blob: c7271093dd1c5cfada807694ea81830c2a2fc291 [file] [log] [blame]
/*
* vhost-vdpa
*
* Copyright(c) 2017-2018 Intel Corporation.
* Copyright(c) 2020 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <linux/vhost.h>
#include <linux/vfio.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include "exec/target_page.h"
#include "hw/virtio/vhost.h"
#include "hw/virtio/vhost-backend.h"
#include "hw/virtio/virtio-net.h"
#include "hw/virtio/vhost-shadow-virtqueue.h"
#include "hw/virtio/vhost-vdpa.h"
#include "exec/address-spaces.h"
#include "migration/blocker.h"
#include "qemu/cutils.h"
#include "qemu/main-loop.h"
#include "trace.h"
#include "qapi/error.h"
/*
* Return one past the end of the end of section. Be careful with uint64_t
* conversions!
*/
static Int128 vhost_vdpa_section_end(const MemoryRegionSection *section,
int page_mask)
{
Int128 llend = int128_make64(section->offset_within_address_space);
llend = int128_add(llend, section->size);
llend = int128_and(llend, int128_exts64(page_mask));
return llend;
}
static bool vhost_vdpa_listener_skipped_section(MemoryRegionSection *section,
uint64_t iova_min,
uint64_t iova_max,
int page_mask)
{
Int128 llend;
if ((!memory_region_is_ram(section->mr) &&
!memory_region_is_iommu(section->mr)) ||
memory_region_is_protected(section->mr) ||
/* vhost-vDPA doesn't allow MMIO to be mapped */
memory_region_is_ram_device(section->mr)) {
return true;
}
if (section->offset_within_address_space < iova_min) {
error_report("RAM section out of device range (min=0x%" PRIx64
", addr=0x%" HWADDR_PRIx ")",
iova_min, section->offset_within_address_space);
return true;
}
/*
* While using vIOMMU, sometimes the section will be larger than iova_max,
* but the memory that actually maps is smaller, so move the check to
* function vhost_vdpa_iommu_map_notify(). That function will use the actual
* size that maps to the kernel
*/
if (!memory_region_is_iommu(section->mr)) {
llend = vhost_vdpa_section_end(section, page_mask);
if (int128_gt(llend, int128_make64(iova_max))) {
error_report("RAM section out of device range (max=0x%" PRIx64
", end addr=0x%" PRIx64 ")",
iova_max, int128_get64(llend));
return true;
}
}
return false;
}
/*
* The caller must set asid = 0 if the device does not support asid.
* This is not an ABI break since it is set to 0 by the initializer anyway.
*/
int vhost_vdpa_dma_map(VhostVDPAShared *s, uint32_t asid, hwaddr iova,
hwaddr size, void *vaddr, bool readonly)
{
struct vhost_msg_v2 msg = {};
int fd = s->device_fd;
int ret = 0;
msg.type = VHOST_IOTLB_MSG_V2;
msg.asid = asid;
msg.iotlb.iova = iova;
msg.iotlb.size = size;
msg.iotlb.uaddr = (uint64_t)(uintptr_t)vaddr;
msg.iotlb.perm = readonly ? VHOST_ACCESS_RO : VHOST_ACCESS_RW;
msg.iotlb.type = VHOST_IOTLB_UPDATE;
trace_vhost_vdpa_dma_map(s, fd, msg.type, msg.asid, msg.iotlb.iova,
msg.iotlb.size, msg.iotlb.uaddr, msg.iotlb.perm,
msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
return -EIO ;
}
return ret;
}
/*
* The caller must set asid = 0 if the device does not support asid.
* This is not an ABI break since it is set to 0 by the initializer anyway.
*/
int vhost_vdpa_dma_unmap(VhostVDPAShared *s, uint32_t asid, hwaddr iova,
hwaddr size)
{
struct vhost_msg_v2 msg = {};
int fd = s->device_fd;
int ret = 0;
msg.type = VHOST_IOTLB_MSG_V2;
msg.asid = asid;
msg.iotlb.iova = iova;
msg.iotlb.size = size;
msg.iotlb.type = VHOST_IOTLB_INVALIDATE;
trace_vhost_vdpa_dma_unmap(s, fd, msg.type, msg.asid, msg.iotlb.iova,
msg.iotlb.size, msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
return -EIO ;
}
return ret;
}
static void vhost_vdpa_listener_begin_batch(VhostVDPAShared *s)
{
int fd = s->device_fd;
struct vhost_msg_v2 msg = {
.type = VHOST_IOTLB_MSG_V2,
.iotlb.type = VHOST_IOTLB_BATCH_BEGIN,
};
trace_vhost_vdpa_listener_begin_batch(s, fd, msg.type, msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
}
}
static void vhost_vdpa_iotlb_batch_begin_once(VhostVDPAShared *s)
{
if (s->backend_cap & (0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH) &&
!s->iotlb_batch_begin_sent) {
vhost_vdpa_listener_begin_batch(s);
}
s->iotlb_batch_begin_sent = true;
}
static void vhost_vdpa_listener_commit(MemoryListener *listener)
{
VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener);
struct vhost_msg_v2 msg = {};
int fd = s->device_fd;
if (!(s->backend_cap & (0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH))) {
return;
}
if (!s->iotlb_batch_begin_sent) {
return;
}
msg.type = VHOST_IOTLB_MSG_V2;
msg.iotlb.type = VHOST_IOTLB_BATCH_END;
trace_vhost_vdpa_listener_commit(s, fd, msg.type, msg.iotlb.type);
if (write(fd, &msg, sizeof(msg)) != sizeof(msg)) {
error_report("failed to write, fd=%d, errno=%d (%s)",
fd, errno, strerror(errno));
}
s->iotlb_batch_begin_sent = false;
}
static void vhost_vdpa_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
struct vdpa_iommu *iommu = container_of(n, struct vdpa_iommu, n);
