | either operand is a NaN. The comparison is performed according to the |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) |
| { |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) |
| || (extractFloatx80Exp(a) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(a) << 1)) |
| || (extractFloatx80Exp(b) == 0x7FFF |
| && (uint64_t) (extractFloatx80Frac(b) << 1)) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is |
| | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
| | cause an exception. The comparison is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) |
| { |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| if (floatx80_is_signaling_nan(a, status) |
| || floatx80_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| return |
| ( a.low == b.low ) |
| && ( ( a.high == b.high ) |
| || ( ( a.low == 0 ) |
| && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
| ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is less |
| | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs |
| | do not cause an exception. Otherwise, the comparison is performed according |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| if (floatx80_is_signaling_nan(a, status) |
| || floatx80_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| == 0 ); |
| } |
| return |
| aSign ? le128( b.high, b.low, a.high, a.low ) |
| : le128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point value `a' is less |
| | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause |
| | an exception. Otherwise, the comparison is performed according to the |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| if (floatx80_is_signaling_nan(a, status) |
| || floatx80_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| != 0 ); |
| } |
| return |
| aSign ? lt128( b.high, b.low, a.high, a.low ) |
| : lt128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the extended double-precision floating-point values `a' and `b' |
| | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. |
| | The comparison is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) |
| { |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| if (floatx80_is_signaling_nan(a, status) |
| || floatx80_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the 32-bit two's complement integer format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic---which means in particular that the conversion is rounded |
| | according to the current rounding mode. If `a' is a NaN, the largest |
| | positive integer is returned. Otherwise, if the conversion overflows, the |
| | largest integer with the same sign as `a' is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int32_t float128_to_int32(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig0, aSig1; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; |
| if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); |
| aSig0 |= ( aSig1 != 0 ); |
| shiftCount = 0x4028 - aExp; |
| if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); |
| return roundAndPackInt32(aSign, aSig0, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the 32-bit two's complement integer format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic, except that the conversion is always rounded toward zero. If |
| | `a' is a NaN, the largest positive integer is returned. Otherwise, if the |
| | conversion overflows, the largest integer with the same sign as `a' is |
| | returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int32_t float128_to_int32_round_to_zero(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig0, aSig1, savedASig; |
| int32_t z; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| aSig0 |= ( aSig1 != 0 ); |
| if ( 0x401E < aExp ) { |
| if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; |
| goto invalid; |
| } |
| else if ( aExp < 0x3FFF ) { |
| if (aExp || aSig0) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return 0; |
| } |
| aSig0 |= LIT64( 0x0001000000000000 ); |
| shiftCount = 0x402F - aExp; |
| savedASig = aSig0; |
| aSig0 >>= shiftCount; |
| z = aSig0; |
| if ( aSign ) z = - z; |
| if ( ( z < 0 ) ^ aSign ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; |
| } |
| if ( ( aSig0<<shiftCount ) != savedASig ) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the 64-bit two's complement integer format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic---which means in particular that the conversion is rounded |
| | according to the current rounding mode. If `a' is a NaN, the largest |
| | positive integer is returned. Otherwise, if the conversion overflows, the |
| | largest integer with the same sign as `a' is returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int64_t float128_to_int64(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig0, aSig1; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); |
| shiftCount = 0x402F - aExp; |
| if ( shiftCount <= 0 ) { |
| if ( 0x403E < aExp ) { |
| float_raise(float_flag_invalid, status); |
