| /* |
| * MSI-X device support |
| * |
| * This module includes support for MSI-X in pci devices. |
| * |
| * Author: Michael S. Tsirkin <mst@redhat.com> |
| * |
| * Copyright (c) 2009, Red Hat Inc, Michael S. Tsirkin (mst@redhat.com) |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| * Contributions after 2012-01-13 are licensed under the terms of the |
| * GNU GPL, version 2 or (at your option) any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "hw/pci/pci.h" |
| #include "hw/xen/xen.h" |
| #include "sysemu/xen.h" |
| #include "migration/qemu-file-types.h" |
| #include "migration/vmstate.h" |
| #include "qemu/range.h" |
| #include "qapi/error.h" |
| #include "trace.h" |
| |
| /* MSI enable bit and maskall bit are in byte 1 in FLAGS register */ |
| #define MSIX_CONTROL_OFFSET (PCI_MSIX_FLAGS + 1) |
| #define MSIX_ENABLE_MASK (PCI_MSIX_FLAGS_ENABLE >> 8) |
| #define MSIX_MASKALL_MASK (PCI_MSIX_FLAGS_MASKALL >> 8) |
| |
| MSIMessage msix_get_message(PCIDevice *dev, unsigned vector) |
| { |
| uint8_t *table_entry = dev->msix_table + vector * PCI_MSIX_ENTRY_SIZE; |
| MSIMessage msg; |
| |
| msg.address = pci_get_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR); |
| msg.data = pci_get_long(table_entry + PCI_MSIX_ENTRY_DATA); |
| return msg; |
| } |
| |
| /* |
| * Special API for POWER to configure the vectors through |
| * a side channel. Should never be used by devices. |
| */ |
| void msix_set_message(PCIDevice *dev, int vector, struct MSIMessage msg) |
| { |
| uint8_t *table_entry = dev->msix_table + vector * PCI_MSIX_ENTRY_SIZE; |
| |
| pci_set_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR, msg.address); |
| pci_set_long(table_entry + PCI_MSIX_ENTRY_DATA, msg.data); |
| table_entry[PCI_MSIX_ENTRY_VECTOR_CTRL] &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT; |
| } |
| |
| static uint8_t msix_pending_mask(int vector) |
| { |
| return 1 << (vector % 8); |
| } |
| |
| static uint8_t *msix_pending_byte(PCIDevice *dev, int vector) |
| { |
| return dev->msix_pba + vector / 8; |
| } |
| |
| static int msix_is_pending(PCIDevice *dev, int vector) |
| { |
| return *msix_pending_byte(dev, vector) & msix_pending_mask(vector); |
| } |
| |
| void msix_set_pending(PCIDevice *dev, unsigned int vector) |
| { |
| *msix_pending_byte(dev, vector) |= msix_pending_mask(vector); |
| } |
| |
| void msix_clr_pending(PCIDevice *dev, int vector) |
| { |
| *msix_pending_byte(dev, vector) &= ~msix_pending_mask(vector); |
| } |
| |
| static bool msix_vector_masked(PCIDevice *dev, unsigned int vector, bool fmask) |
| { |
| unsigned offset = vector * PCI_MSIX_ENTRY_SIZE; |
| uint8_t *data = &dev->msix_table[offset + PCI_MSIX_ENTRY_DATA]; |
| /* MSIs on Xen can be remapped into pirqs. In those cases, masking |
| * and unmasking go through the PV evtchn path. */ |
| if (xen_enabled() && xen_is_pirq_msi(pci_get_long(data))) { |
| return false; |
| } |
| return fmask || dev->msix_table[offset + PCI_MSIX_ENTRY_VECTOR_CTRL] & |
| PCI_MSIX_ENTRY_CTRL_MASKBIT; |
| } |
| |
| bool msix_is_masked(PCIDevice *dev, unsigned int vector) |
| { |
| return msix_vector_masked(dev, vector, dev->msix_function_masked); |
| } |
| |
| static void msix_fire_vector_notifier(PCIDevice *dev, |
| unsigned int vector, bool is_masked) |
