|  | #include "qemu/osdep.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "qapi/error.h" | 
|  | #include "sysemu/hw_accel.h" | 
|  | #include "sysemu/runstate.h" | 
|  | #include "sysemu/tcg.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "qemu/module.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "exec/tb-flush.h" | 
|  | #include "helper_regs.h" | 
|  | #include "hw/ppc/ppc.h" | 
|  | #include "hw/ppc/spapr.h" | 
|  | #include "hw/ppc/spapr_cpu_core.h" | 
|  | #include "hw/ppc/spapr_nested.h" | 
|  | #include "mmu-hash64.h" | 
|  | #include "cpu-models.h" | 
|  | #include "trace.h" | 
|  | #include "kvm_ppc.h" | 
|  | #include "hw/ppc/fdt.h" | 
|  | #include "hw/ppc/spapr_ovec.h" | 
|  | #include "hw/ppc/spapr_numa.h" | 
|  | #include "mmu-book3s-v3.h" | 
|  | #include "hw/mem/memory-device.h" | 
|  |  | 
|  | bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | DeviceMemoryState *dms = machine->device_memory; | 
|  |  | 
|  | if (addr < machine->ram_size) { | 
|  | return true; | 
|  | } | 
|  | if (dms && (addr >= dms->base) | 
|  | && ((addr - dms->base) < memory_region_size(&dms->mr))) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Convert a return code from the KVM ioctl()s implementing resize HPT | 
|  | * into a PAPR hypercall return code */ | 
|  | static target_ulong resize_hpt_convert_rc(int ret) | 
|  | { | 
|  | if (ret >= 100000) { | 
|  | return H_LONG_BUSY_ORDER_100_SEC; | 
|  | } else if (ret >= 10000) { | 
|  | return H_LONG_BUSY_ORDER_10_SEC; | 
|  | } else if (ret >= 1000) { | 
|  | return H_LONG_BUSY_ORDER_1_SEC; | 
|  | } else if (ret >= 100) { | 
|  | return H_LONG_BUSY_ORDER_100_MSEC; | 
|  | } else if (ret >= 10) { | 
|  | return H_LONG_BUSY_ORDER_10_MSEC; | 
|  | } else if (ret > 0) { | 
|  | return H_LONG_BUSY_ORDER_1_MSEC; | 
|  | } | 
|  |  | 
|  | switch (ret) { | 
|  | case 0: | 
|  | return H_SUCCESS; | 
|  | case -EPERM: | 
|  | return H_AUTHORITY; | 
|  | case -EINVAL: | 
|  | return H_PARAMETER; | 
|  | case -ENXIO: | 
|  | return H_CLOSED; | 
|  | case -ENOSPC: | 
|  | return H_PTEG_FULL; | 
|  | case -EBUSY: | 
|  | return H_BUSY; | 
|  | case -ENOMEM: | 
|  | return H_NO_MEM; | 
|  | default: | 
|  | return H_HARDWARE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong opcode, | 
|  | target_ulong *args) | 
|  | { | 
|  | target_ulong flags = args[0]; | 
|  | int shift = args[1]; | 
|  | uint64_t current_ram_size; | 
|  | int rc; | 
|  |  | 
|  | if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { | 
|  | return H_AUTHORITY; | 
|  | } | 
|  |  | 
|  | if (!spapr->htab_shift) { | 
|  | /* Radix guest, no HPT */ | 
|  | return H_NOT_AVAILABLE; | 
|  | } | 
|  |  | 
|  | trace_spapr_h_resize_hpt_prepare(flags, shift); | 
|  |  | 
|  | if (flags != 0) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | if (shift && ((shift < 18) || (shift > 46))) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); | 
|  |  | 
|  | /* We only allow the guest to allocate an HPT one order above what | 
|  | * we'd normally give them (to stop a small guest claiming a huge | 
|  | * chunk of resources in the HPT */ | 
|  | if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { | 
|  | return H_RESOURCE; | 
|  | } | 
|  |  | 
|  | rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); | 
|  | if (rc != -ENOSYS) { | 
|  | return resize_hpt_convert_rc(rc); | 
|  | } | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | return H_HARDWARE; | 
|  | } else if (tcg_enabled()) { | 
|  | return vhyp_mmu_resize_hpt_prepare(cpu, spapr, shift); | 
|  | } else { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | cpu_synchronize_state(cs); | 
|  |  | 
|  | ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); | 
|  | if (ret < 0) { | 
|  | error_report("failed to push sregs to KVM: %s", strerror(-ret)); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void push_sregs_to_kvm_pr(SpaprMachineState *spapr) | 
|  | { | 
|  | CPUState *cs; | 
|  |  | 
|  | /* | 
|  | * This is a hack for the benefit of KVM PR - it abuses the SDR1 | 
|  | * slot in kvm_sregs to communicate the userspace address of the | 
|  | * HPT | 
|  | */ | 
|  | if (!kvm_enabled() || !spapr->htab) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | CPU_FOREACH(cs) { | 
|  | run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong opcode, | 
|  | target_ulong *args) | 
|  | { | 
|  | target_ulong flags = args[0]; | 
|  | target_ulong shift = args[1]; | 
|  | int rc; | 
|  |  | 
|  | if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { | 
|  | return H_AUTHORITY; | 
|  | } | 
|  |  | 
|  | if (!spapr->htab_shift) { | 
|  | /* Radix guest, no HPT */ | 
|  | return H_NOT_AVAILABLE; | 
|  | } | 
|  |  | 
|  | trace_spapr_h_resize_hpt_commit(flags, shift); | 
|  |  | 
|  | rc = kvmppc_resize_hpt_commit(cpu, flags, shift); | 
|  | if (rc != -ENOSYS) { | 
|  | rc = resize_hpt_convert_rc(rc); | 
|  | if (rc == H_SUCCESS) { | 
|  | /* Need to set the new htab_shift in the machine state */ | 
|  | spapr->htab_shift = shift; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | return H_HARDWARE; | 
|  | } else if (tcg_enabled()) { | 
|  | return vhyp_mmu_resize_hpt_commit(cpu, spapr, flags, shift); | 
|  | } else { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | cpu_synchronize_state(CPU(cpu)); | 
|  | cpu->env.spr[SPR_SPRG0] = args[0]; | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | if (!ppc_has_spr(cpu, SPR_DABR)) { | 
|  | return H_HARDWARE;              /* DABR register not available */ | 
|  | } | 
|  | cpu_synchronize_state(CPU(cpu)); | 
|  |  | 
|  | if (ppc_has_spr(cpu, SPR_DABRX)) { | 
|  | cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */ | 
|  | } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */ | 
|  | return H_RESERVED_DABR; | 
|  | } | 
|  |  | 
|  | cpu->env.spr[SPR_DABR] = args[0]; | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_ulong dabrx = args[1]; | 