| if ( ! aSign |
| || ( ( aExp == 0x7FFF ) |
| && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) |
| ) |
| ) { |
| return LIT64( 0x7FFFFFFFFFFFFFFF ); |
| } |
| return (int64_t) LIT64( 0x8000000000000000 ); |
| } |
| shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); |
| } |
| else { |
| shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); |
| } |
| return roundAndPackInt64(aSign, aSig0, aSig1, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the 64-bit two's complement integer format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic, except that the conversion is always rounded toward zero. |
| | If `a' is a NaN, the largest positive integer is returned. Otherwise, if |
| | the conversion overflows, the largest integer with the same sign as `a' is |
| | returned. |
| *----------------------------------------------------------------------------*/ |
| |
| int64_t float128_to_int64_round_to_zero(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, shiftCount; |
| uint64_t aSig0, aSig1; |
| int64_t z; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); |
| shiftCount = aExp - 0x402F; |
| if ( 0 < shiftCount ) { |
| if ( 0x403E <= aExp ) { |
| aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); |
| if ( ( a.high == LIT64( 0xC03E000000000000 ) ) |
| && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { |
| if (aSig1) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| } |
| else { |
| float_raise(float_flag_invalid, status); |
| if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { |
| return LIT64( 0x7FFFFFFFFFFFFFFF ); |
| } |
| } |
| return (int64_t) LIT64( 0x8000000000000000 ); |
| } |
| z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); |
| if ( (uint64_t) ( aSig1<<shiftCount ) ) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| } |
| else { |
| if ( aExp < 0x3FFF ) { |
| if ( aExp | aSig0 | aSig1 ) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return 0; |
| } |
| z = aSig0>>( - shiftCount ); |
| if ( aSig1 |
| || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| } |
| if ( aSign ) z = - z; |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point value |
| | `a' to the 64-bit unsigned integer format. The conversion is |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic---which means in particular that the conversion is rounded |
| | according to the current rounding mode. If `a' is a NaN, the largest |
| | positive integer is returned. If the conversion overflows, the |
| | largest unsigned integer is returned. If 'a' is negative, the value is |
| | rounded and zero is returned; negative values that do not round to zero |
| | will raise the inexact exception. |
| *----------------------------------------------------------------------------*/ |
| |
| uint64_t float128_to_uint64(float128 a, float_status *status) |
| { |
| flag aSign; |
| int aExp; |
| int shiftCount; |
| uint64_t aSig0, aSig1; |
| |
| aSig0 = extractFloat128Frac0(a); |
| aSig1 = extractFloat128Frac1(a); |
| aExp = extractFloat128Exp(a); |
| aSign = extractFloat128Sign(a); |
| if (aSign && (aExp > 0x3FFE)) { |
| float_raise(float_flag_invalid, status); |
| if (float128_is_any_nan(a)) { |
| return LIT64(0xFFFFFFFFFFFFFFFF); |
| } else { |
| return 0; |
| } |
| } |
| if (aExp) { |
| aSig0 |= LIT64(0x0001000000000000); |
| } |
| shiftCount = 0x402F - aExp; |
| if (shiftCount <= 0) { |
| if (0x403E < aExp) { |
| float_raise(float_flag_invalid, status); |
| return LIT64(0xFFFFFFFFFFFFFFFF); |
| } |
| shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1); |
| } else { |
| shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1); |
| } |
| return roundAndPackUint64(aSign, aSig0, aSig1, status); |
| } |
| |
| uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status) |
| { |
| uint64_t v; |
| signed char current_rounding_mode = status->float_rounding_mode; |
| |
| set_float_rounding_mode(float_round_to_zero, status); |
| v = float128_to_uint64(a, status); |
| set_float_rounding_mode(current_rounding_mode, status); |
| |
| return v; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the 32-bit unsigned integer format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic except that the conversion is always rounded toward zero. |
| | If `a' is a NaN, the largest positive integer is returned. Otherwise, |
| | if the conversion overflows, the largest unsigned integer is returned. |
| | If 'a' is negative, the value is rounded and zero is returned; negative |
| | values that do not round to zero will raise the inexact exception. |
| *----------------------------------------------------------------------------*/ |
| |
| uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status) |
| { |
| uint64_t v; |
| uint32_t res; |
| int old_exc_flags = get_float_exception_flags(status); |
| |
| v = float128_to_uint64_round_to_zero(a, status); |
| if (v > 0xffffffff) { |
| res = 0xffffffff; |
| } else { |
| return v; |
| } |
| set_float_exception_flags(old_exc_flags, status); |
