| /* |
| * QEMU sPAPR PCI host originated from Uninorth PCI host |
| * |
| * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. |
| * Copyright (C) 2011 David Gibson, IBM Corporation. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw.h" |
| #include "pci.h" |
| #include "msi.h" |
| #include "msix.h" |
| #include "pci_host.h" |
| #include "hw/spapr.h" |
| #include "hw/spapr_pci.h" |
| #include "exec-memory.h" |
| #include <libfdt.h> |
| #include "trace.h" |
| |
| #include "hw/pci_internals.h" |
| |
| /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ |
| #define RTAS_QUERY_FN 0 |
| #define RTAS_CHANGE_FN 1 |
| #define RTAS_RESET_FN 2 |
| #define RTAS_CHANGE_MSI_FN 3 |
| #define RTAS_CHANGE_MSIX_FN 4 |
| |
| /* Interrupt types to return on RTAS_CHANGE_* */ |
| #define RTAS_TYPE_MSI 1 |
| #define RTAS_TYPE_MSIX 2 |
| |
| static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid) |
| { |
| sPAPRPHBState *sphb; |
| |
| QLIST_FOREACH(sphb, &spapr->phbs, list) { |
| if (sphb->buid != buid) { |
| continue; |
| } |
| return sphb; |
| } |
| |
| return NULL; |
| } |
| |
| static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid, |
| uint32_t config_addr) |
| { |
| sPAPRPHBState *sphb = find_phb(spapr, buid); |
| PCIHostState *phb = PCI_HOST_BRIDGE(sphb); |
| BusState *bus = BUS(phb->bus); |
| BusChild *kid; |
| int devfn = (config_addr >> 8) & 0xFF; |
| |
| if (!phb) { |
| return NULL; |
| } |
| |
| QTAILQ_FOREACH(kid, &bus->children, sibling) { |
| PCIDevice *dev = (PCIDevice *)kid->child; |
| if (dev->devfn == devfn) { |
| return dev; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static uint32_t rtas_pci_cfgaddr(uint32_t arg) |
| { |
| /* This handles the encoding of extended config space addresses */ |
| return ((arg >> 20) & 0xf00) | (arg & 0xff); |
| } |
| |
| static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid, |
| uint32_t addr, uint32_t size, |
| target_ulong rets) |
| { |
| PCIDevice *pci_dev; |
| uint32_t val; |
| |
| if ((size != 1) && (size != 2) && (size != 4)) { |
| /* access must be 1, 2 or 4 bytes */ |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| pci_dev = find_dev(spapr, buid, addr); |
| addr = rtas_pci_cfgaddr(addr); |
| |
| if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { |
| /* Access must be to a valid device, within bounds and |
| * naturally aligned */ |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| val = pci_host_config_read_common(pci_dev, addr, |
| pci_config_size(pci_dev), size); |
| |
| rtas_st(rets, 0, 0); |
| rtas_st(rets, 1, val); |
| } |
| |
| static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint64_t buid; |
| uint32_t size, addr; |
| |
| if ((nargs != 4) || (nret != 2)) { |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| size = rtas_ld(args, 3); |
| addr = rtas_ld(args, 0); |
| |
| finish_read_pci_config(spapr, buid, addr, size, rets); |
| } |
| |
| static void rtas_read_pci_config(sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint32_t size, addr; |
| |
| if ((nargs != 2) || (nret != 2)) { |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| size = rtas_ld(args, 1); |
| addr = rtas_ld(args, 0); |
| |
| finish_read_pci_config(spapr, 0, addr, size, rets); |
| } |
| |
| static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid, |
| uint32_t addr, uint32_t size, |
| uint32_t val, target_ulong rets) |
| { |
| PCIDevice *pci_dev; |
| |
| if ((size != 1) && (size != 2) && (size != 4)) { |
| /* access must be 1, 2 or 4 bytes */ |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| pci_dev = find_dev(spapr, buid, addr); |
| addr = rtas_pci_cfgaddr(addr); |
| |
| if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { |
| /* Access must be to a valid device, within bounds and |
| * naturally aligned */ |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), |
| val, size); |
| |
| rtas_st(rets, 0, 0); |
| } |
| |
| static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint64_t buid; |
| uint32_t val, size, addr; |
| |
| if ((nargs != 5) || (nret != 1)) { |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| val = rtas_ld(args, 4); |
| size = rtas_ld(args, 3); |
| addr = rtas_ld(args, 0); |
| |
| finish_write_pci_config(spapr, buid, addr, size, val, rets); |
| } |
| |