|  |  | 
|  | if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) { | 
|  | return H_HARDWARE; | 
|  | } | 
|  |  | 
|  | if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 | 
|  | || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | cpu_synchronize_state(CPU(cpu)); | 
|  | cpu->env.spr[SPR_DABRX] = dabrx; | 
|  | cpu->env.spr[SPR_DABR] = args[0]; | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_ulong flags = args[0]; | 
|  | hwaddr dst = args[1]; | 
|  | hwaddr src = args[2]; | 
|  | hwaddr len = TARGET_PAGE_SIZE; | 
|  | uint8_t *pdst, *psrc; | 
|  | target_long ret = H_SUCCESS; | 
|  |  | 
|  | if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE | 
|  | | H_COPY_PAGE | H_ZERO_PAGE)) { | 
|  | qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", | 
|  | flags); | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | /* Map-in destination */ | 
|  | if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  | pdst = cpu_physical_memory_map(dst, &len, true); | 
|  | if (!pdst || len != TARGET_PAGE_SIZE) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | if (flags & H_COPY_PAGE) { | 
|  | /* Map-in source, copy to destination, and unmap source again */ | 
|  | if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { | 
|  | ret = H_PARAMETER; | 
|  | goto unmap_out; | 
|  | } | 
|  | psrc = cpu_physical_memory_map(src, &len, false); | 
|  | if (!psrc || len != TARGET_PAGE_SIZE) { | 
|  | ret = H_PARAMETER; | 
|  | goto unmap_out; | 
|  | } | 
|  | memcpy(pdst, psrc, len); | 
|  | cpu_physical_memory_unmap(psrc, len, 0, len); | 
|  | } else if (flags & H_ZERO_PAGE) { | 
|  | memset(pdst, 0, len);          /* Just clear the destination page */ | 
|  | } | 
|  |  | 
|  | if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { | 
|  | kvmppc_dcbst_range(cpu, pdst, len); | 
|  | } | 
|  | if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { | 
|  | if (kvm_enabled()) { | 
|  | kvmppc_icbi_range(cpu, pdst, len); | 
|  | } else { | 
|  | tb_flush(CPU(cpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | unmap_out: | 
|  | cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define FLAGS_REGISTER_VPA         0x0000200000000000ULL | 
|  | #define FLAGS_REGISTER_DTL         0x0000400000000000ULL | 
|  | #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL | 
|  | #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL | 
|  | #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL | 
|  | #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL | 
|  |  | 
|  | static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  | uint16_t size; | 
|  | uint8_t tmp; | 
|  |  | 
|  | if (vpa == 0) { | 
|  | hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); | 
|  | return H_HARDWARE; | 
|  | } | 
|  |  | 
|  | if (vpa % env->dcache_line_size) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  | /* FIXME: bounds check the address */ | 
|  |  | 
|  | size = lduw_be_phys(cs->as, vpa + 0x4); | 
|  |  | 
|  | if (size < VPA_MIN_SIZE) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | /* VPA is not allowed to cross a page boundary */ | 
|  | if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | spapr_cpu->vpa_addr = vpa; | 
|  |  | 
|  | tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); | 
|  | tmp |= VPA_SHARED_PROC_VAL; | 
|  | stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | if (spapr_cpu->slb_shadow_addr) { | 
|  | return H_RESOURCE; | 
|  | } | 
|  |  | 
|  | if (spapr_cpu->dtl_addr) { | 
|  | return H_RESOURCE; | 
|  | } | 
|  |  | 
|  | spapr_cpu->vpa_addr = 0; | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  | uint32_t size; | 
|  |  | 
|  | if (addr == 0) { | 
|  | hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); | 
|  | return H_HARDWARE; | 
|  | } | 
|  |  | 
|  | size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); | 
|  | if (size < 0x8) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | if ((addr / 4096) != ((addr + size - 1) / 4096)) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | if (!spapr_cpu->vpa_addr) { | 
|  | return H_RESOURCE; | 
|  | } | 
|  |  | 
|  | spapr_cpu->slb_shadow_addr = addr; | 
|  | spapr_cpu->slb_shadow_size = size; | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | spapr_cpu->slb_shadow_addr = 0; | 
|  | spapr_cpu->slb_shadow_size = 0; | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  | uint32_t size; | 
|  |  | 
|  | if (addr == 0) { | 
|  | hcall_dprintf("Can't cope with DTL at logical 0\n"); | 
|  | return H_HARDWARE; | 
|  | } | 
|  |  | 
|  | size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); | 
|  |  | 
|  | if (size < 48) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | if (!spapr_cpu->vpa_addr) { | 
|  | return H_RESOURCE; | 
|  | } | 
|  |  | 
|  | spapr_cpu->dtl_addr = addr; | 
|  | spapr_cpu->dtl_size = size; | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | spapr_cpu->dtl_addr = 0; | 
|  | spapr_cpu->dtl_size = 0; | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_ulong flags = args[0]; | 
|  | target_ulong procno = args[1]; | 
|  | target_ulong vpa = args[2]; | 
|  | target_ulong ret = H_PARAMETER; | 
|  | PowerPCCPU *tcpu; | 
|  |  | 
|  | tcpu = spapr_find_cpu(procno); | 
|  | if (!tcpu) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | switch (flags) { | 
|  | case FLAGS_REGISTER_VPA: | 
|  | ret = register_vpa(tcpu, vpa); | 
|  | break; | 
|  |  | 
|  | case FLAGS_DEREGISTER_VPA: | 
|  | ret = deregister_vpa(tcpu, vpa); | 
|  | break; | 
|  |  | 
|  | case FLAGS_REGISTER_SLBSHADOW: | 
|  | ret = register_slb_shadow(tcpu, vpa); | 
|  | break; | 
|  |  | 
|  | case FLAGS_DEREGISTER_SLBSHADOW: | 
|  | ret = deregister_slb_shadow(tcpu, vpa); | 
|  | break; | 
|  |  | 
|  | case FLAGS_REGISTER_DTL: | 
|  | ret = register_dtl(tcpu, vpa); | 
|  | break; | 
|  |  | 
|  | case FLAGS_DEREGISTER_DTL: | 