| float_raise(float_flag_invalid, status); |
| return res; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the single-precision floating-point format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float32 float128_to_float32(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t aSig0, aSig1; |
| uint32_t zSig; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( aSig0 | aSig1 ) { |
| return commonNaNToFloat32(float128ToCommonNaN(a, status), status); |
| } |
| return packFloat32( aSign, 0xFF, 0 ); |
| } |
| aSig0 |= ( aSig1 != 0 ); |
| shift64RightJamming( aSig0, 18, &aSig0 ); |
| zSig = aSig0; |
| if ( aExp || zSig ) { |
| zSig |= 0x40000000; |
| aExp -= 0x3F81; |
| } |
| return roundAndPackFloat32(aSign, aExp, zSig, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the double-precision floating-point format. The conversion |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point |
| | Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float64 float128_to_float64(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t aSig0, aSig1; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( aSig0 | aSig1 ) { |
| return commonNaNToFloat64(float128ToCommonNaN(a, status), status); |
| } |
| return packFloat64( aSign, 0x7FF, 0 ); |
| } |
| shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); |
| aSig0 |= ( aSig1 != 0 ); |
| if ( aExp || aSig0 ) { |
| aSig0 |= LIT64( 0x4000000000000000 ); |
| aExp -= 0x3C01; |
| } |
| return roundAndPackFloat64(aSign, aExp, aSig0, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of converting the quadruple-precision floating-point |
| | value `a' to the extended double-precision floating-point format. The |
| | conversion is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 float128_to_floatx80(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t aSig0, aSig1; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( aSig0 | aSig1 ) { |
| return commonNaNToFloatx80(float128ToCommonNaN(a, status), status); |
| } |
| return packFloatx80(aSign, floatx80_infinity_high, |
| floatx80_infinity_low); |
| } |
| if ( aExp == 0 ) { |
| if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); |
| normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); |
| } |
| else { |
| aSig0 |= LIT64( 0x0001000000000000 ); |
| } |
| shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); |
| return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Rounds the quadruple-precision floating-point value `a' to an integer, and |
| | returns the result as a quadruple-precision floating-point value. The |
| | operation is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float128_round_to_int(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t lastBitMask, roundBitsMask; |
| float128 z; |
| |
| aExp = extractFloat128Exp( a ); |
| if ( 0x402F <= aExp ) { |
| if ( 0x406F <= aExp ) { |
| if ( ( aExp == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) |
| ) { |
| return propagateFloat128NaN(a, a, status); |
| } |
| return a; |
| } |
| lastBitMask = 1; |
| lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; |
| roundBitsMask = lastBitMask - 1; |
| z = a; |
| switch (status->float_rounding_mode) { |
| case float_round_nearest_even: |
| if ( lastBitMask ) { |
| add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); |
| if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; |
| } |
| else { |
| if ( (int64_t) z.low < 0 ) { |
| ++z.high; |
| if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; |
| } |
| } |
| break; |
| case float_round_ties_away: |
| if (lastBitMask) { |
| add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); |
| } else { |
| if ((int64_t) z.low < 0) { |
| ++z.high; |
| } |
| } |
| break; |
| case float_round_to_zero: |
| break; |
| case float_round_up: |
| if (!extractFloat128Sign(z)) { |
| add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); |
| } |
| break; |
| case float_round_down: |
| if (extractFloat128Sign(z)) { |
| add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); |
| } |
| break; |
| default: |
| abort(); |
| } |
| z.low &= ~ roundBitsMask; |
| } |
| else { |
| if ( aExp < 0x3FFF ) { |
| if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; |
| status->float_exception_flags |= float_flag_inexact; |
| aSign = extractFloat128Sign( a ); |
| switch (status->float_rounding_mode) { |
| case float_round_nearest_even: |
| if ( ( aExp == 0x3FFE ) |
| && ( extractFloat128Frac0( a ) |
| | extractFloat128Frac1( a ) ) |
| ) { |
| return packFloat128( aSign, 0x3FFF, 0, 0 ); |
| } |
| break; |
| case float_round_ties_away: |
| if (aExp == 0x3FFE) { |
| return packFloat128(aSign, 0x3FFF, 0, 0); |
| } |
| break; |
| case float_round_down: |
| return |
| aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) |
| : packFloat128( 0, 0, 0, 0 ); |
| case float_round_up: |
| return |
| aSign ? packFloat128( 1, 0, 0, 0 ) |
| : packFloat128( 0, 0x3FFF, 0, 0 ); |
| } |
