| /* |
| * QEMU AVR CPU helpers |
| * |
| * Copyright (c) 2016-2020 Michael Rolnik |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see |
| * <http://www.gnu.org/licenses/lgpl-2.1.html> |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/error-report.h" |
| #include "cpu.h" |
| #include "hw/core/tcg-cpu-ops.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/address-spaces.h" |
| #include "exec/helper-proto.h" |
| |
| bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| CPUAVRState *env = cpu_env(cs); |
| |
| /* |
| * We cannot separate a skip from the next instruction, |
| * as the skip would not be preserved across the interrupt. |
| * Separating the two insn normally only happens at page boundaries. |
| */ |
| if (env->skip) { |
| return false; |
| } |
| |
| if (interrupt_request & CPU_INTERRUPT_RESET) { |
| if (cpu_interrupts_enabled(env)) { |
| cs->exception_index = EXCP_RESET; |
| avr_cpu_do_interrupt(cs); |
| |
| cs->interrupt_request &= ~CPU_INTERRUPT_RESET; |
| return true; |
| } |
| } |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| if (cpu_interrupts_enabled(env) && env->intsrc != 0) { |
| int index = ctz64(env->intsrc); |
| cs->exception_index = EXCP_INT(index); |
| avr_cpu_do_interrupt(cs); |
| |
| env->intsrc &= env->intsrc - 1; /* clear the interrupt */ |
| if (!env->intsrc) { |
| cs->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void avr_cpu_do_interrupt(CPUState *cs) |
| { |
| CPUAVRState *env = cpu_env(cs); |
| |
| uint32_t ret = env->pc_w; |
| int vector = 0; |
| int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1; |
| int base = 0; |
| |
| if (cs->exception_index == EXCP_RESET) { |
| vector = 0; |
| } else if (env->intsrc != 0) { |
| vector = ctz64(env->intsrc) + 1; |
| } |
| |
| if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) { |
| cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); |
| cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); |
| cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16); |
| } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) { |
| cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); |
| cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8); |
| } else { |
| cpu_stb_data(env, env->sp--, (ret & 0x0000ff)); |
| } |
| |
| env->pc_w = base + vector * size; |
| env->sregI = 0; /* clear Global Interrupt Flag */ |
| |
| cs->exception_index = -1; |
| } |
| |
| hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| return addr; /* I assume 1:1 address correspondence */ |
| } |
| |
| bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| int prot, page_size = TARGET_PAGE_SIZE; |
| uint32_t paddr; |
| |
| address &= TARGET_PAGE_MASK; |
| |
| if (mmu_idx == MMU_CODE_IDX) { |
| /* Access to code in flash. */ |
| paddr = OFFSET_CODE + address; |
| prot = PAGE_READ | PAGE_EXEC; |
| if (paddr >= OFFSET_DATA) { |
| /* |
| * This should not be possible via any architectural operations. |
| * There is certainly not an exception that we can deliver. |
| * Accept probing that might come from generic code. |
| */ |
| if (probe) { |
| return false; |
| } |
| error_report("execution left flash memory"); |
| abort(); |
| } |
| } else { |
| /* Access to memory. */ |
| paddr = OFFSET_DATA + address; |
| prot = PAGE_READ | PAGE_WRITE; |
| if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { |
| /* |
| * Access to CPU registers, exit and rebuilt this TB to use |
| * full access in case it touches specially handled registers |
| * like SREG or SP. For probing, set page_size = 1, in order |
| * to force tlb_fill to be called for the next access. |
| */ |
| if (probe) { |
| page_size = 1; |
| } else { |
| cpu_env(cs)->fullacc = 1; |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| } |
| } |
| |
| tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size); |
| return true; |
| } |
| |
| /* |
| * helpers |
| */ |
| |
| void helper_sleep(CPUAVRState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = EXCP_HLT; |
| cpu_loop_exit(cs); |
| } |
| |
| void helper_unsupported(CPUAVRState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| /* |
| * I count not find what happens on the real platform, so |
| * it's EXCP_DEBUG for meanwhile |
| */ |
| cs->exception_index = EXCP_DEBUG; |
| if (qemu_loglevel_mask(LOG_UNIMP)) { |
| qemu_log("UNSUPPORTED\n"); |
| cpu_dump_state(cs, stderr, 0); |
| } |
| cpu_loop_exit(cs); |
| } |
| |
| void helper_debug(CPUAVRState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(cs); |