|  | ret = deregister_dtl(tcpu, vpa); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  | CPUState *cs = CPU(cpu); | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | env->msr |= (1ULL << MSR_EE); | 
|  | hreg_compute_hflags(env); | 
|  | ppc_maybe_interrupt(env); | 
|  |  | 
|  | if (spapr_cpu->prod) { | 
|  | spapr_cpu->prod = false; | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | if (!cpu_has_work(cs)) { | 
|  | cs->halted = 1; | 
|  | cs->exception_index = EXCP_HLT; | 
|  | cs->exit_request = 1; | 
|  | ppc_maybe_interrupt(env); | 
|  | } | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Confer to self, aka join. Cede could use the same pattern as well, if | 
|  | * EXCP_HLT can be changed to ECXP_HALTED. | 
|  | */ | 
|  | static target_ulong h_confer_self(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | if (spapr_cpu->prod) { | 
|  | spapr_cpu->prod = false; | 
|  | return H_SUCCESS; | 
|  | } | 
|  | cs->halted = 1; | 
|  | cs->exception_index = EXCP_HALTED; | 
|  | cs->exit_request = 1; | 
|  | ppc_maybe_interrupt(&cpu->env); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  | CPUState *cs; | 
|  | bool last_unjoined = true; | 
|  |  | 
|  | if (env->msr & (1ULL << MSR_EE)) { | 
|  | return H_BAD_MODE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must not join the last CPU running. Interestingly, no such restriction | 
|  | * for H_CONFER-to-self, but that is probably not intended to be used | 
|  | * when H_JOIN is available. | 
|  | */ | 
|  | CPU_FOREACH(cs) { | 
|  | PowerPCCPU *c = POWERPC_CPU(cs); | 
|  | CPUPPCState *e = &c->env; | 
|  | if (c == cpu) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ | 
|  | if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { | 
|  | last_unjoined = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (last_unjoined) { | 
|  | return H_CONTINUE; | 
|  | } | 
|  |  | 
|  | return h_confer_self(cpu); | 
|  | } | 
|  |  | 
|  | static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_long target = args[0]; | 
|  | uint32_t dispatch = args[1]; | 
|  | CPUState *cs = CPU(cpu); | 
|  | SpaprCpuState *spapr_cpu; | 
|  |  | 
|  | /* | 
|  | * -1 means confer to all other CPUs without dispatch counter check, | 
|  | *  otherwise it's a targeted confer. | 
|  | */ | 
|  | if (target != -1) { | 
|  | PowerPCCPU *target_cpu = spapr_find_cpu(target); | 
|  | uint32_t target_dispatch; | 
|  |  | 
|  | if (!target_cpu) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * target == self is a special case, we wait until prodded, without | 
|  | * dispatch counter check. | 
|  | */ | 
|  | if (cpu == target_cpu) { | 
|  | return h_confer_self(cpu); | 
|  | } | 
|  |  | 
|  | spapr_cpu = spapr_cpu_state(target_cpu); | 
|  | if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | target_dispatch = ldl_be_phys(cs->as, | 
|  | spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); | 
|  | if (target_dispatch != dispatch) { | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The targeted confer does not do anything special beyond yielding | 
|  | * the current vCPU, but even this should be better than nothing. | 
|  | * At least for single-threaded tcg, it gives the target a chance to | 
|  | * run before we run again. Multi-threaded tcg does not really do | 
|  | * anything with EXCP_YIELD yet. | 
|  | */ | 
|  | } | 
|  |  | 
|  | cs->exception_index = EXCP_YIELD; | 
|  | cs->exit_request = 1; | 
|  | cpu_loop_exit(cs); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_long target = args[0]; | 
|  | PowerPCCPU *tcpu; | 
|  | CPUState *cs; | 
|  | SpaprCpuState *spapr_cpu; | 
|  |  | 
|  | tcpu = spapr_find_cpu(target); | 
|  | cs = CPU(tcpu); | 
|  | if (!cs) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | spapr_cpu = spapr_cpu_state(tcpu); | 
|  | spapr_cpu->prod = true; | 
|  | cs->halted = 0; | 
|  | ppc_maybe_interrupt(&cpu->env); | 
|  | qemu_cpu_kick(cs); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_ulong rtas_r3 = args[0]; | 
|  | uint32_t token = rtas_ld(rtas_r3, 0); | 
|  | uint32_t nargs = rtas_ld(rtas_r3, 1); | 
|  | uint32_t nret = rtas_ld(rtas_r3, 2); | 
|  |  | 
|  | return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, | 
|  | nret, rtas_r3 + 12 + 4*nargs); | 
|  | } | 
|  |  | 
|  | static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | target_ulong size = args[0]; | 
|  | target_ulong addr = args[1]; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | args[0] = ldub_phys(cs->as, addr); | 
|  | return H_SUCCESS; | 
|  | case 2: | 
|  | args[0] = lduw_phys(cs->as, addr); | 
|  | return H_SUCCESS; | 
|  | case 4: | 
|  | args[0] = ldl_phys(cs->as, addr); | 
|  | return H_SUCCESS; | 
|  | case 8: | 
|  | args[0] = ldq_phys(cs->as, addr); | 
|  | return H_SUCCESS; | 
|  | } | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | target_ulong size = args[0]; | 
|  | target_ulong addr = args[1]; | 
|  | target_ulong val  = args[2]; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | stb_phys(cs->as, addr, val); | 
|  | return H_SUCCESS; | 
|  | case 2: | 
|  | stw_phys(cs->as, addr, val); | 
|  | return H_SUCCESS; | 
|  | case 4: | 
|  | stl_phys(cs->as, addr, val); | 
|  | return H_SUCCESS; | 
|  | case 8: | 
|  | stq_phys(cs->as, addr, val); | 
|  | return H_SUCCESS; | 
|  | } | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | target_ulong dst   = args[0]; /* Destination address */ | 
|  | target_ulong src   = args[1]; /* Source address */ | 
|  | target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ | 
|  | target_ulong count = args[3]; /* Element count */ | 
|  | target_ulong op    = args[4]; /* 0 = copy, 1 = invert */ | 
|  | uint64_t tmp; | 
|  | unsigned int mask = (1 << esize) - 1; | 
|  | int step = 1 << esize; | 
|  |  | 