| return packFloat128( aSign, 0, 0, 0 ); |
| } |
| lastBitMask = 1; |
| lastBitMask <<= 0x402F - aExp; |
| roundBitsMask = lastBitMask - 1; |
| z.low = 0; |
| z.high = a.high; |
| switch (status->float_rounding_mode) { |
| case float_round_nearest_even: |
| z.high += lastBitMask>>1; |
| if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { |
| z.high &= ~ lastBitMask; |
| } |
| break; |
| case float_round_ties_away: |
| z.high += lastBitMask>>1; |
| break; |
| case float_round_to_zero: |
| break; |
| case float_round_up: |
| if (!extractFloat128Sign(z)) { |
| z.high |= ( a.low != 0 ); |
| z.high += roundBitsMask; |
| } |
| break; |
| case float_round_down: |
| if (extractFloat128Sign(z)) { |
| z.high |= (a.low != 0); |
| z.high += roundBitsMask; |
| } |
| break; |
| default: |
| abort(); |
| } |
| z.high &= ~ roundBitsMask; |
| } |
| if ( ( z.low != a.low ) || ( z.high != a.high ) ) { |
| status->float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of adding the absolute values of the quadruple-precision |
| | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated |
| | before being returned. `zSign' is ignored if the result is a NaN. |
| | The addition is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, |
| float_status *status) |
| { |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
| int32_t expDiff; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| bSig1 = extractFloat128Frac1( b ); |
| bSig0 = extractFloat128Frac0( b ); |
| bExp = extractFloat128Exp( b ); |
| expDiff = aExp - bExp; |
| if ( 0 < expDiff ) { |
| if ( aExp == 0x7FFF ) { |
| if (aSig0 | aSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) { |
| --expDiff; |
| } |
| else { |
| bSig0 |= LIT64( 0x0001000000000000 ); |
| } |
| shift128ExtraRightJamming( |
| bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); |
| zExp = aExp; |
| } |
| else if ( expDiff < 0 ) { |
| if ( bExp == 0x7FFF ) { |
| if (bSig0 | bSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| return packFloat128( zSign, 0x7FFF, 0, 0 ); |
| } |
| if ( aExp == 0 ) { |
| ++expDiff; |
| } |
| else { |
| aSig0 |= LIT64( 0x0001000000000000 ); |
| } |
| shift128ExtraRightJamming( |
| aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); |
| zExp = bExp; |
| } |
| else { |
| if ( aExp == 0x7FFF ) { |
| if ( aSig0 | aSig1 | bSig0 | bSig1 ) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| return a; |
| } |
| add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); |
| if ( aExp == 0 ) { |
| if (status->flush_to_zero) { |
| if (zSig0 | zSig1) { |
| float_raise(float_flag_output_denormal, status); |
| } |
| return packFloat128(zSign, 0, 0, 0); |
| } |
| return packFloat128( zSign, 0, zSig0, zSig1 ); |
| } |
| zSig2 = 0; |
| zSig0 |= LIT64( 0x0002000000000000 ); |
| zExp = aExp; |
| goto shiftRight1; |
| } |
| aSig0 |= LIT64( 0x0001000000000000 ); |
| add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); |
| --zExp; |
| if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; |
| ++zExp; |
| shiftRight1: |
| shift128ExtraRightJamming( |
| zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); |
| roundAndPack: |
| return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of subtracting the absolute values of the quadruple- |
| | precision floating-point values `a' and `b'. If `zSign' is 1, the |
| | difference is negated before being returned. `zSign' is ignored if the |
| | result is a NaN. The subtraction is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, |
| float_status *status) |
| { |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; |
| int32_t expDiff; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| bSig1 = extractFloat128Frac1( b ); |
| bSig0 = extractFloat128Frac0( b ); |
| bExp = extractFloat128Exp( b ); |
| expDiff = aExp - bExp; |
| shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); |
| shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); |
| if ( 0 < expDiff ) goto aExpBigger; |
| if ( expDiff < 0 ) goto bExpBigger; |
| if ( aExp == 0x7FFF ) { |
| if ( aSig0 | aSig1 | bSig0 | bSig1 ) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| float_raise(float_flag_invalid, status); |
| return float128_default_nan(status); |
| } |
| if ( aExp == 0 ) { |
| aExp = 1; |
| bExp = 1; |
| } |
| if ( bSig0 < aSig0 ) goto aBigger; |
| if ( aSig0 < bSig0 ) goto bBigger; |
| if ( bSig1 < aSig1 ) goto aBigger; |
| if ( aSig1 < bSig1 ) goto bBigger; |
| return packFloat128(status->float_rounding_mode == float_round_down, |
| 0, 0, 0); |
| bExpBigger: |
| if ( bExp == 0x7FFF ) { |
| if (bSig0 | bSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); |
| } |
| if ( aExp == 0 ) { |
| ++expDiff; |
| } |
| else { |
| aSig0 |= LIT64( 0x4000000000000000 ); |
| } |
| shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); |
| bSig0 |= LIT64( 0x4000000000000000 ); |
| bBigger: |
| sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); |
| zExp = bExp; |
| zSign ^= 1; |
| goto normalizeRoundAndPack; |
| aExpBigger: |
