| /* |
| * General purpose implementation of a simple periodic countdown timer. |
| * |
| * Copyright (c) 2007 CodeSourcery. |
| * |
| * This code is licensed under the GNU LGPL. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/ptimer.h" |
| #include "migration/vmstate.h" |
| #include "qemu/host-utils.h" |
| #include "exec/replay-core.h" |
| #include "sysemu/cpu-timers.h" |
| #include "sysemu/qtest.h" |
| #include "block/aio.h" |
| #include "hw/clock.h" |
| |
| #define DELTA_ADJUST 1 |
| #define DELTA_NO_ADJUST -1 |
| |
| struct ptimer_state |
| { |
| uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ |
| uint64_t limit; |
| uint64_t delta; |
| uint32_t period_frac; |
| int64_t period; |
| int64_t last_event; |
| int64_t next_event; |
| uint8_t policy_mask; |
| QEMUTimer *timer; |
| ptimer_cb callback; |
| void *callback_opaque; |
| /* |
| * These track whether we're in a transaction block, and if we |
| * need to do a timer reload when the block finishes. They don't |
| * need to be migrated because migration can never happen in the |
| * middle of a transaction block. |
| */ |
| bool in_transaction; |
| bool need_reload; |
| }; |
| |
| /* Use a bottom-half routine to avoid reentrancy issues. */ |
| static void ptimer_trigger(ptimer_state *s) |
| { |
| s->callback(s->callback_opaque); |
| } |
| |
| static void ptimer_reload(ptimer_state *s, int delta_adjust) |
| { |
| uint32_t period_frac; |
| uint64_t period; |
| uint64_t delta; |
| bool suppress_trigger = false; |
| |
| /* |
| * Note that if delta_adjust is 0 then we must be here because of |
| * a count register write or timer start, not because of timer expiry. |
| * In that case the policy might require us to suppress the timer trigger |
| * that we would otherwise generate for a zero delta. |
| */ |
| if (delta_adjust == 0 && |
| (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) { |
| suppress_trigger = true; |
| } |
| if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) |
| && !suppress_trigger) { |
| ptimer_trigger(s); |
| } |
| |
| /* |
| * Note that ptimer_trigger() might call the device callback function, |
| * which can then modify timer state, so we must not cache any fields |
| * from ptimer_state until after we have called it. |
| */ |
| delta = s->delta; |
| period = s->period; |
| period_frac = s->period_frac; |
| |
| if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { |
| delta = s->delta = s->limit; |
| } |
| |
| if (s->period == 0 && s->period_frac == 0) { |
| if (!qtest_enabled()) { |
| fprintf(stderr, "Timer with period zero, disabling\n"); |
| } |
| timer_del(s->timer); |
| s->enabled = 0; |
| return; |
| } |
| |
| if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { |
| if (delta_adjust != DELTA_NO_ADJUST) { |
| delta += delta_adjust; |
| } |
| } |
| |
| if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { |
| if (s->enabled == 1 && s->limit == 0) { |
| delta = 1; |
| } |
| } |
| |
| if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { |
| if (delta_adjust != DELTA_NO_ADJUST) { |
| delta = 1; |
| } |
| } |
| |
| if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { |
| if (s->enabled == 1 && s->limit != 0) { |
| delta = 1; |
| } |
| } |
| |
| if (delta == 0) { |
| if (s->enabled == 0) { |
| /* trigger callback disabled the timer already */ |
| return; |
| } |
| if (!qtest_enabled()) { |
| fprintf(stderr, "Timer with delta zero, disabling\n"); |
| } |
| timer_del(s->timer); |
| s->enabled = 0; |
| return; |
| } |
| |
| /* |
| * Artificially limit timeout rate to something |
| * achievable under QEMU. Otherwise, QEMU spends all |
| * its time generating timer interrupts, and there |
| * is no forward progress. |
| * About ten microseconds is the fastest that really works |
| * on the current generation of host machines. |
| */ |
| |
| if (s->enabled == 1 && (delta * period < 10000) && |
| !icount_enabled() && !qtest_enabled()) { |
| period = 10000 / delta; |
| period_frac = 0; |
| } |
| |
| s->last_event = s->next_event; |
| s->next_event = s->last_event + delta * period; |
| if (period_frac) { |
| s->next_event += ((int64_t)period_frac * delta) >> 32; |
| } |
| timer_mod(s->timer, s->next_event); |
| } |
| |
| static void ptimer_tick(void *opaque) |
| { |
| ptimer_state *s = (ptimer_state *)opaque; |
| bool trigger = true; |
| |
| /* |
| * We perform all the tick actions within a begin/commit block |
| * because the callback function that ptimer_trigger() calls |