|  | if (count > 0x80000000) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | if ((dst & mask) || (src & mask) || (op > 1)) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | if (dst >= src && dst < (src + (count << esize))) { | 
|  | dst = dst + ((count - 1) << esize); | 
|  | src = src + ((count - 1) << esize); | 
|  | step = -step; | 
|  | } | 
|  |  | 
|  | while (count--) { | 
|  | switch (esize) { | 
|  | case 0: | 
|  | tmp = ldub_phys(cs->as, src); | 
|  | break; | 
|  | case 1: | 
|  | tmp = lduw_phys(cs->as, src); | 
|  | break; | 
|  | case 2: | 
|  | tmp = ldl_phys(cs->as, src); | 
|  | break; | 
|  | case 3: | 
|  | tmp = ldq_phys(cs->as, src); | 
|  | break; | 
|  | default: | 
|  | return H_PARAMETER; | 
|  | } | 
|  | if (op == 1) { | 
|  | tmp = ~tmp; | 
|  | } | 
|  | switch (esize) { | 
|  | case 0: | 
|  | stb_phys(cs->as, dst, tmp); | 
|  | break; | 
|  | case 1: | 
|  | stw_phys(cs->as, dst, tmp); | 
|  | break; | 
|  | case 2: | 
|  | stl_phys(cs->as, dst, tmp); | 
|  | break; | 
|  | case 3: | 
|  | stq_phys(cs->as, dst, tmp); | 
|  | break; | 
|  | } | 
|  | dst = dst + step; | 
|  | src = src + step; | 
|  | } | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | /* Nothing to do on emulation, KVM will trap this in the kernel */ | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | /* Nothing to do on emulation, KVM will trap this in the kernel */ | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_set_mode_resource_set_ciabr(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong mflags, | 
|  | target_ulong value1, | 
|  | target_ulong value2) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  |  | 
|  | assert(tcg_enabled()); /* KVM will have handled this */ | 
|  |  | 
|  | if (mflags) { | 
|  | return H_UNSUPPORTED_FLAG; | 
|  | } | 
|  | if (value2) { | 
|  | return H_P4; | 
|  | } | 
|  | if ((value1 & PPC_BITMASK(62, 63)) == 0x3) { | 
|  | return H_P3; | 
|  | } | 
|  |  | 
|  | ppc_store_ciabr(env, value1); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_set_mode_resource_set_dawr0(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong mflags, | 
|  | target_ulong value1, | 
|  | target_ulong value2) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  |  | 
|  | assert(tcg_enabled()); /* KVM will have handled this */ | 
|  |  | 
|  | if (mflags) { | 
|  | return H_UNSUPPORTED_FLAG; | 
|  | } | 
|  | if (value2 & PPC_BIT(61)) { | 
|  | return H_P4; | 
|  | } | 
|  |  | 
|  | ppc_store_dawr0(env, value1); | 
|  | ppc_store_dawrx0(env, value2); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong mflags, | 
|  | target_ulong value1, | 
|  | target_ulong value2) | 
|  | { | 
|  | if (value1) { | 
|  | return H_P3; | 
|  | } | 
|  | if (value2) { | 
|  | return H_P4; | 
|  | } | 
|  |  | 
|  | switch (mflags) { | 
|  | case H_SET_MODE_ENDIAN_BIG: | 
|  | spapr_set_all_lpcrs(0, LPCR_ILE); | 
|  | spapr_pci_switch_vga(spapr, true); | 
|  | return H_SUCCESS; | 
|  |  | 
|  | case H_SET_MODE_ENDIAN_LITTLE: | 
|  | spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); | 
|  | spapr_pci_switch_vga(spapr, false); | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | return H_UNSUPPORTED_FLAG; | 
|  | } | 
|  |  | 
|  | static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong mflags, | 
|  | target_ulong value1, | 
|  | target_ulong value2) | 
|  | { | 
|  | if (value1) { | 
|  | return H_P3; | 
|  | } | 
|  |  | 
|  | if (value2) { | 
|  | return H_P4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr. | 
|  | * It is supported for faithful emulation of bare metal systems, but for | 
|  | * compatibility concerns we leave it out of the pseries machine. | 
|  | */ | 
|  | if (mflags != 0 && mflags != 3) { | 
|  | return H_UNSUPPORTED_FLAG; | 
|  | } | 
|  |  | 
|  | if (mflags == 3) { | 
|  | if (!spapr_get_cap(spapr, SPAPR_CAP_AIL_MODE_3)) { | 
|  | return H_UNSUPPORTED_FLAG; | 
|  | } | 
|  | } | 
|  |  | 
|  | spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_ulong resource = args[1]; | 
|  | target_ulong ret = H_P2; | 
|  |  | 
|  | switch (resource) { | 
|  | case H_SET_MODE_RESOURCE_SET_CIABR: | 
|  | ret = h_set_mode_resource_set_ciabr(cpu, spapr, args[0], args[2], | 
|  | args[3]); | 
|  | break; | 
|  | case H_SET_MODE_RESOURCE_SET_DAWR0: | 
|  | ret = h_set_mode_resource_set_dawr0(cpu, spapr, args[0], args[2], | 
|  | args[3]); | 
|  | break; | 
|  | case H_SET_MODE_RESOURCE_LE: | 
|  | ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]); | 
|  | break; | 
|  | case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: | 
|  | ret = h_set_mode_resource_addr_trans_mode(cpu, spapr, args[0], | 
|  | args[2], args[3]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", | 
|  | opcode, " (H_CLEAN_SLB)"); | 
|  | return H_FUNCTION; | 
|  | } | 
|  |  | 
|  | static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", | 
|  | opcode, " (H_INVALIDATE_PID)"); | 
|  | return H_FUNCTION; | 
|  | } | 
|  |  | 
|  | static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, | 
|  | uint64_t patbe_old, uint64_t patbe_new) | 
|  | { | 
|  | /* | 
|  | * We have 4 Options: | 
|  | * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing | 
|  | * HASH->RADIX                                  : Free HPT | 
|  | * RADIX->HASH                                  : Allocate HPT | 
|  | * NOTHING->HASH                                : Allocate HPT | 
|  | * Note: NOTHING implies the case where we said the guest could choose | 
|  | *       later and so assumed radix and now it's called H_REG_PROC_TBL | 
|  | */ | 
|  |  | 
|  | if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { | 
|  | /* We assume RADIX, so this catches all the "Do Nothing" cases */ | 
|  | } else if (!(patbe_old & PATE1_GR)) { | 
|  | /* HASH->RADIX : Free HPT */ | 
|  | spapr_free_hpt(spapr); | 
|  | } else if (!(patbe_new & PATE1_GR)) { | 
|  | /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ | 