| if ( aExp == 0x7FFF ) { |
| if (aSig0 | aSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) { |
| --expDiff; |
| } |
| else { |
| bSig0 |= LIT64( 0x4000000000000000 ); |
| } |
| shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); |
| aSig0 |= LIT64( 0x4000000000000000 ); |
| aBigger: |
| sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); |
| zExp = aExp; |
| normalizeRoundAndPack: |
| --zExp; |
| return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, |
| status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of adding the quadruple-precision floating-point values |
| | `a' and `b'. The operation is performed according to the IEC/IEEE Standard |
| | for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float128_add(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloat128Sign( a ); |
| bSign = extractFloat128Sign( b ); |
| if ( aSign == bSign ) { |
| return addFloat128Sigs(a, b, aSign, status); |
| } |
| else { |
| return subFloat128Sigs(a, b, aSign, status); |
| } |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of subtracting the quadruple-precision floating-point |
| | values `a' and `b'. The operation is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float128_sub(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloat128Sign( a ); |
| bSign = extractFloat128Sign( b ); |
| if ( aSign == bSign ) { |
| return subFloat128Sigs(a, b, aSign, status); |
| } |
| else { |
| return addFloat128Sigs(a, b, aSign, status); |
| } |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of multiplying the quadruple-precision floating-point |
| | values `a' and `b'. The operation is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float128_mul(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign, zSign; |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| bSig1 = extractFloat128Frac1( b ); |
| bSig0 = extractFloat128Frac0( b ); |
| bExp = extractFloat128Exp( b ); |
| bSign = extractFloat128Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FFF ) { |
| if ( ( aSig0 | aSig1 ) |
| || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; |
| return packFloat128( zSign, 0x7FFF, 0, 0 ); |
| } |
| if ( bExp == 0x7FFF ) { |
| if (bSig0 | bSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| if ( ( aExp | aSig0 | aSig1 ) == 0 ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return float128_default_nan(status); |
| } |
| return packFloat128( zSign, 0x7FFF, 0, 0 ); |
| } |
| if ( aExp == 0 ) { |
| if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); |
| normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); |
| } |
| if ( bExp == 0 ) { |
| if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); |
| normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); |
| } |
| zExp = aExp + bExp - 0x4000; |
| aSig0 |= LIT64( 0x0001000000000000 ); |
| shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); |
| mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); |
| add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); |
| zSig2 |= ( zSig3 != 0 ); |
| if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { |
| shift128ExtraRightJamming( |
| zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); |
| ++zExp; |
| } |
| return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the result of dividing the quadruple-precision floating-point value |
| | `a' by the corresponding value `b'. The operation is performed according to |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float128_div(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign, zSign; |
| int32_t aExp, bExp, zExp; |
| uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; |
| uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| bSig1 = extractFloat128Frac1( b ); |
| bSig0 = extractFloat128Frac0( b ); |
| bExp = extractFloat128Exp( b ); |
| bSign = extractFloat128Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FFF ) { |
| if (aSig0 | aSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| if ( bExp == 0x7FFF ) { |
| if (bSig0 | bSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| goto invalid; |
| } |
| return packFloat128( zSign, 0x7FFF, 0, 0 ); |
| } |
| if ( bExp == 0x7FFF ) { |
| if (bSig0 | bSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| return packFloat128( zSign, 0, 0, 0 ); |
| } |
| if ( bExp == 0 ) { |
| if ( ( bSig0 | bSig1 ) == 0 ) { |
| if ( ( aExp | aSig0 | aSig1 ) == 0 ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return float128_default_nan(status); |
| } |
| float_raise(float_flag_divbyzero, status); |
| return packFloat128( zSign, 0x7FFF, 0, 0 ); |
| } |
| normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); |
| } |
| if ( aExp == 0 ) { |
| if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); |
| normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); |
| } |
| zExp = aExp - bExp + 0x3FFD; |
| shortShift128Left( |
| aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); |
| shortShift128Left( |
| bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); |
| if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { |
| shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); |
| ++zExp; |
| } |
| zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); |
| mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); |
| sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); |
| while ( (int64_t) rem0 < 0 ) { |
| --zSig0; |
| add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); |
| } |
| zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); |
| if ( ( zSig1 & 0x3FFF ) <= 4 ) { |
| mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); |
| sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); |
| while ( (int64_t) rem1 < 0 ) { |
| --zSig1; |
| add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); |
| } |
| zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); |
| } |
| shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); |
| return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the remainder of the quadruple-precision floating-point value `a' |
| | with respect to the corresponding value `b'. The operation is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float128_rem(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, zSign; |
| int32_t aExp, bExp, expDiff; |
| uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; |
| uint64_t allZero, alternateASig0, alternateASig1, sigMean1; |
| int64_t sigMean0; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| bSig1 = extractFloat128Frac1( b ); |
| bSig0 = extractFloat128Frac0( b ); |
| bExp = extractFloat128Exp( b ); |
| if ( aExp == 0x7FFF ) { |
| if ( ( aSig0 | aSig1 ) |
| || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| goto invalid; |
| } |
| if ( bExp == 0x7FFF ) { |
| if (bSig0 | bSig1) { |
| return propagateFloat128NaN(a, b, status); |
| } |
| return a; |
| } |
| if ( bExp == 0 ) { |
| if ( ( bSig0 | bSig1 ) == 0 ) { |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return float128_default_nan(status); |
| } |
| normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); |
| } |
| if ( aExp == 0 ) { |
| if ( ( aSig0 | aSig1 ) == 0 ) return a; |
| normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); |
| } |
| expDiff = aExp - bExp; |
| if ( expDiff < -1 ) return a; |
| shortShift128Left( |
| aSig0 | LIT64( 0x0001000000000000 ), |
| aSig1, |
| 15 - ( expDiff < 0 ), |
| &aSig0, |
| &aSig1 |
| ); |
| shortShift128Left( |
| bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); |
| q = le128( bSig0, bSig1, aSig0, aSig1 ); |
| if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); |
| expDiff -= 64; |
| while ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig0, aSig1, bSig0 ); |
| q = ( 4 < q ) ? q - 4 : 0; |
| mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); |
| shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); |
| shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); |
| sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); |
| expDiff -= 61; |
| } |
| if ( -64 < expDiff ) { |
| q = estimateDiv128To64( aSig0, aSig1, bSig0 ); |
| q = ( 4 < q ) ? q - 4 : 0; |
| q >>= - expDiff; |
| shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); |
| expDiff += 52; |
| if ( expDiff < 0 ) { |
| shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); |
| } |
| else { |
| shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); |
| } |
| mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); |
| sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); |
| } |
| else { |
| shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); |
| shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); |
| } |
| do { |
| alternateASig0 = aSig0; |
| alternateASig1 = aSig1; |
| ++q; |
| sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); |
| } while ( 0 <= (int64_t) aSig0 ); |
| add128( |
| aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); |
| if ( ( sigMean0 < 0 ) |
| || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { |
| aSig0 = alternateASig0; |
| aSig1 = alternateASig1; |
| } |
| zSign = ( (int64_t) aSig0 < 0 ); |
| if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); |
| return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, |
| status); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the square root of the quadruple-precision floating-point value `a'. |
| | The operation is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| float128 float128_sqrt(float128 a, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp, zExp; |
| uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; |
| uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if (aSig0 | aSig1) { |
| return propagateFloat128NaN(a, a, status); |
| } |
| if ( ! aSign ) return a; |
| goto invalid; |
| } |
| if ( aSign ) { |
| if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; |
| invalid: |
| float_raise(float_flag_invalid, status); |
