blob: a8c38cc1189bfaff061c9945f870198a5a27a69d [file] [log] [blame]
/*
* ASPEED AST2400 Timer
*
* Andrew Jeffery <andrew@aj.id.au>
*
* Copyright (C) 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "hw/timer/aspeed_timer.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/qdev-properties.h"
#include "trace.h"
#define TIMER_NR_REGS 4
#define TIMER_CTRL_BITS 4
#define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
#define TIMER_CLOCK_USE_EXT true
#define TIMER_CLOCK_EXT_HZ 1000000
#define TIMER_CLOCK_USE_APB false
#define TIMER_REG_STATUS 0
#define TIMER_REG_RELOAD 1
#define TIMER_REG_MATCH_FIRST 2
#define TIMER_REG_MATCH_SECOND 3
#define TIMER_FIRST_CAP_PULSE 4
enum timer_ctrl_op {
op_enable = 0,
op_external_clock,
op_overflow_interrupt,
op_pulse_enable
};
/*
* Minimum value of the reload register to filter out short period
* timers which have a noticeable impact in emulation. 5us should be
* enough, use 20us for "safety".
*/
#define TIMER_MIN_NS (20 * SCALE_US)
/**
* Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
* structs, as it's a waste of memory. The ptimer BH callback needs to know
* whether a specific AspeedTimer is enabled, but this information is held in
* AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
* arbitrary AspeedTimer to AspeedTimerCtrlState.
*/
static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
{
const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
return container_of(timers, AspeedTimerCtrlState, timers);
}
static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
{
return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
}
static inline bool timer_enabled(AspeedTimer *t)
{
return timer_ctrl_status(t, op_enable);
}
static inline bool timer_overflow_interrupt(AspeedTimer *t)
{
return timer_ctrl_status(t, op_overflow_interrupt);
}
static inline bool timer_can_pulse(AspeedTimer *t)
{
return t->id >= TIMER_FIRST_CAP_PULSE;
}
static inline bool timer_external_clock(AspeedTimer *t)
{
return timer_ctrl_status(t, op_external_clock);
}
static inline uint32_t calculate_rate(struct AspeedTimer *t)
{
AspeedTimerCtrlState *s = timer_to_ctrl(t);
return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
aspeed_scu_get_apb_freq(s->scu);
}
static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
{
uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
uint32_t rate = calculate_rate(t);
uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
return t->reload - MIN(t->reload, ticks);
}
static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
{
uint32_t rate = calculate_rate(t);
uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
return value < min_ticks ? min_ticks : value;
}
static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
{
uint64_t delta_ns;
uint64_t delta_ticks;
delta_ticks = t->reload - MIN(t->reload, ticks);
delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
return t->start + delta_ns;
}
static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
{
return t->match[i] < t->reload ? t->match[i] : 0;
}
static uint64_t calculate_next(struct AspeedTimer *t)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t next;
/*
* We don't know the relationship between the values in the match
* registers, so sort using MAX/MIN/zero. We sort in that order as
* the timer counts down to zero.
*/
next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
if (now < next) {
return next;
}
next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
if (now < next) {
return next;
}
next = calculate_time(t, 0);
if (now < next) {
return next;
}
/* We've missed all deadlines, fire interrupt and try again */
timer_del(&t->timer);
if (timer_overflow_interrupt(t)) {
AspeedTimerCtrlState *s = timer_to_ctrl(t);
t->level = !t->level;
s->irq_sts |= BIT(t->id);
qemu_set_irq(t->irq, t->level);
}
next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0);
t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
return calculate_time(t, next);
}
static void aspeed_timer_mod(AspeedTimer *t)
{
uint64_t next = calculate_next(t);
if (next) {
timer_mod(&t->timer, next);
}
}
static void aspeed_timer_expire(void *opaque)
{
AspeedTimer *t = opaque;
bool interrupt = false;
uint32_t ticks;
if (!timer_enabled(t)) {
return;
}
ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
if (!ticks) {
interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
} else if (ticks <= MIN(t->match[0], t->match[1])) {
interrupt = true;
} else if (ticks <= MAX(t->match[0], t->match[1])) {
interrupt = true;
}
if (interrupt) {
AspeedTimerCtrlState *s = timer_to_ctrl(t);
t->level = !t->level;
s->irq_sts |= BIT(t->id);
qemu_set_irq(t->irq, t->level);
}
aspeed_timer_mod(t);
}
static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
{
uint64_t value;
switch (reg) {
case TIMER_REG_STATUS:
if (timer_enabled(t)) {
value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
} else {
value = t->reload;
}
break;
case TIMER_REG_RELOAD:
value = t->reload;
break;
case TIMER_REG_MATCH_FIRST:
case TIMER_REG_MATCH_SECOND:
value = t->match[reg - 2];
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
__func__, reg);
value = 0;
break;
}
return value;
}
static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
{
AspeedTimerCtrlState *s = opaque;
const int reg = (offset & 0xf) / 4;
uint64_t value;
switch (offset) {
case 0x30: /* Control Register */
value = s->ctrl;
break;
case 0x00 ... 0x2c: /* Timers 1 - 4 */
value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
break;
case 0x40 ... 0x8c: /* Timers 5 - 8 */
value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
break;
default:
value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
break;
}
trace_aspeed_timer_read(offset, size, value);
return value;
}
static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
uint32_t value)
{
AspeedTimer *t;
uint32_t old_reload;
trace_aspeed_timer_set_value(timer, reg, value);
t = &s->timers[timer];
switch (reg) {
case TIMER_REG_RELOAD:
old_reload = t->reload;
t->reload = calculate_min_ticks(t, value);
/* If the reload value was not previously set, or zero, and
* the current value is valid, try to start the timer if it is
* enabled.