|  | spapr_setup_hpt(spapr); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define FLAGS_MASK              0x01FULL | 
|  | #define FLAG_MODIFY             0x10 | 
|  | #define FLAG_REGISTER           0x08 | 
|  | #define FLAG_RADIX              0x04 | 
|  | #define FLAG_HASH_PROC_TBL      0x02 | 
|  | #define FLAG_GTSE               0x01 | 
|  |  | 
|  | static target_ulong h_register_process_table(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong opcode, | 
|  | target_ulong *args) | 
|  | { | 
|  | target_ulong flags = args[0]; | 
|  | target_ulong proc_tbl = args[1]; | 
|  | target_ulong page_size = args[2]; | 
|  | target_ulong table_size = args[3]; | 
|  | target_ulong update_lpcr = 0; | 
|  | target_ulong table_byte_size; | 
|  | uint64_t cproc; | 
|  |  | 
|  | if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ | 
|  | return H_PARAMETER; | 
|  | } | 
|  | if (flags & FLAG_MODIFY) { | 
|  | if (flags & FLAG_REGISTER) { | 
|  | /* Check process table alignment */ | 
|  | table_byte_size = 1ULL << (table_size + 12); | 
|  | if (proc_tbl & (table_byte_size - 1)) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "%s: process table not properly aligned: proc_tbl 0x" | 
|  | TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n", | 
|  | __func__, proc_tbl, table_byte_size); | 
|  | } | 
|  | if (flags & FLAG_RADIX) { /* Register new RADIX process table */ | 
|  | if (proc_tbl & 0xfff || proc_tbl >> 60) { | 
|  | return H_P2; | 
|  | } else if (page_size) { | 
|  | return H_P3; | 
|  | } else if (table_size > 24) { | 
|  | return H_P4; | 
|  | } | 
|  | cproc = PATE1_GR | proc_tbl | table_size; | 
|  | } else { /* Register new HPT process table */ | 
|  | if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ | 
|  | /* TODO - Not Supported */ | 
|  | /* Technically caused by flag bits => H_PARAMETER */ | 
|  | return H_PARAMETER; | 
|  | } else { /* Hash with SLB */ | 
|  | if (proc_tbl >> 38) { | 
|  | return H_P2; | 
|  | } else if (page_size & ~0x7) { | 
|  | return H_P3; | 
|  | } else if (table_size > 24) { | 
|  | return H_P4; | 
|  | } | 
|  | } | 
|  | cproc = (proc_tbl << 25) | page_size << 5 | table_size; | 
|  | } | 
|  |  | 
|  | } else { /* Deregister current process table */ | 
|  | /* | 
|  | * Set to benign value: (current GR) | 0. This allows | 
|  | * deregistration in KVM to succeed even if the radix bit | 
|  | * in flags doesn't match the radix bit in the old PATE. | 
|  | */ | 
|  | cproc = spapr->patb_entry & PATE1_GR; | 
|  | } | 
|  | } else { /* Maintain current registration */ | 
|  | if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { | 
|  | /* Technically caused by flag bits => H_PARAMETER */ | 
|  | return H_PARAMETER; /* Existing Process Table Mismatch */ | 
|  | } | 
|  | cproc = spapr->patb_entry; | 
|  | } | 
|  |  | 
|  | /* Check if we need to setup OR free the hpt */ | 
|  | spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); | 
|  |  | 
|  | spapr->patb_entry = cproc; /* Save new process table */ | 
|  |  | 
|  | /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ | 
|  | if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */ | 
|  | update_lpcr |= (LPCR_UPRT | LPCR_HR); | 
|  | else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ | 
|  | update_lpcr |= LPCR_UPRT; | 
|  | if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */ | 
|  | update_lpcr |= LPCR_GTSE; | 
|  |  | 
|  | spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, | 
|  | flags & FLAG_GTSE, cproc); | 
|  | } | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | #define H_SIGNAL_SYS_RESET_ALL         -1 | 
|  | #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2 | 
|  |  | 
|  | static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_long target = args[0]; | 
|  | CPUState *cs; | 
|  |  | 
|  | if (target < 0) { | 
|  | /* Broadcast */ | 
|  | if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | CPU_FOREACH(cs) { | 
|  | PowerPCCPU *c = POWERPC_CPU(cs); | 
|  |  | 
|  | if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { | 
|  | if (c == cpu) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); | 
|  | } | 
|  | return H_SUCCESS; | 
|  |  | 
|  | } else { | 
|  | /* Unicast */ | 
|  | cs = CPU(spapr_find_cpu(target)); | 
|  | if (cs) { | 
|  | run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); | 
|  | return H_SUCCESS; | 
|  | } | 
|  | return H_PARAMETER; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Returns either a logical PVR or zero if none was found */ | 
|  | static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat, | 
|  | target_ulong *addr, bool *raw_mode_supported) | 
|  | { | 
|  | bool explicit_match = false; /* Matched the CPU's real PVR */ | 
|  | uint32_t best_compat = 0; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We scan the supplied table of PVRs looking for two things | 
|  | *   1. Is our real CPU PVR in the list? | 
|  | *   2. What's the "best" listed logical PVR | 
|  | */ | 
|  | for (i = 0; i < 512; ++i) { | 
|  | uint32_t pvr, pvr_mask; | 
|  |  | 
|  | pvr_mask = ldl_be_phys(&address_space_memory, *addr); | 
|  | pvr = ldl_be_phys(&address_space_memory, *addr + 4); | 
|  | *addr += 8; | 
|  |  | 
|  | if (~pvr_mask & pvr) { | 
|  | break; /* Terminator record */ | 
|  | } | 
|  |  | 
|  | if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { | 
|  | explicit_match = true; | 
|  | } else { | 
|  | if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { | 
|  | best_compat = pvr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *raw_mode_supported = explicit_match; | 
|  |  | 
|  | /* Parsing finished */ | 
|  | trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); | 
|  |  | 
|  | return best_compat; | 
|  | } | 
|  |  | 
|  | static | 
|  | target_ulong do_client_architecture_support(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong vec, | 
|  | target_ulong fdt_bufsize) | 
|  | { | 
