| /* |
| * Simple C functions to supplement the C library |
| * |
| * Copyright (c) 2006 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/host-utils.h" |
| #include <math.h> |
| |
| #include "qemu-common.h" |
| #include "qemu/sockets.h" |
| #include "qemu/iov.h" |
| #include "net/net.h" |
| #include "qemu/ctype.h" |
| #include "qemu/cutils.h" |
| #include "qemu/error-report.h" |
| |
| void strpadcpy(char *buf, int buf_size, const char *str, char pad) |
| { |
| int len = qemu_strnlen(str, buf_size); |
| memcpy(buf, str, len); |
| memset(buf + len, pad, buf_size - len); |
| } |
| |
| void pstrcpy(char *buf, int buf_size, const char *str) |
| { |
| int c; |
| char *q = buf; |
| |
| if (buf_size <= 0) |
| return; |
| |
| for(;;) { |
| c = *str++; |
| if (c == 0 || q >= buf + buf_size - 1) |
| break; |
| *q++ = c; |
| } |
| *q = '\0'; |
| } |
| |
| /* strcat and truncate. */ |
| char *pstrcat(char *buf, int buf_size, const char *s) |
| { |
| int len; |
| len = strlen(buf); |
| if (len < buf_size) |
| pstrcpy(buf + len, buf_size - len, s); |
| return buf; |
| } |
| |
| int strstart(const char *str, const char *val, const char **ptr) |
| { |
| const char *p, *q; |
| p = str; |
| q = val; |
| while (*q != '\0') { |
| if (*p != *q) |
| return 0; |
| p++; |
| q++; |
| } |
| if (ptr) |
| *ptr = p; |
| return 1; |
| } |
| |
| int stristart(const char *str, const char *val, const char **ptr) |
| { |
| const char *p, *q; |
| p = str; |
| q = val; |
| while (*q != '\0') { |
| if (qemu_toupper(*p) != qemu_toupper(*q)) |
| return 0; |
| p++; |
| q++; |
| } |
| if (ptr) |
| *ptr = p; |
| return 1; |
| } |
| |
| /* XXX: use host strnlen if available ? */ |
| int qemu_strnlen(const char *s, int max_len) |
| { |
| int i; |
| |
| for(i = 0; i < max_len; i++) { |
| if (s[i] == '\0') { |
| break; |
| } |
| } |
| return i; |
| } |
| |
| char *qemu_strsep(char **input, const char *delim) |
| { |
| char *result = *input; |
| if (result != NULL) { |
| char *p; |
| |
| for (p = result; *p != '\0'; p++) { |
| if (strchr(delim, *p)) { |
| break; |
| } |
| } |
| if (*p == '\0') { |
| *input = NULL; |
| } else { |
| *p = '\0'; |
| *input = p + 1; |
| } |
| } |
| return result; |
| } |
| |
| time_t mktimegm(struct tm *tm) |
| { |
| time_t t; |
| int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; |
| if (m < 3) { |
| m += 12; |
| y--; |
| } |
| t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + |
| y / 400 - 719469); |
| t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; |
| return t; |
| } |
| |
| /* |
| * Make sure data goes on disk, but if possible do not bother to |
| * write out the inode just for timestamp updates. |
| * |
| * Unfortunately even in 2009 many operating systems do not support |
| * fdatasync and have to fall back to fsync. |
| */ |
| int qemu_fdatasync(int fd) |
| { |
| #ifdef CONFIG_FDATASYNC |
| return fdatasync(fd); |
| #else |
| return fsync(fd); |
| #endif |
| } |
| |
| /** |
| * Sync changes made to the memory mapped file back to the backing |
| * storage. For POSIX compliant systems this will fallback |
| * to regular msync call. Otherwise it will trigger whole file sync |
| * (including the metadata case there is no support to skip that otherwise) |
| * |
| * @addr - start of the memory area to be synced |
| * @length - length of the are to be synced |
| * @fd - file descriptor for the file to be synced |
| * (mandatory only for POSIX non-compliant systems) |
| */ |
| int qemu_msync(void *addr, size_t length, int fd) |
| { |
| #ifdef CONFIG_POSIX |
| size_t align_mask = ~(qemu_real_host_page_size - 1); |
| |
| /** |
| * There are no strict reqs as per the length of mapping |
| * to be synced. Still the length needs to follow the address |
| * alignment changes. Additionally - round the size to the multiple |
| * of PAGE_SIZE |
| */ |
| length += ((uintptr_t)addr & (qemu_real_host_page_size - 1)); |
| length = (length + ~align_mask) & align_mask; |
| |
| addr = (void *)((uintptr_t)addr & align_mask); |
| |
| return msync(addr, length, MS_SYNC); |
| #else /* CONFIG_POSIX */ |
| /** |
| * Perform the sync based on the file descriptor |
| * The sync range will most probably be wider than the one |
| * requested - but it will still get the job done |
| */ |
| return qemu_fdatasync(fd); |
| #endif /* CONFIG_POSIX */ |
| } |
| |
| #ifndef _WIN32 |
| /* Sets a specific flag */ |
| int fcntl_setfl(int fd, int flag) |
| { |