*/
if (old_reload || !t->reload) {
break;
}
case TIMER_REG_STATUS:
if (timer_enabled(t)) {
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
uint32_t rate = calculate_rate(t);
if (delta >= 0) {
t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
} else {
t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
}
aspeed_timer_mod(t);
}
break;
case TIMER_REG_MATCH_FIRST:
case TIMER_REG_MATCH_SECOND:
t->match[reg - 2] = value;
if (timer_enabled(t)) {
aspeed_timer_mod(t);
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
__func__, reg);
break;
}
}
/* Control register operations are broken out into helpers that can be
* explicitly called on aspeed_timer_reset(), but also from
* aspeed_timer_ctrl_op().
*/
static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_enable(t->id, enable);
if (enable) {
t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
aspeed_timer_mod(t);
} else {
timer_del(&t->timer);
}
}
static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_external_clock(t->id, enable);
}
static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
}
static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
{
if (timer_can_pulse(t)) {
trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Timer does not support pulse mode\n", __func__);
}
}
/**
* Given the actions are fixed in number and completely described in helper
* functions, dispatch with a lookup table rather than manage control flow with
* a switch statement.
*/
static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
[op_enable] = aspeed_timer_ctrl_enable,
[op_external_clock] = aspeed_timer_ctrl_external_clock,
[op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
[op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
};
/**
* Conditionally affect changes chosen by a timer's control bit.
*
* The aspeed_timer_ctrl_op() interface is convenient for the
* aspeed_timer_set_ctrl() function as the "no change" early exit can be
* calculated for all operations, which cleans up the caller code. However the
* interface isn't convenient for the reset function where we want to enter a
* specific state without artificially constructing old and new values that
* will fall through the change guard (and motivates extracting the actions
* out to helper functions).
*
* @t: The timer to manipulate
* @op: The type of operation to be performed
* @old: The old state of the timer's control bits
* @new: The incoming state for the timer's control bits
*/
static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
uint8_t old, uint8_t new)
{
const uint8_t mask = BIT(op);
const bool enable = !!(new & mask);
const bool changed = ((old ^ new) & mask);
if (!changed) {
return;
}
ctrl_ops[op](t, enable);
}
static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
{
int i;
int shift;
uint8_t t_old, t_new;
AspeedTimer *t;
const uint8_t enable_mask = BIT(op_enable);
/* Handle a dependency between the 'enable' and remaining three
* configuration bits - i.e. if more than one bit in the control set has
* changed, including the 'enable' bit, then we want either disable the
* timer and perform configuration, or perform configuration and then
* enable the timer
*/
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
t = &s->timers[i];
shift = (i * TIMER_CTRL_BITS);
t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
t_new = (reg >> shift) & TIMER_CTRL_MASK;
/* If we are disabling, do so first */
if ((t_old & enable_mask) && !(t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, false);
}
aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
/* If we are enabling, do so last */
if (!(t_old & enable_mask) && (t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, true);
}
}
s->ctrl = reg;
}
static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
{
trace_aspeed_timer_set_ctrl2(value);
}
static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
const int reg = (offset & 0xf) / 4;
AspeedTimerCtrlState *s = opaque;
switch (offset) {
/* Control Registers */
case 0x30:
aspeed_timer_set_ctrl(s, tv);
break;
/* Timer Registers */
case 0x00 ... 0x2c:
aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
break;
case 0x40 ... 0x8c:
aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
break;
default:
ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
break;
}
}
static const MemoryRegionOps aspeed_timer_ops = {
.read = aspeed_timer_read,
.write = aspeed_timer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.valid.unaligned = false,
};
static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->ctrl2;
break;
case 0x38:
case 0x3C:
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
}
return value;
}
static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
switch (offset) {
case 0x34:
aspeed_timer_set_ctrl2(s, tv);
break;
case 0x38:
case 0x3C:
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
}
static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->ctrl2;
break;
case 0x38:
value = s->ctrl3 & BIT(0);
break;
case 0x3C:
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
}
return value;
}
static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
uint8_t command;
switch (offset) {
case 0x34:
aspeed_timer_set_ctrl2(s, tv);
break;
case 0x38:
command = (value >> 1) & 0xFF;
if (command == 0xAE) {
s->ctrl3 = 0x1;
} else if (command == 0xEA) {
s->ctrl3 = 0x0;
}
break;
case 0x3C:
if (s->ctrl3 & BIT(0)) {
aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
}
static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->irq_sts;
break;
case 0x38:
case 0x3C:
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
}
return value;
}
static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
switch (offset) {
case 0x34:
s->irq_sts &= tv;
break;
case 0x3C:
aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
break;
case 0x38:
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
}
static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
{
AspeedTimer *t = &s->timers[id];
t->id = id;
timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
}
static void aspeed_timer_realize(DeviceState *dev, Error **errp)
{
int i;
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
assert(s->scu);
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
aspeed_init_one_timer(s, i);
sysbus_init_irq(sbd, &s->timers[i].irq);
}
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
TYPE_ASPEED_TIMER, 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void aspeed_timer_reset(DeviceState *dev)
{
int i;
AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
AspeedTimer *t = &s->timers[i];
/* Explicitly call helpers to avoid any conditional behaviour through
* aspeed_timer_set_ctrl().
*/
aspeed_timer_ctrl_enable(t, false);
aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
aspeed_timer_ctrl_overflow_interrupt(t, false);
aspeed_timer_ctrl_pulse_enable(t, false);
t->level = 0;
t->reload = 0;
t->match[0] = 0;
t->match[1] = 0;
}
s->ctrl = 0;
s->ctrl2 = 0;
s->ctrl3 = 0;
s->irq_sts = 0;
}
static const VMStateDescription vmstate_aspeed_timer = {
.name = "aspeed.timer",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT8(id, AspeedTimer),
VMSTATE_INT32(level, AspeedTimer),
VMSTATE_TIMER(timer, AspeedTimer),
VMSTATE_UINT32(reload, AspeedTimer),
VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_aspeed_timer_state = {
.name = "aspeed.timerctrl",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
AspeedTimer),
VMSTATE_END_OF_LIST()
}
};
static Property aspeed_timer_properties[] = {
DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
AspeedSCUState *),
DEFINE_PROP_END_OF_LIST(),
};
static void timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_timer_realize;
dc->reset = aspeed_timer_reset;
dc->desc = "ASPEED Timer";
dc->vmsd = &vmstate_aspeed_timer_state;
dc->props = aspeed_timer_properties;
}
static const TypeInfo aspeed_timer_info = {
.name = TYPE_ASPEED_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedTimerCtrlState),
.class_init = timer_class_init,
.class_size = sizeof(AspeedTimerClass),
.abstract = true,
};
static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2400 Timer";
awc->read = aspeed_2400_timer_read;
awc->write = aspeed_2400_timer_write;
}
static const TypeInfo aspeed_2400_timer_info = {
.name = TYPE_ASPEED_2400_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2400_timer_class_init,
};
static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2500 Timer";
awc->read = aspeed_2500_timer_read;
awc->write = aspeed_2500_timer_write;
}
static const TypeInfo aspeed_2500_timer_info = {
.name = TYPE_ASPEED_2500_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2500_timer_class_init,
};
static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2600 Timer";
awc->read = aspeed_2600_timer_read;
awc->write = aspeed_2600_timer_write;
}
static const TypeInfo aspeed_2600_timer_info = {
.name = TYPE_ASPEED_2600_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2600_timer_class_init,
};
static void aspeed_timer_register_types(void)
{
type_register_static(&aspeed_timer_info);
type_register_static(&aspeed_2400_timer_info);
type_register_static(&aspeed_2500_timer_info);
type_register_static(&aspeed_2600_timer_info);
}
type_init(aspeed_timer_register_types)