| { |
| MSIMessage msg; |
| int ret; |
| |
| if (!dev->msix_vector_use_notifier) { |
| return; |
| } |
| if (is_masked) { |
| dev->msix_vector_release_notifier(dev, vector); |
| } else { |
| msg = msix_get_message(dev, vector); |
| ret = dev->msix_vector_use_notifier(dev, vector, msg); |
| assert(ret >= 0); |
| } |
| } |
| |
| static void msix_handle_mask_update(PCIDevice *dev, int vector, bool was_masked) |
| { |
| bool is_masked = msix_is_masked(dev, vector); |
| |
| if (is_masked == was_masked) { |
| return; |
| } |
| |
| msix_fire_vector_notifier(dev, vector, is_masked); |
| |
| if (!is_masked && msix_is_pending(dev, vector)) { |
| msix_clr_pending(dev, vector); |
| msix_notify(dev, vector); |
| } |
| } |
| |
| static bool msix_masked(PCIDevice *dev) |
| { |
| return dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & MSIX_MASKALL_MASK; |
| } |
| |
| static void msix_update_function_masked(PCIDevice *dev) |
| { |
| dev->msix_function_masked = !msix_enabled(dev) || msix_masked(dev); |
| } |
| |
| /* Handle MSI-X capability config write. */ |
| void msix_write_config(PCIDevice *dev, uint32_t addr, |
| uint32_t val, int len) |
| { |
| unsigned enable_pos = dev->msix_cap + MSIX_CONTROL_OFFSET; |
| int vector; |
| bool was_masked; |
| |
| if (!msix_present(dev) || !range_covers_byte(addr, len, enable_pos)) { |
| return; |
| } |
| |
| trace_msix_write_config(dev->name, msix_enabled(dev), msix_masked(dev)); |
| |
| was_masked = dev->msix_function_masked; |
| msix_update_function_masked(dev); |
| |
| if (!msix_enabled(dev)) { |
| return; |
| } |
| |
| pci_device_deassert_intx(dev); |
| |
| if (dev->msix_function_masked == was_masked) { |
| return; |
| } |
| |
| for (vector = 0; vector < dev->msix_entries_nr; ++vector) { |
| msix_handle_mask_update(dev, vector, |
| msix_vector_masked(dev, vector, was_masked)); |
| } |
| } |
| |
| static uint64_t msix_table_mmio_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| PCIDevice *dev = opaque; |
| |
| assert(addr + size <= dev->msix_entries_nr * PCI_MSIX_ENTRY_SIZE); |
| return pci_get_long(dev->msix_table + addr); |
| } |
| |
| static void msix_table_mmio_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| PCIDevice *dev = opaque; |
| int vector = addr / PCI_MSIX_ENTRY_SIZE; |
| bool was_masked; |
| |
| assert(addr + size <= dev->msix_entries_nr * PCI_MSIX_ENTRY_SIZE); |
| |
| was_masked = msix_is_masked(dev, vector); |
| pci_set_long(dev->msix_table + addr, val); |
| msix_handle_mask_update(dev, vector, was_masked); |
| } |
| |
| static const MemoryRegionOps msix_table_mmio_ops = { |
| .read = msix_table_mmio_read, |
| .write = msix_table_mmio_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .max_access_size = 4, |
| }, |
| }; |
| |
| static uint64_t msix_pba_mmio_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| PCIDevice *dev = opaque; |
| if (dev->msix_vector_poll_notifier) { |
| unsigned vector_start = addr * 8; |
| unsigned vector_end = MIN(addr + size * 8, dev->msix_entries_nr); |
| dev->msix_vector_poll_notifier(dev, vector_start, vector_end); |
| } |
| |
| return pci_get_long(dev->msix_pba + addr); |
| } |
| |
| static void msix_pba_mmio_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| } |
| |