| static void rtas_write_pci_config(sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint32_t val, size, addr; |
| |
| if ((nargs != 3) || (nret != 1)) { |
| rtas_st(rets, 0, -1); |
| return; |
| } |
| |
| |
| val = rtas_ld(args, 2); |
| size = rtas_ld(args, 1); |
| addr = rtas_ld(args, 0); |
| |
| finish_write_pci_config(spapr, 0, addr, size, val, rets); |
| } |
| |
| /* |
| * Find an entry with config_addr or returns the empty one if not found AND |
| * alloc_new is set. |
| * At the moment the msi_table entries are never released so there is |
| * no point to look till the end of the list if we need to find the free entry. |
| */ |
| static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr, |
| bool alloc_new) |
| { |
| int i; |
| |
| for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) { |
| if (!phb->msi_table[i].nvec) { |
| break; |
| } |
| if (phb->msi_table[i].config_addr == config_addr) { |
| return i; |
| } |
| } |
| if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) { |
| trace_spapr_pci_msi("Allocating new MSI config", i, config_addr); |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * Set MSI/MSIX message data. |
| * This is required for msi_notify()/msix_notify() which |
| * will write at the addresses via spapr_msi_write(). |
| */ |
| static void spapr_msi_setmsg(PCIDevice *pdev, target_phys_addr_t addr, |
| bool msix, unsigned req_num) |
| { |
| unsigned i; |
| MSIMessage msg = { .address = addr, .data = 0 }; |
| |
| if (!msix) { |
| msi_set_message(pdev, msg); |
| trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); |
| return; |
| } |
| |
| for (i = 0; i < req_num; ++i) { |
| msg.address = addr | (i << 2); |
| msix_set_message(pdev, i, msg); |
| trace_spapr_pci_msi_setup(pdev->name, i, msg.address); |
| } |
| } |
| |
| static void rtas_ibm_change_msi(sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| uint32_t config_addr = rtas_ld(args, 0); |
| uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| unsigned int func = rtas_ld(args, 3); |
| unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ |
| unsigned int seq_num = rtas_ld(args, 5); |
| unsigned int ret_intr_type; |
| int ndev, irq; |
| sPAPRPHBState *phb = NULL; |
| PCIDevice *pdev = NULL; |
| |
| switch (func) { |
| case RTAS_CHANGE_MSI_FN: |
| case RTAS_CHANGE_FN: |
| ret_intr_type = RTAS_TYPE_MSI; |
| break; |
| case RTAS_CHANGE_MSIX_FN: |
| ret_intr_type = RTAS_TYPE_MSIX; |
| break; |
| default: |
| fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func); |
| rtas_st(rets, 0, -3); /* Parameter error */ |
| return; |
| } |
| |
| /* Fins sPAPRPHBState */ |
| phb = find_phb(spapr, buid); |
| if (phb) { |
| pdev = find_dev(spapr, buid, config_addr); |
| } |
| if (!phb || !pdev) { |
| rtas_st(rets, 0, -3); /* Parameter error */ |
| return; |
| } |
| |
| /* Releasing MSIs */ |
| if (!req_num) { |
| ndev = spapr_msicfg_find(phb, config_addr, false); |
| if (ndev < 0) { |
| trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); |
| rtas_st(rets, 0, -1); /* Hardware error */ |
| return; |
| } |
| trace_spapr_pci_msi("Released MSIs", ndev, config_addr); |
| rtas_st(rets, 0, 0); |
| rtas_st(rets, 1, 0); |
| return; |
| } |
| |
| /* Enabling MSI */ |
| |
| /* Find a device number in the map to add or reuse the existing one */ |
| ndev = spapr_msicfg_find(phb, config_addr, true); |
| if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) { |
| fprintf(stderr, "No free entry for a new MSI device\n"); |
| rtas_st(rets, 0, -1); /* Hardware error */ |
| return; |
| } |
| trace_spapr_pci_msi("Configuring MSI", ndev, config_addr); |
| |
| /* Check if there is an old config and MSI number has not changed */ |
| if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) { |
| /* Unexpected behaviour */ |
| fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev); |
| rtas_st(rets, 0, -1); /* Hardware error */ |
| return; |
| } |
| |
| /* There is no cached config, allocate MSIs */ |
| if (!phb->msi_table[ndev].nvec) { |
| irq = spapr_allocate_irq_block(req_num, true); |
| if (irq < 0) { |
| fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev); |
| rtas_st(rets, 0, -1); /* Hardware error */ |
| return; |
| } |
| phb->msi_table[ndev].irq = irq; |
| phb->msi_table[ndev].nvec = req_num; |
| phb->msi_table[ndev].config_addr = config_addr; |
