| /* |
| * defines common to all virtual CPUs |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #ifndef CPU_ALL_H |
| #define CPU_ALL_H |
| |
| #include "exec/cpu-common.h" |
| #include "exec/memory.h" |
| #include "exec/tswap.h" |
| #include "qemu/thread.h" |
| #include "hw/core/cpu.h" |
| #include "qemu/rcu.h" |
| |
| /* some important defines: |
| * |
| * HOST_BIG_ENDIAN : whether the host cpu is big endian and |
| * otherwise little endian. |
| * |
| * TARGET_BIG_ENDIAN : same for the target cpu |
| */ |
| |
| #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN |
| #define BSWAP_NEEDED |
| #endif |
| |
| #if TARGET_LONG_SIZE == 4 |
| #define tswapl(s) tswap32(s) |
| #define tswapls(s) tswap32s((uint32_t *)(s)) |
| #define bswaptls(s) bswap32s(s) |
| #else |
| #define tswapl(s) tswap64(s) |
| #define tswapls(s) tswap64s((uint64_t *)(s)) |
| #define bswaptls(s) bswap64s(s) |
| #endif |
| |
| /* Target-endianness CPU memory access functions. These fit into the |
| * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h. |
| */ |
| #if TARGET_BIG_ENDIAN |
| #define lduw_p(p) lduw_be_p(p) |
| #define ldsw_p(p) ldsw_be_p(p) |
| #define ldl_p(p) ldl_be_p(p) |
| #define ldq_p(p) ldq_be_p(p) |
| #define stw_p(p, v) stw_be_p(p, v) |
| #define stl_p(p, v) stl_be_p(p, v) |
| #define stq_p(p, v) stq_be_p(p, v) |
| #define ldn_p(p, sz) ldn_be_p(p, sz) |
| #define stn_p(p, sz, v) stn_be_p(p, sz, v) |
| #else |
| #define lduw_p(p) lduw_le_p(p) |
| #define ldsw_p(p) ldsw_le_p(p) |
| #define ldl_p(p) ldl_le_p(p) |
| #define ldq_p(p) ldq_le_p(p) |
| #define stw_p(p, v) stw_le_p(p, v) |
| #define stl_p(p, v) stl_le_p(p, v) |
| #define stq_p(p, v) stq_le_p(p, v) |
| #define ldn_p(p, sz) ldn_le_p(p, sz) |
| #define stn_p(p, sz, v) stn_le_p(p, sz, v) |
| #endif |
| |
| /* MMU memory access macros */ |
| |
| #if defined(CONFIG_USER_ONLY) |
| #include "exec/user/abitypes.h" |
| #include "exec/user/guest-base.h" |
| |
| extern bool have_guest_base; |
| |
| /* |
| * If non-zero, the guest virtual address space is a contiguous subset |
| * of the host virtual address space, i.e. '-R reserved_va' is in effect |
| * either from the command-line or by default. The value is the last |
| * byte of the guest address space e.g. UINT32_MAX. |
| * |
| * If zero, the host and guest virtual address spaces are intermingled. |
| */ |
| extern unsigned long reserved_va; |
| |
| /* |
| * Limit the guest addresses as best we can. |
| * |
| * When not using -R reserved_va, we cannot really limit the guest |
| * to less address space than the host. For 32-bit guests, this |
| * acts as a sanity check that we're not giving the guest an address |
| * that it cannot even represent. For 64-bit guests... the address |
| * might not be what the real kernel would give, but it is at least |
| * representable in the guest. |
| * |
| * TODO: Improve address allocation to avoid this problem, and to |
| * avoid setting bits at the top of guest addresses that might need |
| * to be used for tags. |
| */ |
| #define GUEST_ADDR_MAX_ \ |
| ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ? \ |
| UINT32_MAX : ~0ul) |
| #define GUEST_ADDR_MAX (reserved_va ? : GUEST_ADDR_MAX_) |
| |
| #else |
| |
| #include "exec/hwaddr.h" |
| |
| #define SUFFIX |
| #define ARG1 as |
| #define ARG1_DECL AddressSpace *as |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst.h.inc" |
| |
| #define SUFFIX _cached_slow |
| #define ARG1 cache |
| #define ARG1_DECL MemoryRegionCache *cache |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst.h.inc" |
| |
| static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
| { |
| address_space_stl_notdirty(as, addr, val, |
| MEMTXATTRS_UNSPECIFIED, NULL); |
| } |
| |
| #define SUFFIX |
| #define ARG1 as |
| #define ARG1_DECL AddressSpace *as |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst_phys.h.inc" |
| |
| /* Inline fast path for direct RAM access. */ |
| #define ENDIANNESS |
| #include "exec/memory_ldst_cached.h.inc" |
| |
| #define SUFFIX _cached |
| #define ARG1 cache |
| #define ARG1_DECL MemoryRegionCache *cache |
| #define TARGET_ENDIANNESS |
| #include "exec/memory_ldst_phys.h.inc" |
| #endif |
| |
| /* page related stuff */ |
| |
| #ifdef TARGET_PAGE_BITS_VARY |
| # include "exec/page-vary.h" |
| extern const TargetPageBits target_page; |
| #ifdef CONFIG_DEBUG_TCG |
| #define TARGET_PAGE_BITS ({ assert(target_page.decided); target_page.bits; }) |