| static const MemoryRegionOps msix_pba_mmio_ops = { |
| .read = msix_pba_mmio_read, |
| .write = msix_pba_mmio_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .max_access_size = 4, |
| }, |
| }; |
| |
| static void msix_mask_all(struct PCIDevice *dev, unsigned nentries) |
| { |
| int vector; |
| |
| for (vector = 0; vector < nentries; ++vector) { |
| unsigned offset = |
| vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL; |
| bool was_masked = msix_is_masked(dev, vector); |
| |
| dev->msix_table[offset] |= PCI_MSIX_ENTRY_CTRL_MASKBIT; |
| msix_handle_mask_update(dev, vector, was_masked); |
| } |
| } |
| |
| /* |
| * Make PCI device @dev MSI-X capable |
| * @nentries is the max number of MSI-X vectors that the device support. |
| * @table_bar is the MemoryRegion that MSI-X table structure resides. |
| * @table_bar_nr is number of base address register corresponding to @table_bar. |
| * @table_offset indicates the offset that the MSI-X table structure starts with |
| * in @table_bar. |
| * @pba_bar is the MemoryRegion that the Pending Bit Array structure resides. |
| * @pba_bar_nr is number of base address register corresponding to @pba_bar. |
| * @pba_offset indicates the offset that the Pending Bit Array structure |
| * starts with in @pba_bar. |
| * Non-zero @cap_pos puts capability MSI-X at that offset in PCI config space. |
| * @errp is for returning errors. |
| * |
| * Return 0 on success; set @errp and return -errno on error: |
| * -ENOTSUP means lacking msi support for a msi-capable platform. |
| * -EINVAL means capability overlap, happens when @cap_pos is non-zero, |
| * also means a programming error, except device assignment, which can check |
| * if a real HW is broken. |
| */ |
| int msix_init(struct PCIDevice *dev, unsigned short nentries, |
| MemoryRegion *table_bar, uint8_t table_bar_nr, |
| unsigned table_offset, MemoryRegion *pba_bar, |
| uint8_t pba_bar_nr, unsigned pba_offset, uint8_t cap_pos, |
| Error **errp) |
| { |
| int cap; |
| unsigned table_size, pba_size; |
| uint8_t *config; |
| |
| /* Nothing to do if MSI is not supported by interrupt controller */ |
| if (!msi_nonbroken) { |
| error_setg(errp, "MSI-X is not supported by interrupt controller"); |
| return -ENOTSUP; |
| } |
| |
| if (nentries < 1 || nentries > PCI_MSIX_FLAGS_QSIZE + 1) { |
| error_setg(errp, "The number of MSI-X vectors is invalid"); |
| return -EINVAL; |
| } |
| |
| table_size = nentries * PCI_MSIX_ENTRY_SIZE; |
| pba_size = QEMU_ALIGN_UP(nentries, 64) / 8; |
| |
| /* Sanity test: table & pba don't overlap, fit within BARs, min aligned */ |
| if ((table_bar_nr == pba_bar_nr && |
| ranges_overlap(table_offset, table_size, pba_offset, pba_size)) || |
| table_offset + table_size > memory_region_size(table_bar) || |
| pba_offset + pba_size > memory_region_size(pba_bar) || |
| (table_offset | pba_offset) & PCI_MSIX_FLAGS_BIRMASK) { |
| error_setg(errp, "table & pba overlap, or they don't fit in BARs," |
| " or don't align"); |
| return -EINVAL; |
| } |
| |
| cap = pci_add_capability(dev, PCI_CAP_ID_MSIX, |
| cap_pos, MSIX_CAP_LENGTH, errp); |
| if (cap < 0) { |
| return cap; |
| } |
| |
| dev->msix_cap = cap; |
| dev->cap_present |= QEMU_PCI_CAP_MSIX; |
| config = dev->config + cap; |
| |