| } |
| |
| /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ |
| spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16), |
| ret_intr_type == RTAS_TYPE_MSIX, req_num); |
| |
| rtas_st(rets, 0, 0); |
| rtas_st(rets, 1, req_num); |
| rtas_st(rets, 2, ++seq_num); |
| rtas_st(rets, 3, ret_intr_type); |
| |
| trace_spapr_pci_rtas_ibm_change_msi(func, req_num); |
| } |
| |
| static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment *spapr, |
| uint32_t token, |
| uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, |
| target_ulong rets) |
| { |
| uint32_t config_addr = rtas_ld(args, 0); |
| uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); |
| int ndev; |
| sPAPRPHBState *phb = NULL; |
| |
| /* Fins sPAPRPHBState */ |
| phb = find_phb(spapr, buid); |
| if (!phb) { |
| rtas_st(rets, 0, -3); /* Parameter error */ |
| return; |
| } |
| |
| /* Find device descriptor and start IRQ */ |
| ndev = spapr_msicfg_find(phb, config_addr, false); |
| if (ndev < 0) { |
| trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); |
| rtas_st(rets, 0, -1); /* Hardware error */ |
| return; |
| } |
| |
| intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num; |
| trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, |
| intr_src_num); |
| |
| rtas_st(rets, 0, 0); |
| rtas_st(rets, 1, intr_src_num); |
| rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ |
| } |
| |
| static int pci_spapr_swizzle(int slot, int pin) |
| { |
| return (slot + pin) % PCI_NUM_PINS; |
| } |
| |
| static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) |
| { |
| /* |
| * Here we need to convert pci_dev + irq_num to some unique value |
| * which is less than number of IRQs on the specific bus (4). We |
| * use standard PCI swizzling, that is (slot number + pin number) |
| * % 4. |
| */ |
| return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); |
| } |
| |
| static void pci_spapr_set_irq(void *opaque, int irq_num, int level) |
| { |
| /* |
| * Here we use the number returned by pci_spapr_map_irq to find a |
| * corresponding qemu_irq. |
| */ |
| sPAPRPHBState *phb = opaque; |
| |
| trace_spapr_pci_lsi_set(phb->busname, irq_num, phb->lsi_table[irq_num].irq); |
| qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); |
| } |
| |
| static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr, |
| unsigned size) |
| { |
| switch (size) { |
| case 1: |
| return cpu_inb(addr); |
| case 2: |
| return cpu_inw(addr); |
| case 4: |
| return cpu_inl(addr); |
| } |
| assert(0); |
| } |
| |
| static void spapr_io_write(void *opaque, target_phys_addr_t addr, |
| uint64_t data, unsigned size) |
| { |
| switch (size) { |
| case 1: |
| cpu_outb(addr, data); |
| return; |
| case 2: |
| cpu_outw(addr, data); |
| return; |
| case 4: |
| cpu_outl(addr, data); |
| return; |
| } |
| assert(0); |
| } |
| |
| static const MemoryRegionOps spapr_io_ops = { |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .read = spapr_io_read, |
| .write = spapr_io_write |
| }; |
| |
| /* |
| * MSI/MSIX memory region implementation. |
| * The handler handles both MSI and MSIX. |
| * For MSI-X, the vector number is encoded as a part of the address, |
| * data is set to 0. |
| * For MSI, the vector number is encoded in least bits in data. |
| */ |
| static void spapr_msi_write(void *opaque, target_phys_addr_t addr, |
| uint64_t data, unsigned size) |
| { |
| sPAPRPHBState *phb = opaque; |
| int ndev = addr >> 16; |
| int vec = ((addr & 0xFFFF) >> 2) | data; |
| uint32_t irq = phb->msi_table[ndev].irq + vec; |
| |
| trace_spapr_pci_msi_write(addr, data, irq); |
| |
| qemu_irq_pulse(xics_get_qirq(spapr->icp, irq)); |
| } |
| |
| static const MemoryRegionOps spapr_msi_ops = { |
| /* There is no .read as the read result is undefined by PCI spec */ |
| .read = NULL, |
| .write = spapr_msi_write, |
| .endianness = DEVICE_LITTLE_ENDIAN |
| }; |
| |
| /* |
| * PHB PCI device |
| */ |
| static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque, |
| int devfn) |
| { |
| sPAPRPHBState *phb = opaque; |
| |
| return phb->dma; |
| } |
| |
| static int spapr_phb_init(SysBusDevice *s) |
| { |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); |
| PCIHostState *phb = PCI_HOST_BRIDGE(s); |
| char *namebuf; |
| int i; |
| PCIBus *bus; |