| #define TARGET_PAGE_MASK ({ assert(target_page.decided); \ |
| (target_long)target_page.mask; }) |
| #else |
| #define TARGET_PAGE_BITS target_page.bits |
| #define TARGET_PAGE_MASK ((target_long)target_page.mask) |
| #endif |
| #define TARGET_PAGE_SIZE (-(int)TARGET_PAGE_MASK) |
| #else |
| #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS |
| #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) |
| #define TARGET_PAGE_MASK ((target_long)-1 << TARGET_PAGE_BITS) |
| #endif |
| |
| #define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE) |
| |
| #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
| /* FIXME: Code that sets/uses this is broken and needs to go away. */ |
| #define PAGE_RESERVED 0x0100 |
| #endif |
| /* |
| * For linux-user, indicates that the page is mapped with the same semantics |
| * in both guest and host. |
| */ |
| #define PAGE_PASSTHROUGH 0x0800 |
| |
| #if defined(CONFIG_USER_ONLY) |
| void page_dump(FILE *f); |
| |
| typedef int (*walk_memory_regions_fn)(void *, target_ulong, |
| target_ulong, unsigned long); |
| int walk_memory_regions(void *, walk_memory_regions_fn); |
| |
| int page_get_flags(target_ulong address); |
| void page_set_flags(target_ulong start, target_ulong last, int flags); |
| void page_reset_target_data(target_ulong start, target_ulong last); |
| |
| /** |
| * page_check_range |
| * @start: first byte of range |
| * @len: length of range |
| * @flags: flags required for each page |
| * |
| * Return true if every page in [@start, @start+@len) has @flags set. |
| * Return false if any page is unmapped. Thus testing flags == 0 is |
| * equivalent to testing for flags == PAGE_VALID. |
| */ |
| bool page_check_range(target_ulong start, target_ulong last, int flags); |
| |
| /** |
| * page_check_range_empty: |
| * @start: first byte of range |
| * @last: last byte of range |
| * Context: holding mmap lock |
| * |
| * Return true if the entire range [@start, @last] is unmapped. |
| * The memory lock must be held so that the caller will can ensure |
| * the result stays true until a new mapping can be installed. |
| */ |
| bool page_check_range_empty(target_ulong start, target_ulong last); |
| |
| /** |
| * page_find_range_empty |
| * @min: first byte of search range |
| * @max: last byte of search range |
| * @len: size of the hole required |
| * @align: alignment of the hole required (power of 2) |
| * |
| * If there is a range [x, x+@len) within [@min, @max] such that |
| * x % @align == 0, then return x. Otherwise return -1. |
| * The memory lock must be held, as the caller will want to ensure |
| * the returned range stays empty until a new mapping can be installed. |
| */ |
| target_ulong page_find_range_empty(target_ulong min, target_ulong max, |
| target_ulong len, target_ulong align); |
| |
| /** |
| * page_get_target_data(address) |
| * @address: guest virtual address |
| * |
| * Return TARGET_PAGE_DATA_SIZE bytes of out-of-band data to associate |
| * with the guest page at @address, allocating it if necessary. The |
| * caller should already have verified that the address is valid. |
| * |
| * The memory will be freed when the guest page is deallocated, |
| * e.g. with the munmap system call. |
| */ |
| void *page_get_target_data(target_ulong address) |
| __attribute__((returns_nonnull)); |
| #endif |
| |
| CPUArchState *cpu_copy(CPUArchState *env); |
| |
| /* Flags for use in ENV->INTERRUPT_PENDING. |
| |
| The numbers assigned here are non-sequential in order to preserve |
| binary compatibility with the vmstate dump. Bit 0 (0x0001) was |
| previously used for CPU_INTERRUPT_EXIT, and is cleared when loading |
| the vmstate dump. */ |
| |
| /* External hardware interrupt pending. This is typically used for |
| interrupts from devices. */ |
| #define CPU_INTERRUPT_HARD 0x0002 |
| |
| /* Exit the current TB. This is typically used when some system-level device |
| makes some change to the memory mapping. E.g. the a20 line change. */ |
| #define CPU_INTERRUPT_EXITTB 0x0004 |
| |
| /* Halt the CPU. */ |
| #define CPU_INTERRUPT_HALT 0x0020 |
| |
| /* Debug event pending. */ |
| #define CPU_INTERRUPT_DEBUG 0x0080 |
| |
| /* Reset signal. */ |
| #define CPU_INTERRUPT_RESET 0x0400 |
| |
| /* Several target-specific external hardware interrupts. Each target/cpu.h |
| should define proper names based on these defines. */ |
| #define CPU_INTERRUPT_TGT_EXT_0 0x0008 |