hwaddr iova = iotlb->iova + iommu->iommu_offset;
VhostVDPAShared *s = iommu->dev_shared;
void *vaddr;
int ret;
Int128 llend;
if (iotlb->target_as != &address_space_memory) {
error_report("Wrong target AS \"%s\", only system memory is allowed",
iotlb->target_as->name ? iotlb->target_as->name : "none");
return;
}
RCU_READ_LOCK_GUARD();
/* check if RAM section out of device range */
llend = int128_add(int128_makes64(iotlb->addr_mask), int128_makes64(iova));
if (int128_gt(llend, int128_make64(s->iova_range.last))) {
error_report("RAM section out of device range (max=0x%" PRIx64
", end addr=0x%" PRIx64 ")",
s->iova_range.last, int128_get64(llend));
return;
}
if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
bool read_only;
if (!memory_get_xlat_addr(iotlb, &vaddr, NULL, &read_only, NULL)) {
return;
}
ret = vhost_vdpa_dma_map(s, VHOST_VDPA_GUEST_PA_ASID, iova,
iotlb->addr_mask + 1, vaddr, read_only);
if (ret) {
error_report("vhost_vdpa_dma_map(%p, 0x%" HWADDR_PRIx ", "
"0x%" HWADDR_PRIx ", %p) = %d (%m)",
s, iova, iotlb->addr_mask + 1, vaddr, ret);
}
} else {
ret = vhost_vdpa_dma_unmap(s, VHOST_VDPA_GUEST_PA_ASID, iova,
iotlb->addr_mask + 1);
if (ret) {
error_report("vhost_vdpa_dma_unmap(%p, 0x%" HWADDR_PRIx ", "
"0x%" HWADDR_PRIx ") = %d (%m)",
s, iova, iotlb->addr_mask + 1, ret);
}
}
}
static void vhost_vdpa_iommu_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener);
struct vdpa_iommu *iommu;
Int128 end;
int iommu_idx;
IOMMUMemoryRegion *iommu_mr;
int ret;
iommu_mr = IOMMU_MEMORY_REGION(section->mr);
iommu = g_malloc0(sizeof(*iommu));
end = int128_add(int128_make64(section->offset_within_region),
section->size);
end = int128_sub(end, int128_one());
iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
MEMTXATTRS_UNSPECIFIED);
iommu->iommu_mr = iommu_mr;
iommu_notifier_init(&iommu->n, vhost_vdpa_iommu_map_notify,
IOMMU_NOTIFIER_IOTLB_EVENTS,
section->offset_within_region,
int128_get64(end),
iommu_idx);
iommu->iommu_offset = section->offset_within_address_space -
section->offset_within_region;
iommu->dev_shared = s;
ret = memory_region_register_iommu_notifier(section->mr, &iommu->n, NULL);
if (ret) {
g_free(iommu);
return;
}
QLIST_INSERT_HEAD(&s->iommu_list, iommu, iommu_next);
memory_region_iommu_replay(iommu->iommu_mr, &iommu->n);
return;
}
static void vhost_vdpa_iommu_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener);
struct vdpa_iommu *iommu;
QLIST_FOREACH(iommu, &s->iommu_list, iommu_next)
{
if (MEMORY_REGION(iommu->iommu_mr) == section->mr &&
iommu->n.start == section->offset_within_region) {
memory_region_unregister_iommu_notifier(section->mr, &iommu->n);
QLIST_REMOVE(iommu, iommu_next);
g_free(iommu);
break;
}
}
}
static void vhost_vdpa_listener_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
DMAMap mem_region = {};
VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener);
hwaddr iova;
Int128 llend, llsize;
void *vaddr;
int ret;
int page_size = qemu_target_page_size();
int page_mask = -page_size;
if (vhost_vdpa_listener_skipped_section(section, s->iova_range.first,
s->iova_range.last, page_mask)) {
return;
}
if (memory_region_is_iommu(section->mr)) {
vhost_vdpa_iommu_region_add(listener, section);
return;
}
if (unlikely((section->offset_within_address_space & ~page_mask) !=
(section->offset_within_region & ~page_mask))) {
trace_vhost_vdpa_listener_region_add_unaligned(s, section->mr->name,
section->offset_within_address_space & ~page_mask,
section->offset_within_region & ~page_mask);
return;
}
iova = ROUND_UP(section->offset_within_address_space, page_size);
llend = vhost_vdpa_section_end(section, page_mask);
if (int128_ge(int128_make64(iova), llend)) {
return;
}
memory_region_ref(section->mr);
/* Here we assume that memory_region_is_ram(section->mr)==true */
vaddr = memory_region_get_ram_ptr(section->mr) +
section->offset_within_region +
(iova - section->offset_within_address_space);
trace_vhost_vdpa_listener_region_add(s, iova, int128_get64(llend),
vaddr, section->readonly);
llsize = int128_sub(llend, int128_make64(iova));
if (s->shadow_data) {
int r;
mem_region.translated_addr = (hwaddr)(uintptr_t)vaddr,
mem_region.size = int128_get64(llsize) - 1,
mem_region.perm = IOMMU_ACCESS_FLAG(true, section->readonly),
r = vhost_iova_tree_map_alloc(s->iova_tree, &mem_region);
if (unlikely(r != IOVA_OK)) {
error_report("Can't allocate a mapping (%d)", r);
goto fail;
}
iova = mem_region.iova;
}
vhost_vdpa_iotlb_batch_begin_once(s);
ret = vhost_vdpa_dma_map(s, VHOST_VDPA_GUEST_PA_ASID, iova,
int128_get64(llsize), vaddr, section->readonly);
if (ret) {
error_report("vhost vdpa map fail!");
goto fail_map;
}
return;
fail_map:
if (s->shadow_data) {
vhost_iova_tree_remove(s->iova_tree, mem_region);
}
fail:
/*
* On the initfn path, store the first error in the container so we
* can gracefully fail. Runtime, there's not much we can do other
* than throw a hardware error.