| } |
| |
| void helper_break(CPUAVRState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(cs); |
| } |
| |
| void helper_wdr(CPUAVRState *env) |
| { |
| qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n"); |
| } |
| |
| /* |
| * This function implements IN instruction |
| * |
| * It does the following |
| * a. if an IO register belongs to CPU, its value is read and returned |
| * b. otherwise io address is translated to mem address and physical memory |
| * is read. |
| * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation |
| * |
| */ |
| target_ulong helper_inb(CPUAVRState *env, uint32_t port) |
| { |
| target_ulong data = 0; |
| |
| switch (port) { |
| case 0x38: /* RAMPD */ |
| data = 0xff & (env->rampD >> 16); |
| break; |
| case 0x39: /* RAMPX */ |
| data = 0xff & (env->rampX >> 16); |
| break; |
| case 0x3a: /* RAMPY */ |
| data = 0xff & (env->rampY >> 16); |
| break; |
| case 0x3b: /* RAMPZ */ |
| data = 0xff & (env->rampZ >> 16); |
| break; |
| case 0x3c: /* EIND */ |
| data = 0xff & (env->eind >> 16); |
| break; |
| case 0x3d: /* SPL */ |
| data = env->sp & 0x00ff; |
| break; |
| case 0x3e: /* SPH */ |
| data = env->sp >> 8; |
| break; |
| case 0x3f: /* SREG */ |
| data = cpu_get_sreg(env); |
| break; |
| default: |
| /* not a special register, pass to normal memory access */ |
| data = address_space_ldub(&address_space_memory, |
| OFFSET_IO_REGISTERS + port, |
| MEMTXATTRS_UNSPECIFIED, NULL); |
| } |
| |
| return data; |
| } |
| |
| /* |
| * This function implements OUT instruction |
| * |
| * It does the following |
| * a. if an IO register belongs to CPU, its value is written into the register |
| * b. otherwise io address is translated to mem address and physical memory |
| * is written. |
| * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation |
| * |
| */ |
| void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data) |
| { |
| data &= 0x000000ff; |
| |
| switch (port) { |
| case 0x38: /* RAMPD */ |
| if (avr_feature(env, AVR_FEATURE_RAMPD)) { |
| env->rampD = (data & 0xff) << 16; |
| } |
| break; |
| case 0x39: /* RAMPX */ |
| if (avr_feature(env, AVR_FEATURE_RAMPX)) { |
| env->rampX = (data & 0xff) << 16; |
| } |
| break; |
| case 0x3a: /* RAMPY */ |
| if (avr_feature(env, AVR_FEATURE_RAMPY)) { |
| env->rampY = (data & 0xff) << 16; |
| } |
| break; |
| case 0x3b: /* RAMPZ */ |
| if (avr_feature(env, AVR_FEATURE_RAMPZ)) { |
| env->rampZ = (data & 0xff) << 16; |
| } |
| break; |
| case 0x3c: /* EIDN */ |
| env->eind = (data & 0xff) << 16; |
| break; |
| case 0x3d: /* SPL */ |
| env->sp = (env->sp & 0xff00) | (data); |
| break; |
| case 0x3e: /* SPH */ |
| if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) { |
| env->sp = (env->sp & 0x00ff) | (data << 8); |
| } |
| break; |
| case 0x3f: /* SREG */ |
| cpu_set_sreg(env, data); |
| break; |
| default: |
| /* not a special register, pass to normal memory access */ |
| address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port, |
| data, MEMTXATTRS_UNSPECIFIED, NULL); |
| } |
| } |
| |
| /* |
| * this function implements LD instruction when there is a possibility to read |
| * from a CPU register |
| */ |
| target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr) |
| { |
| uint8_t data; |
| |
| env->fullacc = false; |
| |
| if (addr < NUMBER_OF_CPU_REGISTERS) { |
| /* CPU registers */ |
| data = env->r[addr]; |
| } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { |
| /* IO registers */ |
| data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS); |
| } else { |
| /* memory */ |
| data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr, |
| MEMTXATTRS_UNSPECIFIED, NULL); |
| } |
| return data; |
| } |
| |
| /* |
| * this function implements ST instruction when there is a possibility to write |
| * into a CPU register |
| */ |
| void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr) |
| { |
| env->fullacc = false; |
| |
| /* Following logic assumes this: */ |
| assert(OFFSET_CPU_REGISTERS == OFFSET_DATA); |
| assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + |
| NUMBER_OF_CPU_REGISTERS); |
| |
| if (addr < NUMBER_OF_CPU_REGISTERS) { |
| /* CPU registers */ |
| env->r[addr] = data; |
| } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) { |
| /* IO registers */ |
| helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data); |
| } else { |
| /* memory */ |
| address_space_stb(&address_space_memory, OFFSET_DATA + addr, data, |
| MEMTXATTRS_UNSPECIFIED, NULL); |
| } |
| } |