| int flags; |
| |
| flags = fcntl(fd, F_GETFL); |
| if (flags == -1) |
| return -errno; |
| |
| if (fcntl(fd, F_SETFL, flags | flag) == -1) |
| return -errno; |
| |
| return 0; |
| } |
| #endif |
| |
| static int64_t suffix_mul(char suffix, int64_t unit) |
| { |
| switch (qemu_toupper(suffix)) { |
| case 'B': |
| return 1; |
| case 'K': |
| return unit; |
| case 'M': |
| return unit * unit; |
| case 'G': |
| return unit * unit * unit; |
| case 'T': |
| return unit * unit * unit * unit; |
| case 'P': |
| return unit * unit * unit * unit * unit; |
| case 'E': |
| return unit * unit * unit * unit * unit * unit; |
| } |
| return -1; |
| } |
| |
| /* |
| * Convert string to bytes, allowing either B/b for bytes, K/k for KB, |
| * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned |
| * in *end, if not NULL. Return -ERANGE on overflow, and -EINVAL on |
| * other error. |
| */ |
| static int do_strtosz(const char *nptr, const char **end, |
| const char default_suffix, int64_t unit, |
| uint64_t *result) |
| { |
| int retval; |
| const char *endptr; |
| unsigned char c; |
| int mul_required = 0; |
| double val, mul, integral, fraction; |
| |
| retval = qemu_strtod_finite(nptr, &endptr, &val); |
| if (retval) { |
| goto out; |
| } |
| fraction = modf(val, &integral); |
| if (fraction != 0) { |
| mul_required = 1; |
| } |
| c = *endptr; |
| mul = suffix_mul(c, unit); |
| if (mul >= 0) { |
| endptr++; |
| } else { |
| mul = suffix_mul(default_suffix, unit); |
| assert(mul >= 0); |
| } |
| if (mul == 1 && mul_required) { |
| retval = -EINVAL; |
| goto out; |
| } |
| /* |
| * Values near UINT64_MAX overflow to 2**64 when converting to double |
| * precision. Compare against the maximum representable double precision |
| * value below 2**64, computed as "the next value after 2**64 (0x1p64) in |
| * the direction of 0". |
| */ |
| if ((val * mul > nextafter(0x1p64, 0)) || val < 0) { |
| retval = -ERANGE; |
| goto out; |
| } |
| *result = val * mul; |
| retval = 0; |
| |
| out: |
| if (end) { |
| *end = endptr; |
| } else if (*endptr) { |
| retval = -EINVAL; |
| } |
| |
| return retval; |
| } |
| |
| int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) |
| { |
| return do_strtosz(nptr, end, 'B', 1024, result); |
| } |
| |
| int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) |
| { |
| return do_strtosz(nptr, end, 'M', 1024, result); |
| } |
| |
| int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) |
| { |
| return do_strtosz(nptr, end, 'B', 1000, result); |
| } |
| |
| /** |
| * Helper function for error checking after strtol() and the like |
| */ |
| static int check_strtox_error(const char *nptr, char *ep, |
| const char **endptr, int libc_errno) |
| { |
| assert(ep >= nptr); |
| if (endptr) { |
| *endptr = ep; |
| } |
| |
| /* Turn "no conversion" into an error */ |
| if (libc_errno == 0 && ep == nptr) { |
| return -EINVAL; |
| } |
| |
| /* Fail when we're expected to consume the string, but didn't */ |
| if (!endptr && *ep) { |
| return -EINVAL; |
| } |
| |
| return -libc_errno; |
| } |
| |
| /** |
| * Convert string @nptr to an integer, and store it in @result. |
| * |
| * This is a wrapper around strtol() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtol() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr and return |
| * -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL. This is the case when the pointer that would be stored in |
| * a non-null @endptr points to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store INT_MAX in @result, |
| * and return -ERANGE. |
| * |
| * If the conversion underflows @result, store INT_MIN in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| */ |
| int qemu_strtoi(const char *nptr, const char **endptr, int base, |
| int *result) |
| { |
| char *ep; |
| long long lresult; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| lresult = strtoll(nptr, &ep, base); |
| if (lresult < INT_MIN) { |
| *result = INT_MIN; |
| errno = ERANGE; |
| } else if (lresult > INT_MAX) { |
| *result = INT_MAX; |
| errno = ERANGE; |
| } else { |
| *result = lresult; |
| } |
| return check_strtox_error(nptr, ep, endptr, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an unsigned integer, and store it in @result. |
| * |
| * This is a wrapper around strtoul() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtoul() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr and return |