| pci_set_word(config + PCI_MSIX_FLAGS, nentries - 1); |
| dev->msix_entries_nr = nentries; |
| dev->msix_function_masked = true; |
| |
| pci_set_long(config + PCI_MSIX_TABLE, table_offset | table_bar_nr); |
| pci_set_long(config + PCI_MSIX_PBA, pba_offset | pba_bar_nr); |
| |
| /* Make flags bit writable. */ |
| dev->wmask[cap + MSIX_CONTROL_OFFSET] |= MSIX_ENABLE_MASK | |
| MSIX_MASKALL_MASK; |
| |
| dev->msix_table = g_malloc0(table_size); |
| dev->msix_pba = g_malloc0(pba_size); |
| dev->msix_entry_used = g_malloc0(nentries * sizeof *dev->msix_entry_used); |
| |
| msix_mask_all(dev, nentries); |
| |
| memory_region_init_io(&dev->msix_table_mmio, OBJECT(dev), &msix_table_mmio_ops, dev, |
| "msix-table", table_size); |
| memory_region_add_subregion(table_bar, table_offset, &dev->msix_table_mmio); |
| memory_region_init_io(&dev->msix_pba_mmio, OBJECT(dev), &msix_pba_mmio_ops, dev, |
| "msix-pba", pba_size); |
| memory_region_add_subregion(pba_bar, pba_offset, &dev->msix_pba_mmio); |
| |
| return 0; |
| } |
| |
| int msix_init_exclusive_bar(PCIDevice *dev, unsigned short nentries, |
| uint8_t bar_nr, Error **errp) |
| { |
| int ret; |
| char *name; |
| uint32_t bar_size = 4096; |
| uint32_t bar_pba_offset = bar_size / 2; |
| uint32_t bar_pba_size = QEMU_ALIGN_UP(nentries, 64) / 8; |
| |
| /* |
| * Migration compatibility dictates that this remains a 4k |
| * BAR with the vector table in the lower half and PBA in |
| * the upper half for nentries which is lower or equal to 128. |
| * No need to care about using more than 65 entries for legacy |
| * machine types who has at most 64 queues. |
| */ |
| if (nentries * PCI_MSIX_ENTRY_SIZE > bar_pba_offset) { |
| bar_pba_offset = nentries * PCI_MSIX_ENTRY_SIZE; |
| } |
| |
| if (bar_pba_offset + bar_pba_size > 4096) { |
| bar_size = bar_pba_offset + bar_pba_size; |
| } |
| |
| bar_size = pow2ceil(bar_size); |
| |
| name = g_strdup_printf("%s-msix", dev->name); |
| memory_region_init(&dev->msix_exclusive_bar, OBJECT(dev), name, bar_size); |
| g_free(name); |
| |
| ret = msix_init(dev, nentries, &dev->msix_exclusive_bar, bar_nr, |
| 0, &dev->msix_exclusive_bar, |
| bar_nr, bar_pba_offset, |
| 0, errp); |
| if (ret) { |
| return ret; |
| } |
| |
| pci_register_bar(dev, bar_nr, PCI_BASE_ADDRESS_SPACE_MEMORY, |
| &dev->msix_exclusive_bar); |
| |
| return 0; |
| } |
| |
| static void msix_free_irq_entries(PCIDevice *dev) |
| { |
| int vector; |
| |
| for (vector = 0; vector < dev->msix_entries_nr; ++vector) { |
| dev->msix_entry_used[vector] = 0; |
| msix_clr_pending(dev, vector); |
| } |
| } |
| |
| static void msix_clear_all_vectors(PCIDevice *dev) |
| { |
| int vector; |
| |
| for (vector = 0; vector < dev->msix_entries_nr; ++vector) { |
| msix_clr_pending(dev, vector); |
| } |
| } |
| |
| /* Clean up resources for the device. */ |
| void msix_uninit(PCIDevice *dev, MemoryRegion *table_bar, MemoryRegion *pba_bar) |
| { |
| if (!msix_present(dev)) { |
| return; |
| } |
| pci_del_capability(dev, PCI_CAP_ID_MSIX, MSIX_CAP_LENGTH); |
| dev->msix_cap = 0; |
| msix_free_irq_entries(dev); |
| dev->msix_entries_nr = 0; |
| memory_region_del_subregion(pba_bar, &dev->msix_pba_mmio); |
| g_free(dev->msix_pba); |
| dev->msix_pba = NULL; |
| memory_region_del_subregion(table_bar, &dev->msix_table_mmio); |