*/
error_report("vhost-vdpa: DMA mapping failed, unable to continue");
return;
}
static void vhost_vdpa_listener_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
VhostVDPAShared *s = container_of(listener, VhostVDPAShared, listener);
hwaddr iova;
Int128 llend, llsize;
int ret;
int page_size = qemu_target_page_size();
int page_mask = -page_size;
if (vhost_vdpa_listener_skipped_section(section, s->iova_range.first,
s->iova_range.last, page_mask)) {
return;
}
if (memory_region_is_iommu(section->mr)) {
vhost_vdpa_iommu_region_del(listener, section);
}
if (unlikely((section->offset_within_address_space & ~page_mask) !=
(section->offset_within_region & ~page_mask))) {
trace_vhost_vdpa_listener_region_del_unaligned(s, section->mr->name,
section->offset_within_address_space & ~page_mask,
section->offset_within_region & ~page_mask);
return;
}
iova = ROUND_UP(section->offset_within_address_space, page_size);
llend = vhost_vdpa_section_end(section, page_mask);
trace_vhost_vdpa_listener_region_del(s, iova,
int128_get64(int128_sub(llend, int128_one())));
if (int128_ge(int128_make64(iova), llend)) {
return;
}
llsize = int128_sub(llend, int128_make64(iova));
if (s->shadow_data) {
const DMAMap *result;
const void *vaddr = memory_region_get_ram_ptr(section->mr) +
section->offset_within_region +
(iova - section->offset_within_address_space);
DMAMap mem_region = {
.translated_addr = (hwaddr)(uintptr_t)vaddr,
.size = int128_get64(llsize) - 1,
};
result = vhost_iova_tree_find_iova(s->iova_tree, &mem_region);
if (!result) {
/* The memory listener map wasn't mapped */
return;
}
iova = result->iova;
vhost_iova_tree_remove(s->iova_tree, *result);
}
vhost_vdpa_iotlb_batch_begin_once(s);
/*
* The unmap ioctl doesn't accept a full 64-bit. need to check it
*/
if (int128_eq(llsize, int128_2_64())) {
llsize = int128_rshift(llsize, 1);
ret = vhost_vdpa_dma_unmap(s, VHOST_VDPA_GUEST_PA_ASID, iova,
int128_get64(llsize));
if (ret) {
error_report("vhost_vdpa_dma_unmap(%p, 0x%" HWADDR_PRIx ", "
"0x%" HWADDR_PRIx ") = %d (%m)",
s, iova, int128_get64(llsize), ret);
}
iova += int128_get64(llsize);
}
ret = vhost_vdpa_dma_unmap(s, VHOST_VDPA_GUEST_PA_ASID, iova,
int128_get64(llsize));
if (ret) {
error_report("vhost_vdpa_dma_unmap(%p, 0x%" HWADDR_PRIx ", "
"0x%" HWADDR_PRIx ") = %d (%m)",
s, iova, int128_get64(llsize), ret);
}
memory_region_unref(section->mr);
}
/*
* IOTLB API is used by vhost-vdpa which requires incremental updating
* of the mapping. So we can not use generic vhost memory listener which
* depends on the addnop().
*/
static const MemoryListener vhost_vdpa_memory_listener = {
.name = "vhost-vdpa",
.commit = vhost_vdpa_listener_commit,
.region_add = vhost_vdpa_listener_region_add,
.region_del = vhost_vdpa_listener_region_del,
};
static int vhost_vdpa_call(struct vhost_dev *dev, unsigned long int request,
void *arg)
{
struct vhost_vdpa *v = dev->opaque;
int fd = v->shared->device_fd;
int ret;
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
ret = ioctl(fd, request, arg);
return ret < 0 ? -errno : ret;
}
static int vhost_vdpa_add_status(struct vhost_dev *dev, uint8_t status)
{
uint8_t s;
int ret;
trace_vhost_vdpa_add_status(dev, status);
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_STATUS, &s);
if (ret < 0) {
return ret;
}
if ((s & status) == status) {
/* Don't set bits already set */
return 0;
}
s |= status;
ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_STATUS, &s);
if (ret < 0) {
return ret;
}
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_STATUS, &s);
if (ret < 0) {
return ret;
}
if (!(s & status)) {
return -EIO;
}
return 0;
}
int vhost_vdpa_get_iova_range(int fd, struct vhost_vdpa_iova_range *iova_range)
{
int ret = ioctl(fd, VHOST_VDPA_GET_IOVA_RANGE, iova_range);
return ret < 0 ? -errno : 0;
}
/*
* The use of this function is for requests that only need to be
* applied once. Typically such request occurs at the beginning
* of operation, and before setting up queues. It should not be
* used for request that performs operation until all queues are
* set, which would need to check dev->vq_index_end instead.