| return float128_default_nan(status); |
| } |
| if ( aExp == 0 ) { |
| if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); |
| normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); |
| } |
| zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; |
| aSig0 |= LIT64( 0x0001000000000000 ); |
| zSig0 = estimateSqrt32( aExp, aSig0>>17 ); |
| shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); |
| zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); |
| doubleZSig0 = zSig0<<1; |
| mul64To128( zSig0, zSig0, &term0, &term1 ); |
| sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); |
| while ( (int64_t) rem0 < 0 ) { |
| --zSig0; |
| doubleZSig0 -= 2; |
| add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); |
| } |
| zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); |
| if ( ( zSig1 & 0x1FFF ) <= 5 ) { |
| if ( zSig1 == 0 ) zSig1 = 1; |
| mul64To128( doubleZSig0, zSig1, &term1, &term2 ); |
| sub128( rem1, 0, term1, term2, &rem1, &rem2 ); |
| mul64To128( zSig1, zSig1, &term2, &term3 ); |
| sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); |
| while ( (int64_t) rem1 < 0 ) { |
| --zSig1; |
| shortShift128Left( 0, zSig1, 1, &term2, &term3 ); |
| term3 |= 1; |
| term2 |= doubleZSig0; |
| add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); |
| } |
| zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); |
| } |
| shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); |
| return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to |
| | the corresponding value `b', and 0 otherwise. The invalid exception is |
| | raised if either operand is a NaN. Otherwise, the comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_eq(float128 a, float128 b, float_status *status) |
| { |
| |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| return |
| ( a.low == b.low ) |
| && ( ( a.high == b.high ) |
| || ( ( a.low == 0 ) |
| && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
| ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than |
| | or equal to the corresponding value `b', and 0 otherwise. The invalid |
| | exception is raised if either operand is a NaN. The comparison is performed |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_le(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloat128Sign( a ); |
| bSign = extractFloat128Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| == 0 ); |
| } |
| return |
| aSign ? le128( b.high, b.low, a.high, a.low ) |
| : le128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than |
| | the corresponding value `b', and 0 otherwise. The invalid exception is |
| | raised if either operand is a NaN. The comparison is performed according |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_lt(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 0; |
| } |
| aSign = extractFloat128Sign( a ); |
| bSign = extractFloat128Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| != 0 ); |
| } |
| return |
| aSign ? lt128( b.high, b.low, a.high, a.low ) |
| : lt128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot |
| | be compared, and 0 otherwise. The invalid exception is raised if either |
| | operand is a NaN. The comparison is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_unordered(float128 a, float128 b, float_status *status) |
| { |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to |
| | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| | exception. The comparison is performed according to the IEC/IEEE Standard |
| | for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_eq_quiet(float128 a, float128 b, float_status *status) |
| { |
| |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| if (float128_is_signaling_nan(a, status) |
| || float128_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| return |
| ( a.low == b.low ) |
| && ( ( a.high == b.high ) |
| || ( ( a.low == 0 ) |
| && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) |
| ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than |
| | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
| | cause an exception. Otherwise, the comparison is performed according to the |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_le_quiet(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| if (float128_is_signaling_nan(a, status) |
| || float128_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloat128Sign( a ); |
| bSign = extractFloat128Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| == 0 ); |
| } |
| return |
| aSign ? le128( b.high, b.low, a.high, a.low ) |
| : le128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than |
| | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| | exception. Otherwise, the comparison is performed according to the IEC/IEEE |
| | Standard for Binary Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_lt_quiet(float128 a, float128 b, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| if (float128_is_signaling_nan(a, status) |
| || float128_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 0; |