| g_free(dev->msix_table); |
| dev->msix_table = NULL; |
| g_free(dev->msix_entry_used); |
| dev->msix_entry_used = NULL; |
| dev->cap_present &= ~QEMU_PCI_CAP_MSIX; |
| } |
| |
| void msix_uninit_exclusive_bar(PCIDevice *dev) |
| { |
| if (msix_present(dev)) { |
| msix_uninit(dev, &dev->msix_exclusive_bar, &dev->msix_exclusive_bar); |
| } |
| } |
| |
| void msix_save(PCIDevice *dev, QEMUFile *f) |
| { |
| unsigned n = dev->msix_entries_nr; |
| |
| if (!msix_present(dev)) { |
| return; |
| } |
| |
| qemu_put_buffer(f, dev->msix_table, n * PCI_MSIX_ENTRY_SIZE); |
| qemu_put_buffer(f, dev->msix_pba, DIV_ROUND_UP(n, 8)); |
| } |
| |
| /* Should be called after restoring the config space. */ |
| void msix_load(PCIDevice *dev, QEMUFile *f) |
| { |
| unsigned n = dev->msix_entries_nr; |
| unsigned int vector; |
| |
| if (!msix_present(dev)) { |
| return; |
| } |
| |
| msix_clear_all_vectors(dev); |
| qemu_get_buffer(f, dev->msix_table, n * PCI_MSIX_ENTRY_SIZE); |
| qemu_get_buffer(f, dev->msix_pba, DIV_ROUND_UP(n, 8)); |
| msix_update_function_masked(dev); |
| |
| for (vector = 0; vector < n; vector++) { |
| msix_handle_mask_update(dev, vector, true); |
| } |
| } |
| |
| /* Does device support MSI-X? */ |
| int msix_present(PCIDevice *dev) |
| { |
| return dev->cap_present & QEMU_PCI_CAP_MSIX; |
| } |
| |
| /* Is MSI-X enabled? */ |
| int msix_enabled(PCIDevice *dev) |
| { |
| return (dev->cap_present & QEMU_PCI_CAP_MSIX) && |
| (dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & |
| MSIX_ENABLE_MASK); |
| } |
| |
| /* Send an MSI-X message */ |
| void msix_notify(PCIDevice *dev, unsigned vector) |
| { |
| MSIMessage msg; |
| |
| if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector]) { |
| return; |
| } |
| |
| if (msix_is_masked(dev, vector)) { |
| msix_set_pending(dev, vector); |
| return; |
| } |
| |
| msg = msix_get_message(dev, vector); |
| |
| msi_send_message(dev, msg); |
| } |
| |
| void msix_reset(PCIDevice *dev) |
| { |
| if (!msix_present(dev)) { |
| return; |
| } |
| msix_clear_all_vectors(dev); |
| dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &= |
| ~dev->wmask[dev->msix_cap + MSIX_CONTROL_OFFSET]; |
| memset(dev->msix_table, 0, dev->msix_entries_nr * PCI_MSIX_ENTRY_SIZE); |
| memset(dev->msix_pba, 0, QEMU_ALIGN_UP(dev->msix_entries_nr, 64) / 8); |
| msix_mask_all(dev, dev->msix_entries_nr); |
| } |
| |
| /* PCI spec suggests that devices make it possible for software to configure |
| * less vectors than supported by the device, but does not specify a standard |
| * mechanism for devices to do so. |
| * |
| * We support this by asking devices to declare vectors software is going to |
| * actually use, and checking this on the notification path. Devices that |
| * don't want to follow the spec suggestion can declare all vectors as used. */ |
| |
| /* Mark vector as used. */ |
| int msix_vector_use(PCIDevice *dev, unsigned vector) |
| { |
| if (vector >= dev->msix_entries_nr) { |
| return -EINVAL; |
| } |
| |
| dev->msix_entry_used[vector]++; |
| return 0; |
| } |
| |
| /* Mark vector as unused. */ |
| void msix_vector_unuse(PCIDevice *dev, unsigned vector) |
| { |
| if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector]) { |
| return; |
| } |