*/
static bool vhost_vdpa_first_dev(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
return v->index == 0;
}
static bool vhost_vdpa_last_dev(struct vhost_dev *dev)
{
return dev->vq_index + dev->nvqs == dev->vq_index_end;
}
static int vhost_vdpa_get_dev_features(struct vhost_dev *dev,
uint64_t *features)
{
int ret;
ret = vhost_vdpa_call(dev, VHOST_GET_FEATURES, features);
trace_vhost_vdpa_get_features(dev, *features);
return ret;
}
static void vhost_vdpa_init_svq(struct vhost_dev *hdev, struct vhost_vdpa *v)
{
g_autoptr(GPtrArray) shadow_vqs = NULL;
shadow_vqs = g_ptr_array_new_full(hdev->nvqs, vhost_svq_free);
for (unsigned n = 0; n < hdev->nvqs; ++n) {
VhostShadowVirtqueue *svq;
svq = vhost_svq_new(v->shadow_vq_ops, v->shadow_vq_ops_opaque);
g_ptr_array_add(shadow_vqs, svq);
}
v->shadow_vqs = g_steal_pointer(&shadow_vqs);
}
static int vhost_vdpa_init(struct vhost_dev *dev, void *opaque, Error **errp)
{
struct vhost_vdpa *v = opaque;
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
trace_vhost_vdpa_init(dev, v->shared, opaque);
int ret;
v->dev = dev;
dev->opaque = opaque ;
v->shared->listener = vhost_vdpa_memory_listener;
vhost_vdpa_init_svq(dev, v);
error_propagate(&dev->migration_blocker, v->migration_blocker);
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
/*
* If dev->shadow_vqs_enabled at initialization that means the device has
* been started with x-svq=on, so don't block migration
*/
if (dev->migration_blocker == NULL && !v->shadow_vqs_enabled) {
/* We don't have dev->features yet */
uint64_t features;
ret = vhost_vdpa_get_dev_features(dev, &features);
if (unlikely(ret)) {
error_setg_errno(errp, -ret, "Could not get device features");
return ret;
}
vhost_svq_valid_features(features, &dev->migration_blocker);
}
/*
* Similar to VFIO, we end up pinning all guest memory and have to
* disable discarding of RAM.
*/
ret = ram_block_discard_disable(true);
if (ret) {
error_report("Cannot set discarding of RAM broken");
return ret;
}
vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_ACKNOWLEDGE |
VIRTIO_CONFIG_S_DRIVER);
return 0;
}
static void vhost_vdpa_host_notifier_uninit(struct vhost_dev *dev,
int queue_index)
{
size_t page_size = qemu_real_host_page_size();
struct vhost_vdpa *v = dev->opaque;
VirtIODevice *vdev = dev->vdev;
VhostVDPAHostNotifier *n;
n = &v->notifier[queue_index];
if (n->addr) {
virtio_queue_set_host_notifier_mr(vdev, queue_index, &n->mr, false);
object_unparent(OBJECT(&n->mr));
munmap(n->addr, page_size);
n->addr = NULL;
}
}
static int vhost_vdpa_host_notifier_init(struct vhost_dev *dev, int queue_index)
{
size_t page_size = qemu_real_host_page_size();
struct vhost_vdpa *v = dev->opaque;
VirtIODevice *vdev = dev->vdev;
VhostVDPAHostNotifier *n;
int fd = v->shared->device_fd;
void *addr;
char *name;
vhost_vdpa_host_notifier_uninit(dev, queue_index);
n = &v->notifier[queue_index];
addr = mmap(NULL, page_size, PROT_WRITE, MAP_SHARED, fd,
queue_index * page_size);
if (addr == MAP_FAILED) {
goto err;
}
name = g_strdup_printf("vhost-vdpa/host-notifier@%p mmaps[%d]",
v, queue_index);
memory_region_init_ram_device_ptr(&n->mr, OBJECT(vdev), name,
page_size, addr);
g_free(name);
if (virtio_queue_set_host_notifier_mr(vdev, queue_index, &n->mr, true)) {
object_unparent(OBJECT(&n->mr));
munmap(addr, page_size);
goto err;
}
n->addr = addr;
return 0;
err:
return -1;
}
static void vhost_vdpa_host_notifiers_uninit(struct vhost_dev *dev, int n)
{
int i;
/*
* Pack all the changes to the memory regions in a single
* transaction to avoid a few updating of the address space
* topology.
*/
memory_region_transaction_begin();
for (i = dev->vq_index; i < dev->vq_index + n; i++) {
vhost_vdpa_host_notifier_uninit(dev, i);
}
memory_region_transaction_commit();
}
static void vhost_vdpa_host_notifiers_init(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
int i;
if (v->shadow_vqs_enabled) {
/* FIXME SVQ is not compatible with host notifiers mr */
return;
}
/*
* Pack all the changes to the memory regions in a single
* transaction to avoid a few updating of the address space
* topology.
*/
memory_region_transaction_begin();
for (i = dev->vq_index; i < dev->vq_index + dev->nvqs; i++) {
if (vhost_vdpa_host_notifier_init(dev, i)) {
vhost_vdpa_host_notifiers_uninit(dev, i - dev->vq_index);
break;
}
}
memory_region_transaction_commit();
}
static void vhost_vdpa_svq_cleanup(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
size_t idx;
for (idx = 0; idx < v->shadow_vqs->len; ++idx) {
vhost_svq_stop(g_ptr_array_index(v->shadow_vqs, idx));
}
g_ptr_array_free(v->shadow_vqs, true);
}
static int vhost_vdpa_cleanup(struct vhost_dev *dev)
{
struct vhost_vdpa *v;
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
v = dev->opaque;
trace_vhost_vdpa_cleanup(dev, v);
if (vhost_vdpa_first_dev(dev)) {
ram_block_discard_disable(false);
memory_listener_unregister(&v->shared->listener);
}
vhost_vdpa_host_notifiers_uninit(dev, dev->nvqs);
vhost_vdpa_svq_cleanup(dev);
dev->opaque = NULL;
return 0;
}
static int vhost_vdpa_memslots_limit(struct vhost_dev *dev)
{
trace_vhost_vdpa_memslots_limit(dev, INT_MAX);
return INT_MAX;
}
static int vhost_vdpa_set_mem_table(struct vhost_dev *dev,
struct vhost_memory *mem)
{
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
trace_vhost_vdpa_set_mem_table(dev, mem->nregions, mem->padding);
if (trace_event_get_state_backends(TRACE_VHOST_VDPA_SET_MEM_TABLE) &&
trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_REGIONS)) {
int i;
for (i = 0; i < mem->nregions; i++) {
trace_vhost_vdpa_dump_regions(dev, i,
mem->regions[i].guest_phys_addr,
mem->regions[i].memory_size,
mem->regions[i].userspace_addr,
mem->regions[i].flags_padding);
}
}
if (mem->padding) {
return -EINVAL;
}
return 0;
}
static int vhost_vdpa_set_features(struct vhost_dev *dev,
uint64_t features)
{
struct vhost_vdpa *v = dev->opaque;
int ret;
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
if (v->shadow_vqs_enabled) {
if ((v->acked_features ^ features) == BIT_ULL(VHOST_F_LOG_ALL)) {
/*
* QEMU is just trying to enable or disable logging. SVQ handles
* this sepparately, so no need to forward this.
