| /* |
| * PowerMac descriptor-based DMA emulation |
| * |
| * Copyright (c) 2005-2007 Fabrice Bellard |
| * Copyright (c) 2007 Jocelyn Mayer |
| * Copyright (c) 2009 Laurent Vivier |
| * |
| * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h |
| * |
| * Definitions for using the Apple Descriptor-Based DMA controller |
| * in Power Macintosh computers. |
| * |
| * Copyright (C) 1996 Paul Mackerras. |
| * |
| * some parts from mol 0.9.71 |
| * |
| * Descriptor based DMA emulation |
| * |
| * Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se) |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/irq.h" |
| #include "hw/ppc/mac_dbdma.h" |
| #include "migration/vmstate.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "qemu/log.h" |
| #include "sysemu/dma.h" |
| |
| /* debug DBDMA */ |
| #define DEBUG_DBDMA 0 |
| #define DEBUG_DBDMA_CHANMASK ((1ull << DBDMA_CHANNELS) - 1) |
| |
| #define DBDMA_DPRINTF(fmt, ...) do { \ |
| if (DEBUG_DBDMA) { \ |
| printf("DBDMA: " fmt , ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| #define DBDMA_DPRINTFCH(ch, fmt, ...) do { \ |
| if (DEBUG_DBDMA) { \ |
| if ((1ul << (ch)->channel) & DEBUG_DBDMA_CHANMASK) { \ |
| printf("DBDMA[%02x]: " fmt , (ch)->channel, ## __VA_ARGS__); \ |
| } \ |
| } \ |
| } while (0) |
| |
| /* |
| */ |
| |
| static DBDMAState *dbdma_from_ch(DBDMA_channel *ch) |
| { |
| return container_of(ch, DBDMAState, channels[ch->channel]); |
| } |
| |
| #if DEBUG_DBDMA |
| static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd) |
| { |
| DBDMA_DPRINTFCH(ch, "dbdma_cmd %p\n", cmd); |
| DBDMA_DPRINTFCH(ch, " req_count 0x%04x\n", le16_to_cpu(cmd->req_count)); |
| DBDMA_DPRINTFCH(ch, " command 0x%04x\n", le16_to_cpu(cmd->command)); |
| DBDMA_DPRINTFCH(ch, " phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr)); |
| DBDMA_DPRINTFCH(ch, " cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep)); |
| DBDMA_DPRINTFCH(ch, " res_count 0x%04x\n", le16_to_cpu(cmd->res_count)); |
| DBDMA_DPRINTFCH(ch, " xfer_status 0x%04x\n", |
| le16_to_cpu(cmd->xfer_status)); |
| } |
| #else |
| static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd) |
| { |
| } |
| #endif |
| static void dbdma_cmdptr_load(DBDMA_channel *ch) |
| { |
| DBDMA_DPRINTFCH(ch, "dbdma_cmdptr_load 0x%08x\n", |
| ch->regs[DBDMA_CMDPTR_LO]); |
| dma_memory_read(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO], |
| &ch->current, sizeof(dbdma_cmd)); |
| } |
| |
| static void dbdma_cmdptr_save(DBDMA_channel *ch) |
| { |
| DBDMA_DPRINTFCH(ch, "-> update 0x%08x stat=0x%08x, res=0x%04x\n", |
| ch->regs[DBDMA_CMDPTR_LO], |
| le16_to_cpu(ch->current.xfer_status), |
| le16_to_cpu(ch->current.res_count)); |
| dma_memory_write(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO], |
| &ch->current, sizeof(dbdma_cmd)); |
| } |
| |
| static void kill_channel(DBDMA_channel *ch) |
| { |
| DBDMA_DPRINTFCH(ch, "kill_channel\n"); |
| |
| ch->regs[DBDMA_STATUS] |= DEAD; |
| ch->regs[DBDMA_STATUS] &= ~ACTIVE; |
| |
| qemu_irq_raise(ch->irq); |
| } |
| |
| static void conditional_interrupt(DBDMA_channel *ch) |
| { |
| dbdma_cmd *current = &ch->current; |
| uint16_t intr; |
