blob: 5041c13962727cfe3ef273e9523b971cf53ab838 [file] [log] [blame]
/*
* S/390 FPU helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "tcg_s390x.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
static inline Int128 RET128(float128 f)
{
return int128_make128(f.low, f.high);
}
static inline float128 ARG128(Int128 i)
{
return make_float128(int128_gethi(i), int128_getlo(i));
}
uint8_t s390_softfloat_exc_to_ieee(unsigned int exc)
{
uint8_t s390_exc = 0;
s390_exc |= (exc & float_flag_invalid) ? S390_IEEE_MASK_INVALID : 0;
s390_exc |= (exc & float_flag_divbyzero) ? S390_IEEE_MASK_DIVBYZERO : 0;
s390_exc |= (exc & float_flag_overflow) ? S390_IEEE_MASK_OVERFLOW : 0;
s390_exc |= (exc & float_flag_underflow) ? S390_IEEE_MASK_UNDERFLOW : 0;
s390_exc |= (exc & (float_flag_inexact | float_flag_invalid_cvti)) ?
S390_IEEE_MASK_INEXACT : 0;
return s390_exc;
}
/* Should be called after any operation that may raise IEEE exceptions. */
static void handle_exceptions(CPUS390XState *env, bool XxC, uintptr_t retaddr)
{
unsigned s390_exc, qemu_exc;
/* Get the exceptions raised by the current operation. Reset the
fpu_status contents so that the next operation has a clean slate. */
qemu_exc = env->fpu_status.float_exception_flags;
if (qemu_exc == 0) {
return;
}
env->fpu_status.float_exception_flags = 0;
s390_exc = s390_softfloat_exc_to_ieee(qemu_exc);
/*
* IEEE-Underflow exception recognition exists if a tininess condition
* (underflow) exists and
* - The mask bit in the FPC is zero and the result is inexact
* - The mask bit in the FPC is one
* So tininess conditions that are not inexact don't trigger any
* underflow action in case the mask bit is not one.
*/
if (!(s390_exc & S390_IEEE_MASK_INEXACT) &&
!((env->fpc >> 24) & S390_IEEE_MASK_UNDERFLOW)) {
s390_exc &= ~S390_IEEE_MASK_UNDERFLOW;
}
/*
* FIXME:
* 1. Right now, all inexact conditions are indicated as
* "truncated" (0) and never as "incremented" (1) in the DXC.
* 2. Only traps due to invalid/divbyzero are suppressing. Other traps
* are completing, meaning the target register has to be written!
* This, however will mean that we have to write the register before
* triggering the trap - impossible right now.
*/
/*
* invalid/divbyzero cannot coexist with other conditions.
* overflow/underflow however can coexist with inexact, we have to
* handle it separately.
*/
if (s390_exc & ~S390_IEEE_MASK_INEXACT) {
if (s390_exc & ~S390_IEEE_MASK_INEXACT & env->fpc >> 24) {
/* trap condition - inexact reported along */
tcg_s390_data_exception(env, s390_exc, retaddr);
}
/* nontrap condition - inexact handled differently */
env->fpc |= (s390_exc & ~S390_IEEE_MASK_INEXACT) << 16;
}
/* inexact handling */
if (s390_exc & S390_IEEE_MASK_INEXACT && !XxC) {
/* trap condition - overflow/underflow _not_ reported along */
if (s390_exc & S390_IEEE_MASK_INEXACT & env->fpc >> 24) {
tcg_s390_data_exception(env, s390_exc & S390_IEEE_MASK_INEXACT,
retaddr);
}
/* nontrap condition */
env->fpc |= (s390_exc & S390_IEEE_MASK_INEXACT) << 16;
}
}
int float_comp_to_cc(CPUS390XState *env, FloatRelation float_compare)
{
switch (float_compare) {
case float_relation_equal:
return 0;
case float_relation_less:
return 1;
case float_relation_greater:
return 2;
case float_relation_unordered:
return 3;
default:
cpu_abort(env_cpu(env), "unknown return value for float compare\n");
}
}
/* condition codes for unary FP ops */
uint32_t set_cc_nz_f32(float32 v)
{
if (float32_is_any_nan(v)) {
return 3;
} else if (float32_is_zero(v)) {
return 0;
} else if (float32_is_neg(v)) {
return 1;
} else {
return 2;
}
}
uint32_t set_cc_nz_f64(float64 v)
{
if (float64_is_any_nan(v)) {
return 3;
} else if (float64_is_zero(v)) {
return 0;
} else if (float64_is_neg(v)) {
return 1;
} else {
return 2;
}
}
uint32_t set_cc_nz_f128(float128 v)
{
if (float128_is_any_nan(v)) {
return 3;
} else if (float128_is_zero(v)) {
return 0;
} else if (float128_is_neg(v)) {
return 1;
} else {
return 2;
}
}
/* condition codes for FP to integer conversion ops */
static uint32_t set_cc_conv_f32(float32 v, float_status *stat)
{
if (stat->float_exception_flags & float_flag_invalid) {
return 3;
} else {
return set_cc_nz_f32(v);
}
}
static uint32_t set_cc_conv_f64(float64 v, float_status *stat)
{
if (stat->float_exception_flags & float_flag_invalid) {
return 3;
} else {
return set_cc_nz_f64(v);
}
}