|  | target_ulong ov_table; /* Working address in data buffer */ | 
|  | uint32_t cas_pvr; | 
|  | SpaprOptionVector *ov1_guest, *ov5_guest; | 
|  | bool guest_radix; | 
|  | bool raw_mode_supported = false; | 
|  | bool guest_xive; | 
|  | CPUState *cs; | 
|  | void *fdt; | 
|  | uint32_t max_compat = spapr->max_compat_pvr; | 
|  |  | 
|  | /* CAS is supposed to be called early when only the boot vCPU is active. */ | 
|  | CPU_FOREACH(cs) { | 
|  | if (cs == CPU(cpu)) { | 
|  | continue; | 
|  | } | 
|  | if (!cs->halted) { | 
|  | warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); | 
|  | return H_MULTI_THREADS_ACTIVE; | 
|  | } | 
|  | } | 
|  |  | 
|  | cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported); | 
|  | if (!cas_pvr && (!raw_mode_supported || max_compat)) { | 
|  | /* | 
|  | * We couldn't find a suitable compatibility mode, and either | 
|  | * the guest doesn't support "raw" mode for this CPU, or "raw" | 
|  | * mode is disabled because a maximum compat mode is set. | 
|  | */ | 
|  | error_report("Couldn't negotiate a suitable PVR during CAS"); | 
|  | return H_HARDWARE; | 
|  | } | 
|  |  | 
|  | /* Update CPUs */ | 
|  | if (cpu->compat_pvr != cas_pvr) { | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (ppc_set_compat_all(cas_pvr, &local_err) < 0) { | 
|  | /* We fail to set compat mode (likely because running with KVM PR), | 
|  | * but maybe we can fallback to raw mode if the guest supports it. | 
|  | */ | 
|  | if (!raw_mode_supported) { | 
|  | error_report_err(local_err); | 
|  | return H_HARDWARE; | 
|  | } | 
|  | error_free(local_err); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For the future use: here @ov_table points to the first option vector */ | 
|  | ov_table = vec; | 
|  |  | 
|  | ov1_guest = spapr_ovec_parse_vector(ov_table, 1); | 
|  | if (!ov1_guest) { | 
|  | warn_report("guest didn't provide option vector 1"); | 
|  | return H_PARAMETER; | 
|  | } | 
|  | ov5_guest = spapr_ovec_parse_vector(ov_table, 5); | 
|  | if (!ov5_guest) { | 
|  | spapr_ovec_cleanup(ov1_guest); | 
|  | warn_report("guest didn't provide option vector 5"); | 
|  | return H_PARAMETER; | 
|  | } | 
|  | if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { | 
|  | error_report("guest requested hash and radix MMU, which is invalid."); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { | 
|  | error_report("guest requested an invalid interrupt mode"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  |  | 
|  | guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); | 
|  |  | 
|  | guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); | 
|  |  | 
|  | /* | 
|  | * HPT resizing is a bit of a special case, because when enabled | 
|  | * we assume an HPT guest will support it until it says it | 
|  | * doesn't, instead of assuming it won't support it until it says | 
|  | * it does.  Strictly speaking that approach could break for | 
|  | * guests which don't make a CAS call, but those are so old we | 
|  | * don't care about them.  Without that assumption we'd have to | 
|  | * make at least a temporary allocation of an HPT sized for max | 
|  | * memory, which could be impossibly difficult under KVM HV if | 
|  | * maxram is large. | 
|  | */ | 
|  | if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { | 
|  | int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); | 
|  |  | 
|  | if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { | 
|  | error_report( | 
|  | "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (spapr->htab_shift < maxshift) { | 
|  | /* Guest doesn't know about HPT resizing, so we | 
|  | * pre-emptively resize for the maximum permitted RAM.  At | 
|  | * the point this is called, nothing should have been | 
|  | * entered into the existing HPT */ | 
|  | spapr_reallocate_hpt(spapr, maxshift, &error_fatal); | 
|  | push_sregs_to_kvm_pr(spapr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* NOTE: there are actually a number of ov5 bits where input from the | 
|  | * guest is always zero, and the platform/QEMU enables them independently | 
|  | * of guest input. To model these properly we'd want some sort of mask, | 
|  | * but since they only currently apply to memory migration as defined | 
|  | * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need | 
|  | * to worry about this for now. | 
|  | */ | 
|  |  | 
|  | /* full range of negotiated ov5 capabilities */ | 
|  | spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); | 
|  | spapr_ovec_cleanup(ov5_guest); | 
|  |  | 
|  | spapr_check_mmu_mode(guest_radix); | 
|  |  | 
|  | spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); | 
|  | spapr_ovec_cleanup(ov1_guest); | 
|  |  | 
|  | /* | 
|  | * Check for NUMA affinity conditions now that we know which NUMA | 
|  | * affinity the guest will use. | 
|  | */ | 
|  | spapr_numa_associativity_check(spapr); | 
|  |  | 
|  | /* | 
|  | * Ensure the guest asks for an interrupt mode we support; | 
|  | * otherwise terminate the boot. | 
|  | */ | 
|  | if (guest_xive) { | 
|  | if (!spapr->irq->xive) { | 
|  | error_report( | 
|  | "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } else { | 
|  | if (!spapr->irq->xics) { | 
|  | error_report( | 
|  | "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } | 
|  |  | 
|  | spapr_irq_update_active_intc(spapr); | 
|  |  | 
|  | /* | 
|  | * Process all pending hot-plug/unplug requests now. An updated full | 
|  | * rendered FDT will be returned to the guest. | 
|  | */ | 
|  | spapr_drc_reset_all(spapr); | 
|  | spapr_clear_pending_hotplug_events(spapr); | 
|  |  | 
|  | /* | 
|  | * If spapr_machine_reset() did not set up a HPT but one is necessary | 
|  | * (because the guest isn't going to use radix) then set it up here. | 
|  | */ | 
|  | if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { | 
|  | /* legacy hash or new hash: */ | 