*/
v->acked_features = features;
return 0;
}
v->acked_features = features;
/* We must not ack _F_LOG if SVQ is enabled */
features &= ~BIT_ULL(VHOST_F_LOG_ALL);
}
trace_vhost_vdpa_set_features(dev, features);
ret = vhost_vdpa_call(dev, VHOST_SET_FEATURES, &features);
if (ret) {
return ret;
}
return vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_FEATURES_OK);
}
static int vhost_vdpa_set_backend_cap(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
uint64_t features;
uint64_t f = 0x1ULL << VHOST_BACKEND_F_IOTLB_MSG_V2 |
0x1ULL << VHOST_BACKEND_F_IOTLB_BATCH |
0x1ULL << VHOST_BACKEND_F_IOTLB_ASID |
0x1ULL << VHOST_BACKEND_F_SUSPEND;
int r;
if (vhost_vdpa_call(dev, VHOST_GET_BACKEND_FEATURES, &features)) {
return -EFAULT;
}
features &= f;
if (vhost_vdpa_first_dev(dev)) {
r = vhost_vdpa_call(dev, VHOST_SET_BACKEND_FEATURES, &features);
if (r) {
return -EFAULT;
}
}
dev->backend_cap = features;
v->shared->backend_cap = features;
return 0;
}
static int vhost_vdpa_get_device_id(struct vhost_dev *dev,
uint32_t *device_id)
{
int ret;
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_DEVICE_ID, device_id);
trace_vhost_vdpa_get_device_id(dev, *device_id);
return ret;
}
static int vhost_vdpa_reset_device(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
int ret;
uint8_t status = 0;
ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_STATUS, &status);
trace_vhost_vdpa_reset_device(dev);
v->suspended = false;
return ret;
}
static int vhost_vdpa_get_vq_index(struct vhost_dev *dev, int idx)
{
assert(idx >= dev->vq_index && idx < dev->vq_index + dev->nvqs);
trace_vhost_vdpa_get_vq_index(dev, idx, idx);
return idx;
}
int vhost_vdpa_set_vring_ready(struct vhost_vdpa *v, unsigned idx)
{
struct vhost_dev *dev = v->dev;
struct vhost_vring_state state = {
.index = idx,
.num = 1,
};
int r = vhost_vdpa_call(dev, VHOST_VDPA_SET_VRING_ENABLE, &state);
trace_vhost_vdpa_set_vring_ready(dev, idx, r);
return r;
}
static int vhost_vdpa_set_config_call(struct vhost_dev *dev,
int fd)
{
trace_vhost_vdpa_set_config_call(dev, fd);
return vhost_vdpa_call(dev, VHOST_VDPA_SET_CONFIG_CALL, &fd);
}
static void vhost_vdpa_dump_config(struct vhost_dev *dev, const uint8_t *config,
uint32_t config_len)
{
int b, len;
char line[QEMU_HEXDUMP_LINE_LEN];
for (b = 0; b < config_len; b += 16) {
len = config_len - b;
qemu_hexdump_line(line, b, config, len, false);
trace_vhost_vdpa_dump_config(dev, line);
}
}
static int vhost_vdpa_set_config(struct vhost_dev *dev, const uint8_t *data,
uint32_t offset, uint32_t size,
uint32_t flags)
{
struct vhost_vdpa_config *config;
int ret;
unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
trace_vhost_vdpa_set_config(dev, offset, size, flags);
config = g_malloc(size + config_size);
config->off = offset;
config->len = size;
memcpy(config->buf, data, size);
if (trace_event_get_state_backends(TRACE_VHOST_VDPA_SET_CONFIG) &&
trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_CONFIG)) {
vhost_vdpa_dump_config(dev, data, size);
}
ret = vhost_vdpa_call(dev, VHOST_VDPA_SET_CONFIG, config);
g_free(config);
return ret;
}
static int vhost_vdpa_get_config(struct vhost_dev *dev, uint8_t *config,
uint32_t config_len, Error **errp)
{
struct vhost_vdpa_config *v_config;
unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
int ret;
trace_vhost_vdpa_get_config(dev, config, config_len);
v_config = g_malloc(config_len + config_size);
v_config->len = config_len;
v_config->off = 0;
ret = vhost_vdpa_call(dev, VHOST_VDPA_GET_CONFIG, v_config);
memcpy(config, v_config->buf, config_len);
g_free(v_config);
if (trace_event_get_state_backends(TRACE_VHOST_VDPA_GET_CONFIG) &&
trace_event_get_state_backends(TRACE_VHOST_VDPA_DUMP_CONFIG)) {
vhost_vdpa_dump_config(dev, config, config_len);
}
return ret;
}
static int vhost_vdpa_set_dev_vring_base(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
trace_vhost_vdpa_set_vring_base(dev, ring->index, ring->num);
return vhost_vdpa_call(dev, VHOST_SET_VRING_BASE, ring);
}
static int vhost_vdpa_set_vring_dev_kick(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
trace_vhost_vdpa_set_vring_kick(dev, file->index, file->fd);
return vhost_vdpa_call(dev, VHOST_SET_VRING_KICK, file);
}
static int vhost_vdpa_set_vring_dev_call(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
trace_vhost_vdpa_set_vring_call(dev, file->index, file->fd);
return vhost_vdpa_call(dev, VHOST_SET_VRING_CALL, file);
}
static int vhost_vdpa_set_vring_dev_addr(struct vhost_dev *dev,
struct vhost_vring_addr *addr)
{
trace_vhost_vdpa_set_vring_addr(dev, addr->index, addr->flags,
addr->desc_user_addr, addr->used_user_addr,
addr->avail_user_addr,
addr->log_guest_addr);
return vhost_vdpa_call(dev, VHOST_SET_VRING_ADDR, addr);
}
/**
* Set the shadow virtqueue descriptors to the device
*
* @dev: The vhost device model
* @svq: The shadow virtqueue
* @idx: The index of the virtqueue in the vhost device
* @errp: Error
*
* Note that this function does not rewind kick file descriptor if cannot set
* call one.