| uint16_t sel_mask, sel_value; |
| uint32_t status; |
| int cond; |
| |
| DBDMA_DPRINTFCH(ch, "%s\n", __func__); |
| |
| intr = le16_to_cpu(current->command) & INTR_MASK; |
| |
| switch(intr) { |
| case INTR_NEVER: /* don't interrupt */ |
| return; |
| case INTR_ALWAYS: /* always interrupt */ |
| qemu_irq_raise(ch->irq); |
| DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__); |
| return; |
| } |
| |
| status = ch->regs[DBDMA_STATUS] & DEVSTAT; |
| |
| sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f; |
| sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f; |
| |
| cond = (status & sel_mask) == (sel_value & sel_mask); |
| |
| switch(intr) { |
| case INTR_IFSET: /* intr if condition bit is 1 */ |
| if (cond) { |
| qemu_irq_raise(ch->irq); |
| DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__); |
| } |
| return; |
| case INTR_IFCLR: /* intr if condition bit is 0 */ |
| if (!cond) { |
| qemu_irq_raise(ch->irq); |
| DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__); |
| } |
| return; |
| } |
| } |
| |
| static int conditional_wait(DBDMA_channel *ch) |
| { |
| dbdma_cmd *current = &ch->current; |
| uint16_t wait; |
| uint16_t sel_mask, sel_value; |
| uint32_t status; |
| int cond; |
| int res = 0; |
| |
| wait = le16_to_cpu(current->command) & WAIT_MASK; |
| switch(wait) { |
| case WAIT_NEVER: /* don't wait */ |
| return 0; |
| case WAIT_ALWAYS: /* always wait */ |
| DBDMA_DPRINTFCH(ch, " [WAIT_ALWAYS]\n"); |
| return 1; |
| } |
| |
| status = ch->regs[DBDMA_STATUS] & DEVSTAT; |
| |
| sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f; |
| sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f; |
| |
| cond = (status & sel_mask) == (sel_value & sel_mask); |
| |
| switch(wait) { |
| case WAIT_IFSET: /* wait if condition bit is 1 */ |
| if (cond) { |
| res = 1; |
| } |
| DBDMA_DPRINTFCH(ch, " [WAIT_IFSET=%d]\n", res); |
| break; |
| case WAIT_IFCLR: /* wait if condition bit is 0 */ |
| if (!cond) { |
| res = 1; |
| } |
| DBDMA_DPRINTFCH(ch, " [WAIT_IFCLR=%d]\n", res); |
| break; |
| } |
| return res; |
| } |
| |
| static void next(DBDMA_channel *ch) |
| { |
| uint32_t cp; |
| |
| ch->regs[DBDMA_STATUS] &= ~BT; |
| |
| cp = ch->regs[DBDMA_CMDPTR_LO]; |
| ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd); |
| dbdma_cmdptr_load(ch); |
| } |
| |
| static void branch(DBDMA_channel *ch) |
| { |
| dbdma_cmd *current = &ch->current; |
| |
| ch->regs[DBDMA_CMDPTR_LO] = le32_to_cpu(current->cmd_dep); |
| ch->regs[DBDMA_STATUS] |= BT; |
| dbdma_cmdptr_load(ch); |
| } |
| |
| static void conditional_branch(DBDMA_channel *ch) |
| { |
| dbdma_cmd *current = &ch->current; |
| uint16_t br; |
| uint16_t sel_mask, sel_value; |
| uint32_t status; |
| int cond; |
| |
| /* check if we must branch */ |
| |
| br = le16_to_cpu(current->command) & BR_MASK; |
| |
| switch(br) { |
| case BR_NEVER: /* don't branch */ |
| next(ch); |
| return; |
| case BR_ALWAYS: /* always branch */ |
| DBDMA_DPRINTFCH(ch, " [BR_ALWAYS]\n"); |
| branch(ch); |
| return; |
| } |
| |
| status = ch->regs[DBDMA_STATUS] & DEVSTAT; |
| |
| sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f; |
| sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f; |
| |
| cond = (status & sel_mask) == (sel_value & sel_mask); |
| |
| switch(br) { |
| case BR_IFSET: /* branch if condition bit is 1 */ |
| if (cond) { |
| DBDMA_DPRINTFCH(ch, " [BR_IFSET = 1]\n"); |
| branch(ch); |
| } else { |
| DBDMA_DPRINTFCH(ch, " [BR_IFSET = 0]\n"); |
| next(ch); |
| } |
| return; |
| case BR_IFCLR: /* branch if condition bit is 0 */ |
| if (!cond) { |
| DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 1]\n"); |
| branch(ch); |
| } else { |
| DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 0]\n"); |
| next(ch); |
| } |
| return; |
| } |
| } |
| |
| static void channel_run(DBDMA_channel *ch); |
| |
| static void dbdma_end(DBDMA_io *io) |
| { |
| DBDMA_channel *ch = io->channel; |
| dbdma_cmd *current = &ch->current; |
| |
| DBDMA_DPRINTFCH(ch, "%s\n", __func__); |
| |
| if (conditional_wait(ch)) |
| goto wait; |
| |
| current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); |
| current->res_count = cpu_to_le16(io->len); |
| dbdma_cmdptr_save(ch); |
| if (io->is_last) |
| ch->regs[DBDMA_STATUS] &= ~FLUSH; |
| |
| conditional_interrupt(ch); |
| conditional_branch(ch); |
| |
| wait: |
| /* Indicate that we're ready for a new DMA round */ |
| ch->io.processing = false; |
| |
| if ((ch->regs[DBDMA_STATUS] & RUN) && |
| (ch->regs[DBDMA_STATUS] & ACTIVE)) |
| channel_run(ch); |
| } |
| |
| static void start_output(DBDMA_channel *ch, int key, uint32_t addr, |
| uint16_t req_count, int is_last) |
| { |
| DBDMA_DPRINTFCH(ch, "start_output\n"); |
| |
| /* KEY_REGS, KEY_DEVICE and KEY_STREAM |
| * are not implemented in the mac-io chip |
| */ |
| |
| DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key); |
| if (!addr || key > KEY_STREAM3) { |
| kill_channel(ch); |
| return; |
| } |
| |
| ch->io.addr = addr; |
| ch->io.len = req_count; |
| ch->io.is_last = is_last; |
| ch->io.dma_end = dbdma_end; |
| ch->io.is_dma_out = 1; |
| ch->io.processing = true; |
| if (ch->rw) { |
| ch->rw(&ch->io); |
| } |
| } |
| |
| static void start_input(DBDMA_channel *ch, int key, uint32_t addr, |
| uint16_t req_count, int is_last) |
| { |
| DBDMA_DPRINTFCH(ch, "start_input\n"); |
| |
| /* KEY_REGS, KEY_DEVICE and KEY_STREAM |
| * are not implemented in the mac-io chip |
| */ |
| |
| DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key); |
| if (!addr || key > KEY_STREAM3) { |
| kill_channel(ch); |
| return; |
| } |
| |
| ch->io.addr = addr; |
| ch->io.len = req_count; |
| ch->io.is_last = is_last; |
| ch->io.dma_end = dbdma_end; |
| ch->io.is_dma_out = 0; |
| ch->io.processing = true; |
| if (ch->rw) { |
| ch->rw(&ch->io); |
| } |
| } |
| |
| static void load_word(DBDMA_channel *ch, int key, uint32_t addr, |
| uint16_t len) |
| { |
| dbdma_cmd *current = &ch->current; |
| |
| DBDMA_DPRINTFCH(ch, "load_word %d bytes, addr=%08x\n", len, addr); |
| |
| /* only implements KEY_SYSTEM */ |
| |
| if (key != KEY_SYSTEM) { |
| printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key); |
| kill_channel(ch); |
| return; |
| } |
| |
| dma_memory_read(&address_space_memory, addr, ¤t->cmd_dep, len); |
| |