| #define CPU_INTERRUPT_TGT_EXT_1 0x0010 |
| #define CPU_INTERRUPT_TGT_EXT_2 0x0040 |
| #define CPU_INTERRUPT_TGT_EXT_3 0x0200 |
| #define CPU_INTERRUPT_TGT_EXT_4 0x1000 |
| |
| /* Several target-specific internal interrupts. These differ from the |
| preceding target-specific interrupts in that they are intended to |
| originate from within the cpu itself, typically in response to some |
| instruction being executed. These, therefore, are not masked while |
| single-stepping within the debugger. */ |
| #define CPU_INTERRUPT_TGT_INT_0 0x0100 |
| #define CPU_INTERRUPT_TGT_INT_1 0x0800 |
| #define CPU_INTERRUPT_TGT_INT_2 0x2000 |
| |
| /* First unused bit: 0x4000. */ |
| |
| /* The set of all bits that should be masked when single-stepping. */ |
| #define CPU_INTERRUPT_SSTEP_MASK \ |
| (CPU_INTERRUPT_HARD \ |
| | CPU_INTERRUPT_TGT_EXT_0 \ |
| | CPU_INTERRUPT_TGT_EXT_1 \ |
| | CPU_INTERRUPT_TGT_EXT_2 \ |
| | CPU_INTERRUPT_TGT_EXT_3 \ |
| | CPU_INTERRUPT_TGT_EXT_4) |
| |
| #ifdef CONFIG_USER_ONLY |
| |
| /* |
| * Allow some level of source compatibility with softmmu. We do not |
| * support any of the more exotic features, so only invalid pages may |
| * be signaled by probe_access_flags(). |
| */ |
| #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) |
| #define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 2)) |
| #define TLB_WATCHPOINT 0 |
| |
| static inline int cpu_mmu_index(CPUState *cs, bool ifetch) |
| { |
| return MMU_USER_IDX; |
| } |
| #else |
| |
| /* |
| * Flags stored in the low bits of the TLB virtual address. |
| * These are defined so that fast path ram access is all zeros. |
| * The flags all must be between TARGET_PAGE_BITS and |
| * maximum address alignment bit. |
| * |
| * Use TARGET_PAGE_BITS_MIN so that these bits are constant |
| * when TARGET_PAGE_BITS_VARY is in effect. |
| * |
| * The count, if not the placement of these bits is known |
| * to tcg/tcg-op-ldst.c, check_max_alignment(). |
| */ |
| /* Zero if TLB entry is valid. */ |
| #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) |
| /* Set if TLB entry references a clean RAM page. The iotlb entry will |
| contain the page physical address. */ |
| #define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS_MIN - 2)) |
| /* Set if TLB entry is an IO callback. */ |
| #define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 3)) |
| /* Set if TLB entry writes ignored. */ |
| #define TLB_DISCARD_WRITE (1 << (TARGET_PAGE_BITS_MIN - 4)) |
| /* Set if the slow path must be used; more flags in CPUTLBEntryFull. */ |
| #define TLB_FORCE_SLOW (1 << (TARGET_PAGE_BITS_MIN - 5)) |
| |
| /* |
| * Use this mask to check interception with an alignment mask |
| * in a TCG backend. |
| */ |
| #define TLB_FLAGS_MASK \ |
| (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \ |
| | TLB_FORCE_SLOW | TLB_DISCARD_WRITE) |
| |
| /* |
| * Flags stored in CPUTLBEntryFull.slow_flags[x]. |
| * TLB_FORCE_SLOW must be set in CPUTLBEntry.addr_idx[x]. |
| */ |
| /* Set if TLB entry requires byte swap. */ |
| #define TLB_BSWAP (1 << 0) |
| /* Set if TLB entry contains a watchpoint. */ |
| #define TLB_WATCHPOINT (1 << 1) |
| /* Set if TLB entry requires aligned accesses. */ |
| #define TLB_CHECK_ALIGNED (1 << 2) |
| |
| #define TLB_SLOW_FLAGS_MASK (TLB_BSWAP | TLB_WATCHPOINT | TLB_CHECK_ALIGNED) |
| |
| /* The two sets of flags must not overlap. */ |
| QEMU_BUILD_BUG_ON(TLB_FLAGS_MASK & TLB_SLOW_FLAGS_MASK); |
| |
| /** |
| * tlb_hit_page: return true if page aligned @addr is a hit against the |
| * TLB entry @tlb_addr |
| * |
| * @addr: virtual address to test (must be page aligned) |
| * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) |
| */ |
| static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr) |
| { |
| return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); |
| } |
| |
| /** |
| * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr |
| * |
| * @addr: virtual address to test (need not be page aligned) |
| * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) |
| */ |
| static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr) |
| { |
| return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); |
| } |
| |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* Validate correct placement of CPUArchState. */ |
| QEMU_BUILD_BUG_ON(offsetof(ArchCPU, parent_obj) != 0); |
| QEMU_BUILD_BUG_ON(offsetof(ArchCPU, env) != sizeof(CPUState)); |
| |
| #endif /* CPU_ALL_H */ |