*/
static int vhost_vdpa_svq_set_fds(struct vhost_dev *dev,
VhostShadowVirtqueue *svq, unsigned idx,
Error **errp)
{
struct vhost_vring_file file = {
.index = dev->vq_index + idx,
};
const EventNotifier *event_notifier = &svq->hdev_kick;
int r;
r = event_notifier_init(&svq->hdev_kick, 0);
if (r != 0) {
error_setg_errno(errp, -r, "Couldn't create kick event notifier");
goto err_init_hdev_kick;
}
r = event_notifier_init(&svq->hdev_call, 0);
if (r != 0) {
error_setg_errno(errp, -r, "Couldn't create call event notifier");
goto err_init_hdev_call;
}
file.fd = event_notifier_get_fd(event_notifier);
r = vhost_vdpa_set_vring_dev_kick(dev, &file);
if (unlikely(r != 0)) {
error_setg_errno(errp, -r, "Can't set device kick fd");
goto err_init_set_dev_fd;
}
event_notifier = &svq->hdev_call;
file.fd = event_notifier_get_fd(event_notifier);
r = vhost_vdpa_set_vring_dev_call(dev, &file);
if (unlikely(r != 0)) {
error_setg_errno(errp, -r, "Can't set device call fd");
goto err_init_set_dev_fd;
}
return 0;
err_init_set_dev_fd:
event_notifier_set_handler(&svq->hdev_call, NULL);
err_init_hdev_call:
event_notifier_cleanup(&svq->hdev_kick);
err_init_hdev_kick:
return r;
}
/**
* Unmap a SVQ area in the device
*/
static void vhost_vdpa_svq_unmap_ring(struct vhost_vdpa *v, hwaddr addr)
{
const DMAMap needle = {
.translated_addr = addr,
};
const DMAMap *result = vhost_iova_tree_find_iova(v->shared->iova_tree,
&needle);
hwaddr size;
int r;
if (unlikely(!result)) {
error_report("Unable to find SVQ address to unmap");
return;
}
size = ROUND_UP(result->size, qemu_real_host_page_size());
r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, result->iova,
size);
if (unlikely(r < 0)) {
error_report("Unable to unmap SVQ vring: %s (%d)", g_strerror(-r), -r);
return;
}
vhost_iova_tree_remove(v->shared->iova_tree, *result);
}
static void vhost_vdpa_svq_unmap_rings(struct vhost_dev *dev,
const VhostShadowVirtqueue *svq)
{
struct vhost_vdpa *v = dev->opaque;
struct vhost_vring_addr svq_addr;
vhost_svq_get_vring_addr(svq, &svq_addr);
vhost_vdpa_svq_unmap_ring(v, svq_addr.desc_user_addr);
vhost_vdpa_svq_unmap_ring(v, svq_addr.used_user_addr);
}
/**
* Map the SVQ area in the device
*
* @v: Vhost-vdpa device
* @needle: The area to search iova
* @errorp: Error pointer
*/
static bool vhost_vdpa_svq_map_ring(struct vhost_vdpa *v, DMAMap *needle,
Error **errp)
{
int r;
r = vhost_iova_tree_map_alloc(v->shared->iova_tree, needle);
if (unlikely(r != IOVA_OK)) {
error_setg(errp, "Cannot allocate iova (%d)", r);
return false;
}
r = vhost_vdpa_dma_map(v->shared, v->address_space_id, needle->iova,
needle->size + 1,
(void *)(uintptr_t)needle->translated_addr,
needle->perm == IOMMU_RO);
if (unlikely(r != 0)) {
error_setg_errno(errp, -r, "Cannot map region to device");
vhost_iova_tree_remove(v->shared->iova_tree, *needle);
}
return r == 0;
}
/**
* Map the shadow virtqueue rings in the device
*
* @dev: The vhost device
* @svq: The shadow virtqueue
* @addr: Assigned IOVA addresses
* @errp: Error pointer
*/
static bool vhost_vdpa_svq_map_rings(struct vhost_dev *dev,
const VhostShadowVirtqueue *svq,
struct vhost_vring_addr *addr,
Error **errp)
{
ERRP_GUARD();
DMAMap device_region, driver_region;
struct vhost_vring_addr svq_addr;
struct vhost_vdpa *v = dev->opaque;
size_t device_size = vhost_svq_device_area_size(svq);
size_t driver_size = vhost_svq_driver_area_size(svq);
size_t avail_offset;
bool ok;
vhost_svq_get_vring_addr(svq, &svq_addr);
driver_region = (DMAMap) {
.translated_addr = svq_addr.desc_user_addr,
.size = driver_size - 1,
.perm = IOMMU_RO,
};
ok = vhost_vdpa_svq_map_ring(v, &driver_region, errp);
if (unlikely(!ok)) {
error_prepend(errp, "Cannot create vq driver region: ");
return false;
}
addr->desc_user_addr = driver_region.iova;
avail_offset = svq_addr.avail_user_addr - svq_addr.desc_user_addr;
addr->avail_user_addr = driver_region.iova + avail_offset;
device_region = (DMAMap) {
.translated_addr = svq_addr.used_user_addr,
.size = device_size - 1,
.perm = IOMMU_RW,
};
ok = vhost_vdpa_svq_map_ring(v, &device_region, errp);
if (unlikely(!ok)) {
error_prepend(errp, "Cannot create vq device region: ");
vhost_vdpa_svq_unmap_ring(v, driver_region.translated_addr);