| * -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL. This is the case when the pointer that would be stored in |
| * a non-null @endptr points to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store UINT_MAX in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| * |
| * Note that a number with a leading minus sign gets converted without |
| * the minus sign, checked for overflow (see above), then negated (in |
| * @result's type). This is exactly how strtoul() works. |
| */ |
| int qemu_strtoui(const char *nptr, const char **endptr, int base, |
| unsigned int *result) |
| { |
| char *ep; |
| long long lresult; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| lresult = strtoull(nptr, &ep, base); |
| |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } else { |
| if (lresult > UINT_MAX) { |
| *result = UINT_MAX; |
| errno = ERANGE; |
| } else if (lresult < INT_MIN) { |
| *result = UINT_MAX; |
| errno = ERANGE; |
| } else { |
| *result = lresult; |
| } |
| } |
| return check_strtox_error(nptr, ep, endptr, errno); |
| } |
| |
| /** |
| * Convert string @nptr to a long integer, and store it in @result. |
| * |
| * This is a wrapper around strtol() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtol() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr and return |
| * -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL. This is the case when the pointer that would be stored in |
| * a non-null @endptr points to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store LONG_MAX in @result, |
| * and return -ERANGE. |
| * |
| * If the conversion underflows @result, store LONG_MIN in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| */ |
| int qemu_strtol(const char *nptr, const char **endptr, int base, |
| long *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| *result = strtol(nptr, &ep, base); |
| return check_strtox_error(nptr, ep, endptr, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an unsigned long, and store it in @result. |
| * |
| * This is a wrapper around strtoul() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtoul() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr and return |
| * -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL. This is the case when the pointer that would be stored in |
| * a non-null @endptr points to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store ULONG_MAX in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| * |
| * Note that a number with a leading minus sign gets converted without |
| * the minus sign, checked for overflow (see above), then negated (in |
| * @result's type). This is exactly how strtoul() works. |
| */ |
| int qemu_strtoul(const char *nptr, const char **endptr, int base, |
| unsigned long *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| *result = strtoul(nptr, &ep, base); |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } |
| return check_strtox_error(nptr, ep, endptr, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an int64_t. |
| * |
| * Works like qemu_strtol(), except it stores INT64_MAX on overflow, |
| * and INT64_MIN on underflow. |
| */ |
| int qemu_strtoi64(const char *nptr, const char **endptr, int base, |
| int64_t *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| /* This assumes int64_t is long long TODO relax */ |
| QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); |
| errno = 0; |
| *result = strtoll(nptr, &ep, base); |
| return check_strtox_error(nptr, ep, endptr, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an uint64_t. |
| * |
| * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. |
| */ |
| int qemu_strtou64(const char *nptr, const char **endptr, int base, |
| uint64_t *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| /* This assumes uint64_t is unsigned long long TODO relax */ |
| QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); |
| errno = 0; |
| *result = strtoull(nptr, &ep, base); |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } |
| return check_strtox_error(nptr, ep, endptr, errno); |
| } |
| |
| /** |
| * Convert string @nptr to a double. |
| * |
| * This is a wrapper around strtod() that is harder to misuse. |
| * Semantics of @nptr and @endptr match strtod() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr and return |
| * -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL. This is the case when the pointer that would be stored in |