| * might make calls into the ptimer APIs that provoke another |
| * trigger, and we want that to cause the callback function |
| * to be called iteratively, not recursively. |
| */ |
| ptimer_transaction_begin(s); |
| |
| if (s->enabled == 2) { |
| s->delta = 0; |
| s->enabled = 0; |
| } else { |
| int delta_adjust = DELTA_ADJUST; |
| |
| if (s->delta == 0 || s->limit == 0) { |
| /* If a "continuous trigger" policy is not used and limit == 0, |
| we should error out. delta == 0 means that this tick is |
| caused by a "no immediate reload" policy, so it shouldn't |
| be adjusted. */ |
| delta_adjust = DELTA_NO_ADJUST; |
| } |
| |
| if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { |
| /* Avoid re-trigger on deferred reload if "no immediate trigger" |
| policy isn't used. */ |
| trigger = (delta_adjust == DELTA_ADJUST); |
| } |
| |
| s->delta = s->limit; |
| |
| ptimer_reload(s, delta_adjust); |
| } |
| |
| if (trigger) { |
| ptimer_trigger(s); |
| } |
| |
| ptimer_transaction_commit(s); |
| } |
| |
| uint64_t ptimer_get_count(ptimer_state *s) |
| { |
| uint64_t counter; |
| |
| if (s->enabled && s->delta != 0) { |
| int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| int64_t next = s->next_event; |
| int64_t last = s->last_event; |
| bool expired = (now - next >= 0); |
| bool oneshot = (s->enabled == 2); |
| |
| /* Figure out the current counter value. */ |
| if (expired) { |
| /* Prevent timer underflowing if it should already have |
| triggered. */ |
| counter = 0; |
| } else { |
| uint64_t rem; |
| uint64_t div; |
| int clz1, clz2; |
| int shift; |
| uint32_t period_frac = s->period_frac; |
| uint64_t period = s->period; |
| |
| if (!oneshot && (s->delta * period < 10000) && |
| !icount_enabled() && !qtest_enabled()) { |
| period = 10000 / s->delta; |
| period_frac = 0; |
| } |
| |
| /* We need to divide time by period, where time is stored in |
| rem (64-bit integer) and period is stored in period/period_frac |
| (64.32 fixed point). |
| |
| Doing full precision division is hard, so scale values and |
| do a 64-bit division. The result should be rounded down, |
| so that the rounding error never causes the timer to go |
| backwards. |
| */ |
| |
| rem = next - now; |
| div = period; |
| |
| clz1 = clz64(rem); |
| clz2 = clz64(div); |
| shift = clz1 < clz2 ? clz1 : clz2; |
| |
| rem <<= shift; |
| div <<= shift; |
| if (shift >= 32) { |
| div |= ((uint64_t)period_frac << (shift - 32)); |
| } else { |
| if (shift != 0) |
| div |= (period_frac >> (32 - shift)); |
| /* Look at remaining bits of period_frac and round div up if |
| necessary. */ |
| if ((uint32_t)(period_frac << shift)) |
| div += 1; |
| } |
| counter = rem / div; |
| |
| if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { |
| /* Before wrapping around, timer should stay with counter = 0 |
| for a one period. */ |
| if (!oneshot && s->delta == s->limit) { |
| if (now == last) { |
| /* Counter == delta here, check whether it was |
| adjusted and if it was, then right now it is |
| that "one period". */ |
| if (counter == s->limit + DELTA_ADJUST) { |
| return 0; |
| } |
| } else if (counter == s->limit) { |
| /* Since the counter is rounded down and now != last, |
| the counter == limit means that delta was adjusted |
| by +1 and right now it is that adjusted period. */ |
| return 0; |
| } |
| } |
| } |
| } |
| |
| if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { |
| /* If now == last then delta == limit, i.e. the counter already |
| represents the correct value. It would be rounded down a 1ns |
| later. */ |
| if (now != last) { |
| counter += 1; |
| } |
| } |
| } else { |
| counter = s->delta; |
| } |
| return counter; |
| } |
| |
| void ptimer_set_count(ptimer_state *s, uint64_t count) |
| { |
| assert(s->in_transaction); |
| s->delta = count; |
| if (s->enabled) { |
| s->need_reload = true; |
| } |
| } |
| |
| void ptimer_run(ptimer_state *s, int oneshot) |
| { |
| bool was_disabled = !s->enabled; |
| |
| assert(s->in_transaction); |
| |
| if (was_disabled && s->period == 0 && s->period_frac == 0) { |
| if (!qtest_enabled()) { |
| fprintf(stderr, "Timer with period zero, disabling\n"); |
| } |
| return; |
| } |
| s->enabled = oneshot ? 2 : 1; |
| if (was_disabled) { |
| s->need_reload = true; |
| } |
| } |
| |
| /* Pause a timer. Note that this may cause it to "lose" time, even if it |
| is immediately restarted. */ |
| void ptimer_stop(ptimer_state *s) |
| { |
| assert(s->in_transaction); |
| |
| if (!s->enabled) |