|  | spapr_setup_hpt(spapr); | 
|  | } | 
|  |  | 
|  | fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize); | 
|  | g_free(spapr->fdt_blob); | 
|  | spapr->fdt_size = fdt_totalsize(fdt); | 
|  | spapr->fdt_initial_size = spapr->fdt_size; | 
|  | spapr->fdt_blob = fdt; | 
|  |  | 
|  | /* | 
|  | * Set the machine->fdt pointer again since we just freed | 
|  | * it above (by freeing spapr->fdt_blob). We set this | 
|  | * pointer to enable support for the 'dumpdtb' QMP/HMP | 
|  | * command. | 
|  | */ | 
|  | MACHINE(spapr)->fdt = fdt; | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_client_architecture_support(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong opcode, | 
|  | target_ulong *args) | 
|  | { | 
|  | target_ulong vec = ppc64_phys_to_real(args[0]); | 
|  | target_ulong fdt_buf = args[1]; | 
|  | target_ulong fdt_bufsize = args[2]; | 
|  | target_ulong ret; | 
|  | SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; | 
|  |  | 
|  | if (fdt_bufsize < sizeof(hdr)) { | 
|  | error_report("SLOF provided insufficient CAS buffer " | 
|  | TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  |  | 
|  | fdt_bufsize -= sizeof(hdr); | 
|  |  | 
|  | ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize); | 
|  | if (ret == H_SUCCESS) { | 
|  | _FDT((fdt_pack(spapr->fdt_blob))); | 
|  | spapr->fdt_size = fdt_totalsize(spapr->fdt_blob); | 
|  | spapr->fdt_initial_size = spapr->fdt_size; | 
|  |  | 
|  | cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); | 
|  | cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob, | 
|  | spapr->fdt_size); | 
|  | trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr)); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | target_ulong spapr_vof_client_architecture_support(MachineState *ms, | 
|  | CPUState *cs, | 
|  | target_ulong ovec_addr) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(ms); | 
|  |  | 
|  | target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr, | 
|  | ovec_addr, FDT_MAX_SIZE); | 
|  |  | 
|  | /* | 
|  | * This adds stdout and generates phandles for boottime and CAS FDTs. | 
|  | * It is alright to update the FDT here as do_client_architecture_support() | 
|  | * does not pack it. | 
|  | */ | 
|  | spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong opcode, | 
|  | target_ulong *args) | 
|  | { | 
|  | uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & | 
|  | ~H_CPU_CHAR_THR_RECONF_TRIG; | 
|  | uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; | 
|  | uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); | 
|  | uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); | 
|  | uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); | 
|  | uint8_t count_cache_flush_assist = spapr_get_cap(spapr, | 
|  | SPAPR_CAP_CCF_ASSIST); | 
|  |  | 
|  | switch (safe_cache) { | 
|  | case SPAPR_CAP_WORKAROUND: | 
|  | characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; | 
|  | characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; | 
|  | characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; | 
|  | behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; | 
|  | break; | 
|  | case SPAPR_CAP_FIXED: | 
|  | behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY; | 
|  | behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS; | 
|  | break; | 
|  | default: /* broken */ | 
|  | assert(safe_cache == SPAPR_CAP_BROKEN); | 
|  | behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (safe_bounds_check) { | 
|  | case SPAPR_CAP_WORKAROUND: | 
|  | characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; | 
|  | behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; | 
|  | break; | 
|  | case SPAPR_CAP_FIXED: | 
|  | break; | 
|  | default: /* broken */ | 
|  | assert(safe_bounds_check == SPAPR_CAP_BROKEN); | 
|  | behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (safe_indirect_branch) { | 
|  | case SPAPR_CAP_FIXED_NA: | 
|  | break; | 
|  | case SPAPR_CAP_FIXED_CCD: | 
|  | characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; | 
|  | break; | 
|  | case SPAPR_CAP_FIXED_IBS: | 
|  | characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; | 
|  | break; | 
|  | case SPAPR_CAP_WORKAROUND: | 
|  | behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; | 
|  | if (count_cache_flush_assist) { | 
|  | characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; | 
|  | } | 
|  | break; | 
|  | default: /* broken */ | 
|  | assert(safe_indirect_branch == SPAPR_CAP_BROKEN); | 
|  | break; | 
|  | } | 
|  |  | 
|  | args[0] = characteristics; | 
|  | args[1] = behaviour; | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | target_ulong dt = ppc64_phys_to_real(args[0]); | 
|  | struct fdt_header hdr = { 0 }; | 
|  | unsigned cb; | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | void *fdt; | 
|  |  | 
|  | cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); | 
|  | cb = fdt32_to_cpu(hdr.totalsize); | 
|  |  | 
|  | if (!smc->update_dt_enabled) { | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Check that the fdt did not grow out of proportion */ | 
|  | if (cb > spapr->fdt_initial_size * 2) { | 
|  | trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, | 
|  | fdt32_to_cpu(hdr.magic)); | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | fdt = g_malloc0(cb); | 
|  | cpu_physical_memory_read(dt, fdt, cb); | 
|  |  | 
|  | /* Check the fdt consistency */ | 
|  | if (fdt_check_full(fdt, cb)) { | 
|  | trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, | 
|  | fdt32_to_cpu(hdr.magic)); | 
|  | return H_PARAMETER; | 
|  | } | 
|  |  | 
|  | g_free(spapr->fdt_blob); | 
|  | spapr->fdt_size = cb; | 
|  | spapr->fdt_blob = fdt; | 
|  | trace_spapr_update_dt(cb); | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; | 
|  | static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; | 