| if (conditional_wait(ch)) |
| goto wait; |
| |
| current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); |
| dbdma_cmdptr_save(ch); |
| ch->regs[DBDMA_STATUS] &= ~FLUSH; |
| |
| conditional_interrupt(ch); |
| next(ch); |
| |
| wait: |
| DBDMA_kick(dbdma_from_ch(ch)); |
| } |
| |
| static void store_word(DBDMA_channel *ch, int key, uint32_t addr, |
| uint16_t len) |
| { |
| dbdma_cmd *current = &ch->current; |
| |
| DBDMA_DPRINTFCH(ch, "store_word %d bytes, addr=%08x pa=%x\n", |
| len, addr, le32_to_cpu(current->cmd_dep)); |
| |
| /* only implements KEY_SYSTEM */ |
| |
| if (key != KEY_SYSTEM) { |
| printf("DBDMA: STORE_WORD, unimplemented key %x\n", key); |
| kill_channel(ch); |
| return; |
| } |
| |
| dma_memory_write(&address_space_memory, addr, ¤t->cmd_dep, len); |
| |
| if (conditional_wait(ch)) |
| goto wait; |
| |
| current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); |
| dbdma_cmdptr_save(ch); |
| ch->regs[DBDMA_STATUS] &= ~FLUSH; |
| |
| conditional_interrupt(ch); |
| next(ch); |
| |
| wait: |
| DBDMA_kick(dbdma_from_ch(ch)); |
| } |
| |
| static void nop(DBDMA_channel *ch) |
| { |
| dbdma_cmd *current = &ch->current; |
| |
| if (conditional_wait(ch)) |
| goto wait; |
| |
| current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); |
| dbdma_cmdptr_save(ch); |
| |
| conditional_interrupt(ch); |
| conditional_branch(ch); |
| |
| wait: |
| DBDMA_kick(dbdma_from_ch(ch)); |
| } |
| |
| static void stop(DBDMA_channel *ch) |
| { |
| ch->regs[DBDMA_STATUS] &= ~(ACTIVE); |
| |
| /* the stop command does not increment command pointer */ |
| } |
| |
| static void channel_run(DBDMA_channel *ch) |
| { |
| dbdma_cmd *current = &ch->current; |
| uint16_t cmd, key; |
| uint16_t req_count; |
| uint32_t phy_addr; |
| |
| DBDMA_DPRINTFCH(ch, "channel_run\n"); |
| dump_dbdma_cmd(ch, current); |
| |
| /* clear WAKE flag at command fetch */ |
| |
| ch->regs[DBDMA_STATUS] &= ~WAKE; |
| |
| cmd = le16_to_cpu(current->command) & COMMAND_MASK; |
| |
| switch (cmd) { |
| case DBDMA_NOP: |
| nop(ch); |
| return; |
| |
| case DBDMA_STOP: |
| stop(ch); |
| return; |
| } |
| |
| key = le16_to_cpu(current->command) & 0x0700; |
| req_count = le16_to_cpu(current->req_count); |
| phy_addr = le32_to_cpu(current->phy_addr); |
| |
| if (key == KEY_STREAM4) { |
| printf("command %x, invalid key 4\n", cmd); |
| kill_channel(ch); |
| return; |
| } |
| |
| switch (cmd) { |
| case OUTPUT_MORE: |
| DBDMA_DPRINTFCH(ch, "* OUTPUT_MORE *\n"); |
| start_output(ch, key, phy_addr, req_count, 0); |
| return; |
| |
| case OUTPUT_LAST: |
| DBDMA_DPRINTFCH(ch, "* OUTPUT_LAST *\n"); |
| start_output(ch, key, phy_addr, req_count, 1); |
| return; |
| |
| case INPUT_MORE: |
| DBDMA_DPRINTFCH(ch, "* INPUT_MORE *\n"); |
| start_input(ch, key, phy_addr, req_count, 0); |
| return; |
| |
| case INPUT_LAST: |
| DBDMA_DPRINTFCH(ch, "* INPUT_LAST *\n"); |
| start_input(ch, key, phy_addr, req_count, 1); |
| return; |
| } |
| |
| if (key < KEY_REGS) { |
| printf("command %x, invalid key %x\n", cmd, key); |
| key = KEY_SYSTEM; |
| } |
| |
| /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits |
| * and BRANCH is invalid |