static uint32_t set_cc_conv_f128(float128 v, float_status *stat)
{
if (stat->float_exception_flags & float_flag_invalid) {
return 3;
} else {
return set_cc_nz_f128(v);
}
}
static inline uint8_t round_from_m34(uint32_t m34)
{
return extract32(m34, 0, 4);
}
static inline bool xxc_from_m34(uint32_t m34)
{
/* XxC is bit 1 of m4 */
return extract32(m34, 4 + 3 - 1, 1);
}
/* 32-bit FP addition */
uint64_t HELPER(aeb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float32 ret = float32_add(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 64-bit FP addition */
uint64_t HELPER(adb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float64 ret = float64_add(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 128-bit FP addition */
Int128 HELPER(axb)(CPUS390XState *env, Int128 a, Int128 b)
{
float128 ret = float128_add(ARG128(a), ARG128(b), &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
/* 32-bit FP subtraction */
uint64_t HELPER(seb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float32 ret = float32_sub(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 64-bit FP subtraction */
uint64_t HELPER(sdb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float64 ret = float64_sub(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 128-bit FP subtraction */
Int128 HELPER(sxb)(CPUS390XState *env, Int128 a, Int128 b)
{
float128 ret = float128_sub(ARG128(a), ARG128(b), &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
/* 32-bit FP division */
uint64_t HELPER(deb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float32 ret = float32_div(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 64-bit FP division */
uint64_t HELPER(ddb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float64 ret = float64_div(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 128-bit FP division */
Int128 HELPER(dxb)(CPUS390XState *env, Int128 a, Int128 b)
{
float128 ret = float128_div(ARG128(a), ARG128(b), &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
/* 32-bit FP multiplication */
uint64_t HELPER(meeb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float32 ret = float32_mul(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 64-bit FP multiplication */
uint64_t HELPER(mdb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float64 ret = float64_mul(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 64/32-bit FP multiplication */
uint64_t HELPER(mdeb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float64 f1_64 = float32_to_float64(f1, &env->fpu_status);
float64 ret = float32_to_float64(f2, &env->fpu_status);
ret = float64_mul(f1_64, ret, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 128-bit FP multiplication */
Int128 HELPER(mxb)(CPUS390XState *env, Int128 a, Int128 b)
{
float128 ret = float128_mul(ARG128(a), ARG128(b), &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
/* 128/64-bit FP multiplication */
Int128 HELPER(mxdb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
float128 f1_128 = float64_to_float128(f1, &env->fpu_status);
float128 ret = float64_to_float128(f2, &env->fpu_status);
ret = float128_mul(f1_128, ret, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
/* convert 32-bit float to 64-bit float */
uint64_t HELPER(ldeb)(CPUS390XState *env, uint64_t f2)
{
float64 ret = float32_to_float64(f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* convert 128-bit float to 64-bit float */
uint64_t HELPER(ldxb)(CPUS390XState *env, Int128 a, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float64 ret = float128_to_float64(ARG128(a), &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* convert 64-bit float to 128-bit float */
Int128 HELPER(lxdb)(CPUS390XState *env, uint64_t f2)
{
float128 ret = float64_to_float128(f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
/* convert 32-bit float to 128-bit float */
Int128 HELPER(lxeb)(CPUS390XState *env, uint64_t f2)
{
float128 ret = float32_to_float128(f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
/* convert 64-bit float to 32-bit float */
uint64_t HELPER(ledb)(CPUS390XState *env, uint64_t f2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float32 ret = float64_to_float32(f2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* convert 128-bit float to 32-bit float */