| } |
| aSign = extractFloat128Sign( a ); |
| bSign = extractFloat128Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| != 0 ); |
| } |
| return |
| aSign ? lt128( b.high, b.low, a.high, a.low ) |
| : lt128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot |
| | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The |
| | comparison is performed according to the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| int float128_unordered_quiet(float128 a, float128 b, float_status *status) |
| { |
| if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) |
| && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) |
| || ( ( extractFloat128Exp( b ) == 0x7FFF ) |
| && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) |
| ) { |
| if (float128_is_signaling_nan(a, status) |
| || float128_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int floatx80_compare_internal(floatx80 a, floatx80 b, |
| int is_quiet, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { |
| float_raise(float_flag_invalid, status); |
| return float_relation_unordered; |
| } |
| if (( ( extractFloatx80Exp( a ) == 0x7fff ) && |
| ( extractFloatx80Frac( a )<<1 ) ) || |
| ( ( extractFloatx80Exp( b ) == 0x7fff ) && |
| ( extractFloatx80Frac( b )<<1 ) )) { |
| if (!is_quiet || |
| floatx80_is_signaling_nan(a, status) || |
| floatx80_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return float_relation_unordered; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| |
| if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && |
| ( ( a.low | b.low ) == 0 ) ) { |
| /* zero case */ |
| return float_relation_equal; |
| } else { |
| return 1 - (2 * aSign); |
| } |
| } else { |
| if (a.low == b.low && a.high == b.high) { |
| return float_relation_equal; |
| } else { |
| return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); |
| } |
| } |
| } |
| |
| int floatx80_compare(floatx80 a, floatx80 b, float_status *status) |
| { |
| return floatx80_compare_internal(a, b, 0, status); |
| } |
| |
| int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) |
| { |
| return floatx80_compare_internal(a, b, 1, status); |
| } |
| |
| static inline int float128_compare_internal(float128 a, float128 b, |
| int is_quiet, float_status *status) |
| { |
| flag aSign, bSign; |
| |
| if (( ( extractFloat128Exp( a ) == 0x7fff ) && |
| ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || |
| ( ( extractFloat128Exp( b ) == 0x7fff ) && |
| ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { |
| if (!is_quiet || |
| float128_is_signaling_nan(a, status) || |
| float128_is_signaling_nan(b, status)) { |
| float_raise(float_flag_invalid, status); |
| } |
| return float_relation_unordered; |
| } |
| aSign = extractFloat128Sign( a ); |
| bSign = extractFloat128Sign( b ); |
| if ( aSign != bSign ) { |
| if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { |
| /* zero case */ |
| return float_relation_equal; |
| } else { |
| return 1 - (2 * aSign); |
| } |
| } else { |
| if (a.low == b.low && a.high == b.high) { |
| return float_relation_equal; |
| } else { |
| return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); |
| } |
| } |
| } |
| |
| int float128_compare(float128 a, float128 b, float_status *status) |
| { |
| return float128_compare_internal(a, b, 0, status); |
| } |
| |
| int float128_compare_quiet(float128 a, float128 b, float_status *status) |
| { |
| return float128_compare_internal(a, b, 1, status); |
| } |
| |
| floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t aSig; |
| |
| if (floatx80_invalid_encoding(a)) { |
| float_raise(float_flag_invalid, status); |
| return floatx80_default_nan(status); |
| } |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| |
| if ( aExp == 0x7FFF ) { |
| if ( aSig<<1 ) { |
| return propagateFloatx80NaN(a, a, status); |
| } |
| return a; |
| } |
| |
| if (aExp == 0) { |
| if (aSig == 0) { |
| return a; |
| } |
| aExp++; |
| } |
| |
| if (n > 0x10000) { |
| n = 0x10000; |
| } else if (n < -0x10000) { |
| n = -0x10000; |
| } |
| |
| aExp += n; |
| return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, |
| aSign, aExp, aSig, 0, status); |
| } |
| |
| float128 float128_scalbn(float128 a, int n, float_status *status) |
| { |
| flag aSign; |
| int32_t aExp; |
| uint64_t aSig0, aSig1; |
| |
| aSig1 = extractFloat128Frac1( a ); |
| aSig0 = extractFloat128Frac0( a ); |
| aExp = extractFloat128Exp( a ); |
| aSign = extractFloat128Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( aSig0 | aSig1 ) { |
| return propagateFloat128NaN(a, a, status); |
| } |
| return a; |
| } |
| if (aExp != 0) { |
| aSig0 |= LIT64( 0x0001000000000000 ); |
| } else if (aSig0 == 0 && aSig1 == 0) { |
| return a; |
| } else { |
| aExp++; |
| } |
| |
| if (n > 0x10000) { |
| n = 0x10000; |
| } else if (n < -0x10000) { |
| n = -0x10000; |
| } |
| |
| aExp += n - 1; |
| return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 |
| , status); |
| |
| } |