| |
| sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); |
| namebuf = alloca(strlen(sphb->dtbusname) + 32); |
| |
| /* Initialize memory regions */ |
| sprintf(namebuf, "%s.mmio", sphb->dtbusname); |
| memory_region_init(&sphb->memspace, namebuf, INT64_MAX); |
| |
| sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname); |
| memory_region_init_alias(&sphb->memwindow, namebuf, &sphb->memspace, |
| SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); |
| memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, |
| &sphb->memwindow); |
| |
| /* On ppc, we only have MMIO no specific IO space from the CPU |
| * perspective. In theory we ought to be able to embed the PCI IO |
| * memory region direction in the system memory space. However, |
| * if any of the IO BAR subregions use the old_portio mechanism, |
| * that won't be processed properly unless accessed from the |
| * system io address space. This hack to bounce things via |
| * system_io works around the problem until all the users of |
| * old_portion are updated */ |
| sprintf(namebuf, "%s.io", sphb->dtbusname); |
| memory_region_init(&sphb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE); |
| /* FIXME: fix to support multiple PHBs */ |
| memory_region_add_subregion(get_system_io(), 0, &sphb->iospace); |
| |
| sprintf(namebuf, "%s.io-alias", sphb->dtbusname); |
| memory_region_init_io(&sphb->iowindow, &spapr_io_ops, sphb, |
| namebuf, SPAPR_PCI_IO_WIN_SIZE); |
| memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, |
| &sphb->iowindow); |
| |
| /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, |
| * we need to allocate some memory to catch those writes coming |
| * from msi_notify()/msix_notify() */ |
| if (msi_supported) { |
| sprintf(namebuf, "%s.msi", sphb->dtbusname); |
| memory_region_init_io(&sphb->msiwindow, &spapr_msi_ops, sphb, |
| namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000); |
| memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr, |
| &sphb->msiwindow); |
| } |
| |
| bus = pci_register_bus(DEVICE(s), |
| sphb->busname ? sphb->busname : sphb->dtbusname, |
| pci_spapr_set_irq, pci_spapr_map_irq, sphb, |
| &sphb->memspace, &sphb->iospace, |
| PCI_DEVFN(0, 0), PCI_NUM_PINS); |
| phb->bus = bus; |
| |
| sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16); |
| sphb->dma_window_start = 0; |
| sphb->dma_window_size = 0x40000000; |
| sphb->dma = spapr_tce_new_dma_context(sphb->dma_liobn, sphb->dma_window_size); |
| pci_setup_iommu(bus, spapr_pci_dma_context_fn, sphb); |
| |
| QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); |
| |
| /* Initialize the LSI table */ |
| for (i = 0; i < PCI_NUM_PINS; i++) { |
| uint32_t irq; |
| |
| irq = spapr_allocate_lsi(0); |
| if (!irq) { |
| return -1; |
| } |
| |
| sphb->lsi_table[i].irq = irq; |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_phb_reset(DeviceState *qdev) |
| { |
| SysBusDevice *s = sysbus_from_qdev(qdev); |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); |
| |
| /* Reset the IOMMU state */ |
| spapr_tce_reset(sphb->dma); |
| } |
| |
| static Property spapr_phb_properties[] = { |
| DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0), |
| DEFINE_PROP_STRING("busname", sPAPRPHBState, busname), |
| DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0), |
| DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000), |
| DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0), |
| DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000), |
| DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, 0), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void spapr_phb_class_init(ObjectClass *klass, void *data) |
| { |
| SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| sdc->init = spapr_phb_init; |
| dc->props = spapr_phb_properties; |
| dc->reset = spapr_phb_reset; |
| } |
| |
| static const TypeInfo spapr_phb_info = { |
| .name = TYPE_SPAPR_PCI_HOST_BRIDGE, |
| .parent = TYPE_PCI_HOST_BRIDGE, |
| .instance_size = sizeof(sPAPRPHBState), |
| .class_init = spapr_phb_class_init, |
| }; |
| |
| void spapr_create_phb(sPAPREnvironment *spapr, |
| const char *busname, uint64_t buid, |
| uint64_t mem_win_addr, uint64_t mem_win_size, |
| uint64_t io_win_addr, uint64_t msi_win_addr) |
| { |
| DeviceState *dev; |