|  | static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; | 
|  |  | 
|  | void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) | 
|  | { | 
|  | spapr_hcall_fn *slot; | 
|  |  | 
|  | if (opcode <= MAX_HCALL_OPCODE) { | 
|  | assert((opcode & 0x3) == 0); | 
|  |  | 
|  | slot = &papr_hypercall_table[opcode / 4]; | 
|  | } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { | 
|  | /* we only have SVM-related hcall numbers assigned in multiples of 4 */ | 
|  | assert((opcode & 0x3) == 0); | 
|  |  | 
|  | slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; | 
|  | } else { | 
|  | assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); | 
|  |  | 
|  | slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; | 
|  | } | 
|  |  | 
|  | assert(!(*slot)); | 
|  | *slot = fn; | 
|  | } | 
|  |  | 
|  | void spapr_unregister_hypercall(target_ulong opcode) | 
|  | { | 
|  | spapr_hcall_fn *slot; | 
|  |  | 
|  | if (opcode <= MAX_HCALL_OPCODE) { | 
|  | assert((opcode & 0x3) == 0); | 
|  |  | 
|  | slot = &papr_hypercall_table[opcode / 4]; | 
|  | } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { | 
|  | /* we only have SVM-related hcall numbers assigned in multiples of 4 */ | 
|  | assert((opcode & 0x3) == 0); | 
|  |  | 
|  | slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; | 
|  | } else { | 
|  | assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); | 
|  |  | 
|  | slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; | 
|  | } | 
|  |  | 
|  | *slot = NULL; | 
|  | } | 
|  |  | 
|  | target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, | 
|  | target_ulong *args) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); | 
|  |  | 
|  | if ((opcode <= MAX_HCALL_OPCODE) | 
|  | && ((opcode & 0x3) == 0)) { | 
|  | spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; | 
|  |  | 
|  | if (fn) { | 
|  | return fn(cpu, spapr, opcode, args); | 
|  | } | 
|  | } else if ((opcode >= SVM_HCALL_BASE) && | 
|  | (opcode <= SVM_HCALL_MAX)) { | 
|  | spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; | 
|  |  | 
|  | if (fn) { | 
|  | return fn(cpu, spapr, opcode, args); | 
|  | } | 
|  | } else if ((opcode >= KVMPPC_HCALL_BASE) && | 
|  | (opcode <= KVMPPC_HCALL_MAX)) { | 
|  | spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; | 
|  |  | 
|  | if (fn) { | 
|  | return fn(cpu, spapr, opcode, args); | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", | 
|  | opcode); | 
|  | return H_FUNCTION; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TCG | 
|  | static void hypercall_register_softmmu(void) | 
|  | { | 
|  | /* DO NOTHING */ | 
|  | } | 
|  | #else | 
|  | static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr, | 
|  | target_ulong opcode, target_ulong *args) | 
|  | { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | static void hypercall_register_softmmu(void) | 
|  | { | 
|  | /* hcall-pft */ | 
|  | spapr_register_hypercall(H_ENTER, h_softmmu); | 
|  | spapr_register_hypercall(H_REMOVE, h_softmmu); | 
|  | spapr_register_hypercall(H_PROTECT, h_softmmu); | 
|  | spapr_register_hypercall(H_READ, h_softmmu); | 
|  |  | 
|  | /* hcall-bulk */ | 
|  | spapr_register_hypercall(H_BULK_REMOVE, h_softmmu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void hypercall_register_types(void) | 
|  | { | 
|  | hypercall_register_softmmu(); | 
|  |  | 
|  | /* hcall-hpt-resize */ | 
|  | spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); | 
|  | spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); | 
|  |  | 
|  | /* hcall-splpar */ | 
|  | spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); | 
|  | spapr_register_hypercall(H_CEDE, h_cede); | 
|  | spapr_register_hypercall(H_CONFER, h_confer); | 
|  | spapr_register_hypercall(H_PROD, h_prod); | 
|  |  | 
|  | /* hcall-join */ | 
|  | spapr_register_hypercall(H_JOIN, h_join); | 
|  |  | 
|  | spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); | 
|  |  | 
|  | /* processor register resource access h-calls */ | 
|  | spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); | 
|  | spapr_register_hypercall(H_SET_DABR, h_set_dabr); | 
|  | spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); | 
|  | spapr_register_hypercall(H_PAGE_INIT, h_page_init); | 
|  | spapr_register_hypercall(H_SET_MODE, h_set_mode); | 
|  |  | 
|  | /* In Memory Table MMU h-calls */ | 
|  | spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); | 
|  | spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); | 
|  | spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); | 
|  |  | 
|  | /* hcall-get-cpu-characteristics */ | 
|  | spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, | 
|  | h_get_cpu_characteristics); | 
|  |  | 
|  | /* "debugger" hcalls (also used by SLOF). Note: We do -not- differentiate | 
|  | * here between the "CI" and the "CACHE" variants, they will use whatever | 
|  | * mapping attributes qemu is using. When using KVM, the kernel will | 
|  | * enforce the attributes more strongly | 
|  | */ | 
|  | spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); | 
|  | spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); | 
|  | spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); | 
|  | spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); | 
|  | spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); | 
|  | spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); | 
|  | spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); | 
|  |  | 
|  | /* qemu/KVM-PPC specific hcalls */ | 
|  | spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); | 
|  |  | 
|  | /* ibm,client-architecture-support support */ | 
|  | spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); | 
|  |  | 
|  | spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); | 
|  | } | 
|  |  | 
|  | type_init(hypercall_register_types) |