| * a non-null @endptr points to a character other than '\0'. |
| * |
| * If the conversion overflows, store +/-HUGE_VAL in @result, depending |
| * on the sign, and return -ERANGE. |
| * |
| * If the conversion underflows, store +/-0.0 in @result, depending on the |
| * sign, and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| */ |
| int qemu_strtod(const char *nptr, const char **endptr, double *result) |
| { |
| char *ep; |
| |
| if (!nptr) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| *result = strtod(nptr, &ep); |
| return check_strtox_error(nptr, ep, endptr, errno); |
| } |
| |
| /** |
| * Convert string @nptr to a finite double. |
| * |
| * Works like qemu_strtod(), except that "NaN" and "inf" are rejected |
| * with -EINVAL and no conversion is performed. |
| */ |
| int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) |
| { |
| double tmp; |
| int ret; |
| |
| ret = qemu_strtod(nptr, endptr, &tmp); |
| if (!ret && !isfinite(tmp)) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| ret = -EINVAL; |
| } |
| |
| if (ret != -EINVAL) { |
| *result = tmp; |
| } |
| return ret; |
| } |
| |
| /** |
| * Searches for the first occurrence of 'c' in 's', and returns a pointer |
| * to the trailing null byte if none was found. |
| */ |
| #ifndef HAVE_STRCHRNUL |
| const char *qemu_strchrnul(const char *s, int c) |
| { |
| const char *e = strchr(s, c); |
| if (!e) { |
| e = s + strlen(s); |
| } |
| return e; |
| } |
| #endif |
| |
| /** |
| * parse_uint: |
| * |
| * @s: String to parse |
| * @value: Destination for parsed integer value |
| * @endptr: Destination for pointer to first character not consumed |
| * @base: integer base, between 2 and 36 inclusive, or 0 |
| * |
| * Parse unsigned integer |
| * |
| * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional |
| * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. |
| * |
| * If @s is null, or @base is invalid, or @s doesn't start with an |
| * integer in the syntax above, set *@value to 0, *@endptr to @s, and |
| * return -EINVAL. |
| * |
| * Set *@endptr to point right beyond the parsed integer (even if the integer |
| * overflows or is negative, all digits will be parsed and *@endptr will |
| * point right beyond them). |
| * |
| * If the integer is negative, set *@value to 0, and return -ERANGE. |
| * |
| * If the integer overflows unsigned long long, set *@value to |
| * ULLONG_MAX, and return -ERANGE. |
| * |
| * Else, set *@value to the parsed integer, and return 0. |
| */ |
| int parse_uint(const char *s, unsigned long long *value, char **endptr, |
| int base) |
| { |
| int r = 0; |
| char *endp = (char *)s; |
| unsigned long long val = 0; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!s) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| errno = 0; |
| val = strtoull(s, &endp, base); |
| if (errno) { |
| r = -errno; |
| goto out; |
| } |
| |
| if (endp == s) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| /* make sure we reject negative numbers: */ |
| while (qemu_isspace(*s)) { |
| s++; |
| } |
| if (*s == '-') { |
| val = 0; |
| r = -ERANGE; |
| goto out; |
| } |
| |
| out: |
| *value = val; |
| *endptr = endp; |
| return r; |
| } |
| |
| /** |
| * parse_uint_full: |
| * |
| * @s: String to parse |
| * @value: Destination for parsed integer value |
| * @base: integer base, between 2 and 36 inclusive, or 0 |
| * |
| * Parse unsigned integer from entire string |
| * |
| * Have the same behavior of parse_uint(), but with an additional check |
| * for additional data after the parsed number. If extra characters are present |
| * after the parsed number, the function will return -EINVAL, and *@v will |
| * be set to 0. |
| */ |
| int parse_uint_full(const char *s, unsigned long long *value, int base) |
| { |
| char *endp; |
| int r; |
| |
| r = parse_uint(s, value, &endp, base); |
| if (r < 0) { |
| return r; |
| } |
| if (*endp) { |
| *value = 0; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int qemu_parse_fd(const char *param) |
| { |
| long fd; |
| char *endptr; |
| |
| errno = 0; |
| fd = strtol(param, &endptr, 10); |
| if (param == endptr /* no conversion performed */ || |
| errno != 0 /* not representable as long; possibly others */ || |
| *endptr != '\0' /* final string not empty */ || |
| fd < 0 /* invalid as file descriptor */ || |
| fd > INT_MAX /* not representable as int */) { |
| return -1; |
| } |
| return fd; |