| |
| dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| |
| if (busname) { |
| qdev_prop_set_string(dev, "busname", g_strdup(busname)); |
| } |
| qdev_prop_set_uint64(dev, "buid", buid); |
| qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr); |
| qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size); |
| qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr); |
| qdev_prop_set_uint64(dev, "msi_win_addr", msi_win_addr); |
| |
| qdev_init_nofail(dev); |
| } |
| |
| /* Macros to operate with address in OF binding to PCI */ |
| #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) |
| #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ |
| #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ |
| #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ |
| #define b_ss(x) b_x((x), 24, 2) /* the space code */ |
| #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ |
| #define b_ddddd(x) b_x((x), 11, 5) /* device number */ |
| #define b_fff(x) b_x((x), 8, 3) /* function number */ |
| #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ |
| |
| int spapr_populate_pci_dt(sPAPRPHBState *phb, |
| uint32_t xics_phandle, |
| void *fdt) |
| { |
| int bus_off, i, j; |
| char nodename[256]; |
| uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; |
| struct { |
| uint32_t hi; |
| uint64_t child; |
| uint64_t parent; |
| uint64_t size; |
| } QEMU_PACKED ranges[] = { |
| { |
| cpu_to_be32(b_ss(1)), cpu_to_be64(0), |
| cpu_to_be64(phb->io_win_addr), |
| cpu_to_be64(memory_region_size(&phb->iospace)), |
| }, |
| { |
| cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), |
| cpu_to_be64(phb->mem_win_addr), |
| cpu_to_be64(memory_region_size(&phb->memwindow)), |
| }, |
| }; |
| uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; |
| uint32_t interrupt_map_mask[] = { |
| cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; |
| uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; |
| |
| /* Start populating the FDT */ |
| sprintf(nodename, "pci@%" PRIx64, phb->buid); |
| bus_off = fdt_add_subnode(fdt, 0, nodename); |
| if (bus_off < 0) { |
| return bus_off; |
| } |
| |
| #define _FDT(exp) \ |
| do { \ |
| int ret = (exp); \ |
| if (ret < 0) { \ |
| return ret; \ |
| } \ |
| } while (0) |
| |
| /* Write PHB properties */ |
| _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); |
| _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); |
| _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); |
| _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); |
| _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges))); |
| _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); |
| |
| /* Build the interrupt-map, this must matches what is done |
| * in pci_spapr_map_irq |
| */ |
| _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", |
| &interrupt_map_mask, sizeof(interrupt_map_mask))); |
| for (i = 0; i < PCI_SLOT_MAX; i++) { |
| for (j = 0; j < PCI_NUM_PINS; j++) { |
| uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; |
| int lsi_num = pci_spapr_swizzle(i, j); |
| |
| irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); |
| irqmap[1] = 0; |
| irqmap[2] = 0; |
| irqmap[3] = cpu_to_be32(j+1); |
| irqmap[4] = cpu_to_be32(xics_phandle); |
| irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); |
| irqmap[6] = cpu_to_be32(0x8); |
| } |
| } |
| /* Write interrupt map */ |
| _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, |
| sizeof(interrupt_map))); |
| |
| spapr_dma_dt(fdt, bus_off, "ibm,dma-window", |
| phb->dma_liobn, phb->dma_window_start, |
| phb->dma_window_size); |
| |
| return 0; |
| } |
| |
| void spapr_pci_rtas_init(void) |
| { |
| spapr_rtas_register("read-pci-config", rtas_read_pci_config); |
| spapr_rtas_register("write-pci-config", rtas_write_pci_config); |
| spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config); |
| spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config); |
| if (msi_supported) { |
| spapr_rtas_register("ibm,query-interrupt-source-number", |
| rtas_ibm_query_interrupt_source_number); |
| spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi); |
| } |
| } |
| |
| static void spapr_pci_register_types(void) |
| { |
| type_register_static(&spapr_phb_info); |
| } |
| |
| type_init(spapr_pci_register_types) |