}
addr->used_user_addr = device_region.iova;
return ok;
}
static bool vhost_vdpa_svq_setup(struct vhost_dev *dev,
VhostShadowVirtqueue *svq, unsigned idx,
Error **errp)
{
uint16_t vq_index = dev->vq_index + idx;
struct vhost_vring_state s = {
.index = vq_index,
};
int r;
r = vhost_vdpa_set_dev_vring_base(dev, &s);
if (unlikely(r)) {
error_setg_errno(errp, -r, "Cannot set vring base");
return false;
}
r = vhost_vdpa_svq_set_fds(dev, svq, idx, errp);
return r == 0;
}
static bool vhost_vdpa_svqs_start(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
Error *err = NULL;
unsigned i;
if (!v->shadow_vqs_enabled) {
return true;
}
for (i = 0; i < v->shadow_vqs->len; ++i) {
VirtQueue *vq = virtio_get_queue(dev->vdev, dev->vq_index + i);
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, i);
struct vhost_vring_addr addr = {
.index = dev->vq_index + i,
};
int r;
bool ok = vhost_vdpa_svq_setup(dev, svq, i, &err);
if (unlikely(!ok)) {
goto err;
}
vhost_svq_start(svq, dev->vdev, vq, v->shared->iova_tree);
ok = vhost_vdpa_svq_map_rings(dev, svq, &addr, &err);
if (unlikely(!ok)) {
goto err_map;
}
/* Override vring GPA set by vhost subsystem */
r = vhost_vdpa_set_vring_dev_addr(dev, &addr);
if (unlikely(r != 0)) {
error_setg_errno(&err, -r, "Cannot set device address");
goto err_set_addr;
}
}
return true;
err_set_addr:
vhost_vdpa_svq_unmap_rings(dev, g_ptr_array_index(v->shadow_vqs, i));
err_map:
vhost_svq_stop(g_ptr_array_index(v->shadow_vqs, i));
err:
error_reportf_err(err, "Cannot setup SVQ %u: ", i);
for (unsigned j = 0; j < i; ++j) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, j);
vhost_vdpa_svq_unmap_rings(dev, svq);
vhost_svq_stop(svq);
}
return false;
}
static void vhost_vdpa_svqs_stop(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
if (!v->shadow_vqs_enabled) {
return;
}
for (unsigned i = 0; i < v->shadow_vqs->len; ++i) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, i);
vhost_svq_stop(svq);
vhost_vdpa_svq_unmap_rings(dev, svq);
event_notifier_cleanup(&svq->hdev_kick);
event_notifier_cleanup(&svq->hdev_call);
}
}
static void vhost_vdpa_suspend(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
int r;
if (!vhost_vdpa_first_dev(dev)) {
return;
}
if (dev->backend_cap & BIT_ULL(VHOST_BACKEND_F_SUSPEND)) {
trace_vhost_vdpa_suspend(dev);
r = ioctl(v->shared->device_fd, VHOST_VDPA_SUSPEND);
if (unlikely(r)) {
error_report("Cannot suspend: %s(%d)", g_strerror(errno), errno);
} else {
v->suspended = true;
return;
}
}
vhost_vdpa_reset_device(dev);
}
static int vhost_vdpa_dev_start(struct vhost_dev *dev, bool started)
{
struct vhost_vdpa *v = dev->opaque;
bool ok;
trace_vhost_vdpa_dev_start(dev, started);
if (started) {
vhost_vdpa_host_notifiers_init(dev);
ok = vhost_vdpa_svqs_start(dev);
if (unlikely(!ok)) {
return -1;
}
} else {
vhost_vdpa_suspend(dev);
vhost_vdpa_svqs_stop(dev);
vhost_vdpa_host_notifiers_uninit(dev, dev->nvqs);
}
if (!vhost_vdpa_last_dev(dev)) {
return 0;
}
if (started) {
if (vhost_dev_has_iommu(dev) && (v->shadow_vqs_enabled)) {
error_report("SVQ can not work while IOMMU enable, please disable"
"IOMMU and try again");
return -1;
}
memory_listener_register(&v->shared->listener, dev->vdev->dma_as);
return vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_DRIVER_OK);
}
return 0;
}
static void vhost_vdpa_reset_status(struct vhost_dev *dev)
{
struct vhost_vdpa *v = dev->opaque;
if (!vhost_vdpa_last_dev(dev)) {
return;
}
vhost_vdpa_reset_device(dev);
vhost_vdpa_add_status(dev, VIRTIO_CONFIG_S_ACKNOWLEDGE |
VIRTIO_CONFIG_S_DRIVER);
memory_listener_unregister(&v->shared->listener);
}
static int vhost_vdpa_set_log_base(struct vhost_dev *dev, uint64_t base,
struct vhost_log *log)
{
struct vhost_vdpa *v = dev->opaque;
if (v->shadow_vqs_enabled || !vhost_vdpa_first_dev(dev)) {
return 0;
}
trace_vhost_vdpa_set_log_base(dev, base, log->size, log->refcnt, log->fd,
log->log);
return vhost_vdpa_call(dev, VHOST_SET_LOG_BASE, &base);
}
static int vhost_vdpa_set_vring_addr(struct vhost_dev *dev,
struct vhost_vring_addr *addr)
{
struct vhost_vdpa *v = dev->opaque;
if (v->shadow_vqs_enabled) {
/*
* Device vring addr was set at device start. SVQ base is handled by
* VirtQueue code.