uint64_t HELPER(lexb)(CPUS390XState *env, Int128 a, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float32 ret = float128_to_float32(ARG128(a), &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* 32-bit FP compare */
uint32_t HELPER(ceb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
FloatRelation cmp = float32_compare_quiet(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return float_comp_to_cc(env, cmp);
}
/* 64-bit FP compare */
uint32_t HELPER(cdb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
FloatRelation cmp = float64_compare_quiet(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return float_comp_to_cc(env, cmp);
}
/* 128-bit FP compare */
uint32_t HELPER(cxb)(CPUS390XState *env, Int128 a, Int128 b)
{
FloatRelation cmp = float128_compare_quiet(ARG128(a), ARG128(b),
&env->fpu_status);
handle_exceptions(env, false, GETPC());
return float_comp_to_cc(env, cmp);
}
int s390_swap_bfp_rounding_mode(CPUS390XState *env, int m3)
{
int ret = env->fpu_status.float_rounding_mode;
switch (m3) {
case 0:
/* current mode */
break;
case 1:
/* round to nearest with ties away from 0 */
set_float_rounding_mode(float_round_ties_away, &env->fpu_status);
break;
case 3:
/* round to prepare for shorter precision */
set_float_rounding_mode(float_round_to_odd, &env->fpu_status);
break;
case 4:
/* round to nearest with ties to even */
set_float_rounding_mode(float_round_nearest_even, &env->fpu_status);
break;
case 5:
/* round to zero */
set_float_rounding_mode(float_round_to_zero, &env->fpu_status);
break;
case 6:
/* round to +inf */
set_float_rounding_mode(float_round_up, &env->fpu_status);
break;
case 7:
/* round to -inf */
set_float_rounding_mode(float_round_down, &env->fpu_status);
break;
default:
g_assert_not_reached();
}
return ret;
}
void s390_restore_bfp_rounding_mode(CPUS390XState *env, int old_mode)
{
set_float_rounding_mode(old_mode, &env->fpu_status);
}
/* convert 64-bit int to 32-bit float */
uint64_t HELPER(cegb)(CPUS390XState *env, int64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float32 ret = int64_to_float32(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* convert 64-bit int to 64-bit float */
uint64_t HELPER(cdgb)(CPUS390XState *env, int64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float64 ret = int64_to_float64(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* convert 64-bit int to 128-bit float */
Int128 HELPER(cxgb)(CPUS390XState *env, int64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float128 ret = int64_to_float128(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return RET128(ret);
}
/* convert 64-bit uint to 32-bit float */
uint64_t HELPER(celgb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float32 ret = uint64_to_float32(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* convert 64-bit uint to 64-bit float */
uint64_t HELPER(cdlgb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float64 ret = uint64_to_float64(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* convert 64-bit uint to 128-bit float */
Int128 HELPER(cxlgb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float128 ret = uint64_to_float128(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return RET128(ret);
}
/* convert 32-bit float to 64-bit int */
uint64_t HELPER(cgeb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
int64_t ret = float32_to_int64(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float32_is_any_nan(v2)) {
return INT64_MIN;
}
return ret;
}
/* convert 64-bit float to 64-bit int */
uint64_t HELPER(cgdb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
int64_t ret = float64_to_int64(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float64_is_any_nan(v2)) {
return INT64_MIN;
}
return ret;
}
/* convert 128-bit float to 64-bit int */
uint64_t HELPER(cgxb)(CPUS390XState *env, Int128 i2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float128 v2 = ARG128(i2);
int64_t ret = float128_to_int64(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float128_is_any_nan(v2)) {
return INT64_MIN;
}
return ret;
}
/* convert 32-bit float to 32-bit int */
uint64_t HELPER(cfeb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
int32_t ret = float32_to_int32(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float32_is_any_nan(v2)) {
return INT32_MIN;
}
return ret;
}
/* convert 64-bit float to 32-bit int */
uint64_t HELPER(cfdb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