| if (--dev->msix_entry_used[vector]) { |
| return; |
| } |
| msix_clr_pending(dev, vector); |
| } |
| |
| void msix_unuse_all_vectors(PCIDevice *dev) |
| { |
| if (!msix_present(dev)) { |
| return; |
| } |
| msix_free_irq_entries(dev); |
| } |
| |
| unsigned int msix_nr_vectors_allocated(const PCIDevice *dev) |
| { |
| return dev->msix_entries_nr; |
| } |
| |
| static int msix_set_notifier_for_vector(PCIDevice *dev, unsigned int vector) |
| { |
| MSIMessage msg; |
| |
| if (msix_is_masked(dev, vector)) { |
| return 0; |
| } |
| msg = msix_get_message(dev, vector); |
| return dev->msix_vector_use_notifier(dev, vector, msg); |
| } |
| |
| static void msix_unset_notifier_for_vector(PCIDevice *dev, unsigned int vector) |
| { |
| if (msix_is_masked(dev, vector)) { |
| return; |
| } |
| dev->msix_vector_release_notifier(dev, vector); |
| } |
| |
| int msix_set_vector_notifiers(PCIDevice *dev, |
| MSIVectorUseNotifier use_notifier, |
| MSIVectorReleaseNotifier release_notifier, |
| MSIVectorPollNotifier poll_notifier) |
| { |
| int vector, ret; |
| |
| assert(use_notifier && release_notifier); |
| |
| dev->msix_vector_use_notifier = use_notifier; |
| dev->msix_vector_release_notifier = release_notifier; |
| dev->msix_vector_poll_notifier = poll_notifier; |
| |
| if ((dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & |
| (MSIX_ENABLE_MASK | MSIX_MASKALL_MASK)) == MSIX_ENABLE_MASK) { |
| for (vector = 0; vector < dev->msix_entries_nr; vector++) { |
| ret = msix_set_notifier_for_vector(dev, vector); |
| if (ret < 0) { |
| goto undo; |
| } |
| } |
| } |
| if (dev->msix_vector_poll_notifier) { |
| dev->msix_vector_poll_notifier(dev, 0, dev->msix_entries_nr); |
| } |
| return 0; |
| |
| undo: |
| while (--vector >= 0) { |
| msix_unset_notifier_for_vector(dev, vector); |
| } |
| dev->msix_vector_use_notifier = NULL; |
| dev->msix_vector_release_notifier = NULL; |
| return ret; |
| } |
| |
| void msix_unset_vector_notifiers(PCIDevice *dev) |
| { |
| int vector; |
| |
| assert(dev->msix_vector_use_notifier && |
| dev->msix_vector_release_notifier); |
| |
| if ((dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & |
| (MSIX_ENABLE_MASK | MSIX_MASKALL_MASK)) == MSIX_ENABLE_MASK) { |
| for (vector = 0; vector < dev->msix_entries_nr; vector++) { |
| msix_unset_notifier_for_vector(dev, vector); |
| } |
| } |
| dev->msix_vector_use_notifier = NULL; |
| dev->msix_vector_release_notifier = NULL; |
| dev->msix_vector_poll_notifier = NULL; |
| } |
| |
| static int put_msix_state(QEMUFile *f, void *pv, size_t size, |
| const VMStateField *field, JSONWriter *vmdesc) |
| { |
| msix_save(pv, f); |
| |
| return 0; |
| } |
| |
| static int get_msix_state(QEMUFile *f, void *pv, size_t size, |
| const VMStateField *field) |
| { |
| msix_load(pv, f); |
| return 0; |
| } |
| |
| static VMStateInfo vmstate_info_msix = { |
| .name = "msix state", |
| .get = get_msix_state, |
| .put = put_msix_state, |
| }; |
| |
| const VMStateDescription vmstate_msix = { |
| .name = "msix", |
| .fields = (VMStateField[]) { |
| { |
| .name = "msix", |
| .version_id = 0, |
| .field_exists = NULL, |
| .size = 0, /* ouch */ |
| .info = &vmstate_info_msix, |
| .flags = VMS_SINGLE, |
| .offset = 0, |
| }, |
| VMSTATE_END_OF_LIST() |
| } |
| }; |