*/
return 0;
}
return vhost_vdpa_set_vring_dev_addr(dev, addr);
}
static int vhost_vdpa_set_vring_num(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
trace_vhost_vdpa_set_vring_num(dev, ring->index, ring->num);
return vhost_vdpa_call(dev, VHOST_SET_VRING_NUM, ring);
}
static int vhost_vdpa_set_vring_base(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
struct vhost_vdpa *v = dev->opaque;
if (v->shadow_vqs_enabled) {
/*
* Device vring base was set at device start. SVQ base is handled by
* VirtQueue code.
*/
return 0;
}
return vhost_vdpa_set_dev_vring_base(dev, ring);
}
static int vhost_vdpa_get_vring_base(struct vhost_dev *dev,
struct vhost_vring_state *ring)
{
struct vhost_vdpa *v = dev->opaque;
int ret;
if (v->shadow_vqs_enabled) {
ring->num = virtio_queue_get_last_avail_idx(dev->vdev, ring->index);
trace_vhost_vdpa_get_vring_base(dev, ring->index, ring->num, true);
return 0;
}
if (!v->suspended) {
/*
* Cannot trust in value returned by device, let vhost recover used
* idx from guest.
*/
return -1;
}
ret = vhost_vdpa_call(dev, VHOST_GET_VRING_BASE, ring);
trace_vhost_vdpa_get_vring_base(dev, ring->index, ring->num, false);
return ret;
}
static int vhost_vdpa_set_vring_kick(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
struct vhost_vdpa *v = dev->opaque;
int vdpa_idx = file->index - dev->vq_index;
if (v->shadow_vqs_enabled) {
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, vdpa_idx);
vhost_svq_set_svq_kick_fd(svq, file->fd);
return 0;
} else {
return vhost_vdpa_set_vring_dev_kick(dev, file);
}
}
static int vhost_vdpa_set_vring_call(struct vhost_dev *dev,
struct vhost_vring_file *file)
{
struct vhost_vdpa *v = dev->opaque;
int vdpa_idx = file->index - dev->vq_index;
VhostShadowVirtqueue *svq = g_ptr_array_index(v->shadow_vqs, vdpa_idx);
/* Remember last call fd because we can switch to SVQ anytime. */
vhost_svq_set_svq_call_fd(svq, file->fd);
if (v->shadow_vqs_enabled) {
return 0;
}
return vhost_vdpa_set_vring_dev_call(dev, file);
}
static int vhost_vdpa_get_features(struct vhost_dev *dev,
uint64_t *features)
{
int ret = vhost_vdpa_get_dev_features(dev, features);
if (ret == 0) {
/* Add SVQ logging capabilities */
*features |= BIT_ULL(VHOST_F_LOG_ALL);
}
return ret;
}
static int vhost_vdpa_set_owner(struct vhost_dev *dev)
{
if (!vhost_vdpa_first_dev(dev)) {
return 0;
}
trace_vhost_vdpa_set_owner(dev);
return vhost_vdpa_call(dev, VHOST_SET_OWNER, NULL);
}
static int vhost_vdpa_vq_get_addr(struct vhost_dev *dev,
struct vhost_vring_addr *addr, struct vhost_virtqueue *vq)
{
assert(dev->vhost_ops->backend_type == VHOST_BACKEND_TYPE_VDPA);
addr->desc_user_addr = (uint64_t)(unsigned long)vq->desc_phys;
addr->avail_user_addr = (uint64_t)(unsigned long)vq->avail_phys;
addr->used_user_addr = (uint64_t)(unsigned long)vq->used_phys;
trace_vhost_vdpa_vq_get_addr(dev, vq, addr->desc_user_addr,
addr->avail_user_addr, addr->used_user_addr);
return 0;
}
static bool vhost_vdpa_force_iommu(struct vhost_dev *dev)
{
return true;
}
const VhostOps vdpa_ops = {
.backend_type = VHOST_BACKEND_TYPE_VDPA,
.vhost_backend_init = vhost_vdpa_init,
.vhost_backend_cleanup = vhost_vdpa_cleanup,
.vhost_set_log_base = vhost_vdpa_set_log_base,
.vhost_set_vring_addr = vhost_vdpa_set_vring_addr,
.vhost_set_vring_num = vhost_vdpa_set_vring_num,
.vhost_set_vring_base = vhost_vdpa_set_vring_base,
.vhost_get_vring_base = vhost_vdpa_get_vring_base,
.vhost_set_vring_kick = vhost_vdpa_set_vring_kick,
.vhost_set_vring_call = vhost_vdpa_set_vring_call,
.vhost_get_features = vhost_vdpa_get_features,
.vhost_set_backend_cap = vhost_vdpa_set_backend_cap,
.vhost_set_owner = vhost_vdpa_set_owner,
.vhost_set_vring_endian = NULL,
.vhost_backend_memslots_limit = vhost_vdpa_memslots_limit,
.vhost_set_mem_table = vhost_vdpa_set_mem_table,
.vhost_set_features = vhost_vdpa_set_features,
.vhost_reset_device = vhost_vdpa_reset_device,
.vhost_get_vq_index = vhost_vdpa_get_vq_index,
.vhost_get_config = vhost_vdpa_get_config,
.vhost_set_config = vhost_vdpa_set_config,
.vhost_requires_shm_log = NULL,
.vhost_migration_done = NULL,
.vhost_net_set_mtu = NULL,
.vhost_set_iotlb_callback = NULL,
.vhost_send_device_iotlb_msg = NULL,
.vhost_dev_start = vhost_vdpa_dev_start,
.vhost_get_device_id = vhost_vdpa_get_device_id,
.vhost_vq_get_addr = vhost_vdpa_vq_get_addr,
.vhost_force_iommu = vhost_vdpa_force_iommu,
.vhost_set_config_call = vhost_vdpa_set_config_call,
.vhost_reset_status = vhost_vdpa_reset_status,
};