| } |
| |
| /* |
| * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) |
| * Input is limited to 14-bit numbers |
| */ |
| int uleb128_encode_small(uint8_t *out, uint32_t n) |
| { |
| g_assert(n <= 0x3fff); |
| if (n < 0x80) { |
| *out = n; |
| return 1; |
| } else { |
| *out++ = (n & 0x7f) | 0x80; |
| *out = n >> 7; |
| return 2; |
| } |
| } |
| |
| int uleb128_decode_small(const uint8_t *in, uint32_t *n) |
| { |
| if (!(*in & 0x80)) { |
| *n = *in; |
| return 1; |
| } else { |
| *n = *in++ & 0x7f; |
| /* we exceed 14 bit number */ |
| if (*in & 0x80) { |
| return -1; |
| } |
| *n |= *in << 7; |
| return 2; |
| } |
| } |
| |
| /* |
| * helper to parse debug environment variables |
| */ |
| int parse_debug_env(const char *name, int max, int initial) |
| { |
| char *debug_env = getenv(name); |
| char *inv = NULL; |
| long debug; |
| |
| if (!debug_env) { |
| return initial; |
| } |
| errno = 0; |
| debug = strtol(debug_env, &inv, 10); |
| if (inv == debug_env) { |
| return initial; |
| } |
| if (debug < 0 || debug > max || errno != 0) { |
| warn_report("%s not in [0, %d]", name, max); |
| return initial; |
| } |
| return debug; |
| } |
| |
| /* |
| * Helper to print ethernet mac address |
| */ |
| const char *qemu_ether_ntoa(const MACAddr *mac) |
| { |
| static char ret[18]; |
| |
| snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x", |
| mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]); |
| |
| return ret; |
| } |
| |
| /* |
| * Return human readable string for size @val. |
| * @val can be anything that uint64_t allows (no more than "16 EiB"). |
| * Use IEC binary units like KiB, MiB, and so forth. |
| * Caller is responsible for passing it to g_free(). |
| */ |
| char *size_to_str(uint64_t val) |
| { |
| static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; |
| uint64_t div; |
| int i; |
| |
| /* |
| * The exponent (returned in i) minus one gives us |
| * floor(log2(val * 1024 / 1000). The correction makes us |
| * switch to the higher power when the integer part is >= 1000. |
| * (see e41b509d68afb1f for more info) |
| */ |
| frexp(val / (1000.0 / 1024.0), &i); |
| i = (i - 1) / 10; |
| div = 1ULL << (i * 10); |
| |
| return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]); |
| } |
| |
| char *freq_to_str(uint64_t freq_hz) |
| { |
| static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" }; |
| double freq = freq_hz; |
| size_t idx = 0; |
| |
| while (freq >= 1000.0 && idx < ARRAY_SIZE(suffixes)) { |
| freq /= 1000.0; |
| idx++; |
| } |
| |
| return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]); |
| } |
| |
| int qemu_pstrcmp0(const char **str1, const char **str2) |
| { |
| return g_strcmp0(*str1, *str2); |
| } |
| |
| static inline bool starts_with_prefix(const char *dir) |
| { |
| size_t prefix_len = strlen(CONFIG_PREFIX); |
| return !memcmp(dir, CONFIG_PREFIX, prefix_len) && |
| (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); |
| } |
| |
| /* Return the next path component in dir, and store its length in *p_len. */ |
| static inline const char *next_component(const char *dir, int *p_len) |
| { |
| int len; |
| while (*dir && G_IS_DIR_SEPARATOR(*dir)) { |
| dir++; |
| } |
| len = 0; |
| while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { |
| len++; |
| } |
| *p_len = len; |
| return dir; |
| } |
| |
| char *get_relocated_path(const char *dir) |
| { |
| size_t prefix_len = strlen(CONFIG_PREFIX); |
| const char *bindir = CONFIG_BINDIR; |
| const char *exec_dir = qemu_get_exec_dir(); |
| GString *result; |
| int len_dir, len_bindir; |
| |
| /* Fail if qemu_init_exec_dir was not called. */ |
| assert(exec_dir[0]); |
| if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { |
| return g_strdup(dir); |
| } |
| |
| result = g_string_new(exec_dir); |
| |
| /* Advance over common components. */ |
| len_dir = len_bindir = prefix_len; |
| do { |
| dir += len_dir; |
| bindir += len_bindir; |
| dir = next_component(dir, &len_dir); |
| bindir = next_component(bindir, &len_bindir); |
| } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); |
| |
| /* Ascend from bindir to the common prefix with dir. */ |
| while (len_bindir) { |
| bindir += len_bindir; |
| g_string_append(result, "/.."); |
| bindir = next_component(bindir, &len_bindir); |
| } |
| |
| if (*dir) { |
| assert(G_IS_DIR_SEPARATOR(dir[-1])); |
| g_string_append(result, dir - 1); |
| } |
| return result->str; |
| } |