int32_t ret = float64_to_int32(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float64_is_any_nan(v2)) {
return INT32_MIN;
}
return ret;
}
/* convert 128-bit float to 32-bit int */
uint64_t HELPER(cfxb)(CPUS390XState *env, Int128 i2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float128 v2 = ARG128(i2);
int32_t ret = float128_to_int32(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float128_is_any_nan(v2)) {
return INT32_MIN;
}
return ret;
}
/* convert 32-bit float to 64-bit uint */
uint64_t HELPER(clgeb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
uint64_t ret = float32_to_uint64(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float32_is_any_nan(v2)) {
return 0;
}
return ret;
}
/* convert 64-bit float to 64-bit uint */
uint64_t HELPER(clgdb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
uint64_t ret = float64_to_uint64(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float64_is_any_nan(v2)) {
return 0;
}
return ret;
}
/* convert 128-bit float to 64-bit uint */
uint64_t HELPER(clgxb)(CPUS390XState *env, Int128 i2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float128 v2 = ARG128(i2);
uint64_t ret = float128_to_uint64(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float128_is_any_nan(v2)) {
return 0;
}
return ret;
}
/* convert 32-bit float to 32-bit uint */
uint64_t HELPER(clfeb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
uint32_t ret = float32_to_uint32(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f32(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float32_is_any_nan(v2)) {
return 0;
}
return ret;
}
/* convert 64-bit float to 32-bit uint */
uint64_t HELPER(clfdb)(CPUS390XState *env, uint64_t v2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
uint32_t ret = float64_to_uint32(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f64(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float64_is_any_nan(v2)) {
return 0;
}
return ret;
}
/* convert 128-bit float to 32-bit uint */
uint64_t HELPER(clfxb)(CPUS390XState *env, Int128 i2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float128 v2 = ARG128(i2);
uint32_t ret = float128_to_uint32(v2, &env->fpu_status);
uint32_t cc = set_cc_conv_f128(v2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
env->cc_op = cc;
if (float128_is_any_nan(v2)) {
return 0;
}
return ret;
}
/* round to integer 32-bit */
uint64_t HELPER(fieb)(CPUS390XState *env, uint64_t f2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float32 ret = float32_round_to_int(f2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* round to integer 64-bit */
uint64_t HELPER(fidb)(CPUS390XState *env, uint64_t f2, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float64 ret = float64_round_to_int(f2, &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return ret;
}
/* round to integer 128-bit */
Int128 HELPER(fixb)(CPUS390XState *env, Int128 a, uint32_t m34)
{
int old_mode = s390_swap_bfp_rounding_mode(env, round_from_m34(m34));
float128 ret = float128_round_to_int(ARG128(a), &env->fpu_status);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_exceptions(env, xxc_from_m34(m34), GETPC());
return RET128(ret);
}
/* 32-bit FP compare and signal */
uint32_t HELPER(keb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
FloatRelation cmp = float32_compare(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return float_comp_to_cc(env, cmp);
}
/* 64-bit FP compare and signal */
uint32_t HELPER(kdb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
{
FloatRelation cmp = float64_compare(f1, f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return float_comp_to_cc(env, cmp);
}
/* 128-bit FP compare and signal */
uint32_t HELPER(kxb)(CPUS390XState *env, Int128 a, Int128 b)
{
FloatRelation cmp = float128_compare(ARG128(a), ARG128(b),
&env->fpu_status);
handle_exceptions(env, false, GETPC());
return float_comp_to_cc(env, cmp);
}
/* 32-bit FP multiply and add */
uint64_t HELPER(maeb)(CPUS390XState *env, uint64_t f1,
uint64_t f2, uint64_t f3)
{
float32 ret = float32_muladd(f3, f2, f1, 0, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 64-bit FP multiply and add */
uint64_t HELPER(madb)(CPUS390XState *env, uint64_t f1,
uint64_t f2, uint64_t f3)
{
float64 ret = float64_muladd(f3, f2, f1, 0, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 32-bit FP multiply and subtract */