| return; |
| |
| s->delta = ptimer_get_count(s); |
| timer_del(s->timer); |
| s->enabled = 0; |
| s->need_reload = false; |
| } |
| |
| /* Set counter increment interval in nanoseconds. */ |
| void ptimer_set_period(ptimer_state *s, int64_t period) |
| { |
| assert(s->in_transaction); |
| s->delta = ptimer_get_count(s); |
| s->period = period; |
| s->period_frac = 0; |
| if (s->enabled) { |
| s->need_reload = true; |
| } |
| } |
| |
| /* Set counter increment interval from a Clock */ |
| void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk, |
| unsigned int divisor) |
| { |
| /* |
| * The raw clock period is a 64-bit value in units of 2^-32 ns; |
| * put another way it's a 32.32 fixed-point ns value. Our internal |
| * representation of the period is 64.32 fixed point ns, so |
| * the conversion is simple. |
| */ |
| uint64_t raw_period = clock_get(clk); |
| uint64_t period_frac; |
| |
| assert(s->in_transaction); |
| s->delta = ptimer_get_count(s); |
| s->period = extract64(raw_period, 32, 32); |
| period_frac = extract64(raw_period, 0, 32); |
| /* |
| * divisor specifies a possible frequency divisor between the |
| * clock and the timer, so it is a multiplier on the period. |
| * We do the multiply after splitting the raw period out into |
| * period and frac to avoid having to do a 32*64->96 multiply. |
| */ |
| s->period *= divisor; |
| period_frac *= divisor; |
| s->period += extract64(period_frac, 32, 32); |
| s->period_frac = (uint32_t)period_frac; |
| |
| if (s->enabled) { |
| s->need_reload = true; |
| } |
| } |
| |
| /* Set counter frequency in Hz. */ |
| void ptimer_set_freq(ptimer_state *s, uint32_t freq) |
| { |
| assert(s->in_transaction); |
| s->delta = ptimer_get_count(s); |
| s->period = 1000000000ll / freq; |
| s->period_frac = (1000000000ll << 32) / freq; |
| if (s->enabled) { |
| s->need_reload = true; |
| } |
| } |
| |
| /* Set the initial countdown value. If reload is nonzero then also set |
| count = limit. */ |
| void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) |
| { |
| assert(s->in_transaction); |
| s->limit = limit; |
| if (reload) |
| s->delta = limit; |
| if (s->enabled && reload) { |
| s->need_reload = true; |
| } |
| } |
| |
| uint64_t ptimer_get_limit(ptimer_state *s) |
| { |
| return s->limit; |
| } |
| |
| void ptimer_transaction_begin(ptimer_state *s) |
| { |
| assert(!s->in_transaction); |
| s->in_transaction = true; |
| s->need_reload = false; |
| } |
| |
| void ptimer_transaction_commit(ptimer_state *s) |
| { |
| assert(s->in_transaction); |
| /* |
| * We must loop here because ptimer_reload() can call the callback |
| * function, which might then update ptimer state in a way that |
| * means we need to do another reload and possibly another callback. |
| * A disabled timer never needs reloading (and if we don't check |
| * this then we loop forever if ptimer_reload() disables the timer). |
| */ |
| while (s->need_reload && s->enabled) { |
| s->need_reload = false; |
| s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| ptimer_reload(s, 0); |
| } |
| /* Now we've finished reload we can leave the transaction block. */ |
| s->in_transaction = false; |
| } |
| |
| const VMStateDescription vmstate_ptimer = { |
| .name = "ptimer", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8(enabled, ptimer_state), |
| VMSTATE_UINT64(limit, ptimer_state), |
| VMSTATE_UINT64(delta, ptimer_state), |
| VMSTATE_UINT32(period_frac, ptimer_state), |
| VMSTATE_INT64(period, ptimer_state), |
| VMSTATE_INT64(last_event, ptimer_state), |
| VMSTATE_INT64(next_event, ptimer_state), |
| VMSTATE_TIMER_PTR(timer, ptimer_state), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque, |
| uint8_t policy_mask) |
| { |
| ptimer_state *s; |
| |
| /* The callback function is mandatory. */ |
| assert(callback); |
| |
| s = g_new0(ptimer_state, 1); |
| s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); |
| s->policy_mask = policy_mask; |
| s->callback = callback; |
| s->callback_opaque = callback_opaque; |
| |
| /* |
| * These two policies are incompatible -- trigger-on-decrement implies |
| * a timer trigger when the count becomes 0, but no-immediate-trigger |
| * implies a trigger when the count stops being 0. |
| */ |
| assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) && |
| (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER))); |
| return s; |
| } |
| |
| void ptimer_free(ptimer_state *s) |
| { |
| timer_free(s->timer); |
| g_free(s); |
| } |