uint64_t HELPER(mseb)(CPUS390XState *env, uint64_t f1,
uint64_t f2, uint64_t f3)
{
float32 ret = float32_muladd(f3, f2, f1, float_muladd_negate_c,
&env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* 64-bit FP multiply and subtract */
uint64_t HELPER(msdb)(CPUS390XState *env, uint64_t f1,
uint64_t f2, uint64_t f3)
{
float64 ret = float64_muladd(f3, f2, f1, float_muladd_negate_c,
&env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* The rightmost bit has the number 11. */
static inline uint16_t dcmask(int bit, bool neg)
{
return 1 << (11 - bit - neg);
}
#define DEF_FLOAT_DCMASK(_TYPE) \
uint16_t _TYPE##_dcmask(CPUS390XState *env, _TYPE f1) \
{ \
const bool neg = _TYPE##_is_neg(f1); \
\
/* Sorted by most common cases - only one class is possible */ \
if (_TYPE##_is_normal(f1)) { \
return dcmask(2, neg); \
} else if (_TYPE##_is_zero(f1)) { \
return dcmask(0, neg); \
} else if (_TYPE##_is_denormal(f1)) { \
return dcmask(4, neg); \
} else if (_TYPE##_is_infinity(f1)) { \
return dcmask(6, neg); \
} else if (_TYPE##_is_quiet_nan(f1, &env->fpu_status)) { \
return dcmask(8, neg); \
} \
/* signaling nan, as last remaining case */ \
return dcmask(10, neg); \
}
DEF_FLOAT_DCMASK(float32)
DEF_FLOAT_DCMASK(float64)
DEF_FLOAT_DCMASK(float128)
/* test data class 32-bit */
uint32_t HELPER(tceb)(CPUS390XState *env, uint64_t f1, uint64_t m2)
{
return (m2 & float32_dcmask(env, f1)) != 0;
}
/* test data class 64-bit */
uint32_t HELPER(tcdb)(CPUS390XState *env, uint64_t v1, uint64_t m2)
{
return (m2 & float64_dcmask(env, v1)) != 0;
}
/* test data class 128-bit */
uint32_t HELPER(tcxb)(CPUS390XState *env, Int128 a, uint64_t m2)
{
return (m2 & float128_dcmask(env, ARG128(a))) != 0;
}
/* square root 32-bit */
uint64_t HELPER(sqeb)(CPUS390XState *env, uint64_t f2)
{
float32 ret = float32_sqrt(f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* square root 64-bit */
uint64_t HELPER(sqdb)(CPUS390XState *env, uint64_t f2)
{
float64 ret = float64_sqrt(f2, &env->fpu_status);
handle_exceptions(env, false, GETPC());
return ret;
}
/* square root 128-bit */
Int128 HELPER(sqxb)(CPUS390XState *env, Int128 a)
{
float128 ret = float128_sqrt(ARG128(a), &env->fpu_status);
handle_exceptions(env, false, GETPC());
return RET128(ret);
}
static const int fpc_to_rnd[8] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down,
-1,
-1,
-1,
float_round_to_odd,
};
/* set fpc */
void HELPER(sfpc)(CPUS390XState *env, uint64_t fpc)
{
if (fpc_to_rnd[fpc & 0x7] == -1 || fpc & 0x03030088u ||
(!s390_has_feat(S390_FEAT_FLOATING_POINT_EXT) && fpc & 0x4)) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
}
/* Install everything in the main FPC. */
env->fpc = fpc;
/* Install the rounding mode in the shadow fpu_status. */
set_float_rounding_mode(fpc_to_rnd[fpc & 0x7], &env->fpu_status);
}
/* set fpc and signal */
void HELPER(sfas)(CPUS390XState *env, uint64_t fpc)
{
uint32_t signalling = env->fpc;
uint32_t s390_exc;
if (fpc_to_rnd[fpc & 0x7] == -1 || fpc & 0x03030088u ||
(!s390_has_feat(S390_FEAT_FLOATING_POINT_EXT) && fpc & 0x4)) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
}
/*
* FPC is set to the FPC operand with a bitwise OR of the signalling
* flags.
*/
env->fpc = fpc | (signalling & 0x00ff0000);
set_float_rounding_mode(fpc_to_rnd[fpc & 0x7], &env->fpu_status);
/*
* If any signaling flag is enabled in the new FPC mask, a
* simulated-iee-exception exception occurs.
*/
s390_exc = (signalling >> 16) & (fpc >> 24);
if (s390_exc) {
if (s390_exc & S390_IEEE_MASK_INVALID) {
s390_exc = S390_IEEE_MASK_INVALID;
} else if (s390_exc & S390_IEEE_MASK_DIVBYZERO) {
s390_exc = S390_IEEE_MASK_DIVBYZERO;
} else if (s390_exc & S390_IEEE_MASK_OVERFLOW) {
s390_exc &= (S390_IEEE_MASK_OVERFLOW | S390_IEEE_MASK_INEXACT);
} else if (s390_exc & S390_IEEE_MASK_UNDERFLOW) {
s390_exc &= (S390_IEEE_MASK_UNDERFLOW | S390_IEEE_MASK_INEXACT);
} else if (s390_exc & S390_IEEE_MASK_INEXACT) {
s390_exc = S390_IEEE_MASK_INEXACT;
} else if (s390_exc & S390_IEEE_MASK_QUANTUM) {
s390_exc = S390_IEEE_MASK_QUANTUM;
}
tcg_s390_data_exception(env, s390_exc | 3, GETPC());
}
}
/* set bfp rounding mode */
void HELPER(srnm)(CPUS390XState *env, uint64_t rnd)
{
if (rnd > 0x7 || fpc_to_rnd[rnd & 0x7] == -1) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
}
env->fpc = deposit32(env->fpc, 0, 3, rnd);
set_float_rounding_mode(fpc_to_rnd[rnd & 0x7], &env->fpu_status);
}