| */ |
| |
| req_count = req_count & 0x0007; |
| if (req_count & 0x4) { |
| req_count = 4; |
| phy_addr &= ~3; |
| } else if (req_count & 0x2) { |
| req_count = 2; |
| phy_addr &= ~1; |
| } else |
| req_count = 1; |
| |
| switch (cmd) { |
| case LOAD_WORD: |
| DBDMA_DPRINTFCH(ch, "* LOAD_WORD *\n"); |
| load_word(ch, key, phy_addr, req_count); |
| return; |
| |
| case STORE_WORD: |
| DBDMA_DPRINTFCH(ch, "* STORE_WORD *\n"); |
| store_word(ch, key, phy_addr, req_count); |
| return; |
| } |
| } |
| |
| static void DBDMA_run(DBDMAState *s) |
| { |
| int channel; |
| |
| for (channel = 0; channel < DBDMA_CHANNELS; channel++) { |
| DBDMA_channel *ch = &s->channels[channel]; |
| uint32_t status = ch->regs[DBDMA_STATUS]; |
| if (!ch->io.processing && (status & RUN) && (status & ACTIVE)) { |
| channel_run(ch); |
| } |
| } |
| } |
| |
| static void DBDMA_run_bh(void *opaque) |
| { |
| DBDMAState *s = opaque; |
| |
| DBDMA_DPRINTF("-> DBDMA_run_bh\n"); |
| DBDMA_run(s); |
| DBDMA_DPRINTF("<- DBDMA_run_bh\n"); |
| } |
| |
| void DBDMA_kick(DBDMAState *dbdma) |
| { |
| qemu_bh_schedule(dbdma->bh); |
| } |
| |
| void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq, |
| DBDMA_rw rw, DBDMA_flush flush, |
| void *opaque) |
| { |
| DBDMAState *s = dbdma; |
| DBDMA_channel *ch = &s->channels[nchan]; |
| |
| DBDMA_DPRINTFCH(ch, "DBDMA_register_channel 0x%x\n", nchan); |
| |
| assert(rw); |
| assert(flush); |
| |
| ch->irq = irq; |
| ch->rw = rw; |
| ch->flush = flush; |
| ch->io.opaque = opaque; |
| } |
| |
| static void dbdma_control_write(DBDMA_channel *ch) |
| { |
| uint16_t mask, value; |
| uint32_t status; |
| bool do_flush = false; |
| |
| mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff; |
| value = ch->regs[DBDMA_CONTROL] & 0xffff; |
| |
| /* This is the status register which we'll update |
| * appropriately and store back |
| */ |
| status = ch->regs[DBDMA_STATUS]; |
| |
| /* RUN and PAUSE are bits under SW control only |
| * FLUSH and WAKE are set by SW and cleared by HW |
| * DEAD, ACTIVE and BT are only under HW control |
| * |
| * We handle ACTIVE separately at the end of the |
| * logic to ensure all cases are covered. |
| */ |
| |
| /* Setting RUN will tentatively activate the channel |
| */ |
| if ((mask & RUN) && (value & RUN)) { |
| status |= RUN; |
| DBDMA_DPRINTFCH(ch, " Setting RUN !\n"); |
| } |
| |
| /* Clearing RUN 1->0 will stop the channel */ |
| if ((mask & RUN) && !(value & RUN)) { |
| /* This has the side effect of clearing the DEAD bit */ |
| status &= ~(DEAD | RUN); |
| DBDMA_DPRINTFCH(ch, " Clearing RUN !\n"); |
| } |
| |
| /* Setting WAKE wakes up an idle channel if it's running |
| * |
| * Note: The doc doesn't say so but assume that only works |
| * on a channel whose RUN bit is set. |
| * |
| * We set WAKE in status, it's not terribly useful as it will |
| * be cleared on the next command fetch but it seems to mimmic |
| * the HW behaviour and is useful for the way we handle |
| * ACTIVE further down. |
| */ |
| if ((mask & WAKE) && (value & WAKE) && (status & RUN)) { |
| status |= WAKE; |
| DBDMA_DPRINTFCH(ch, " Setting WAKE !\n"); |
| } |
| |
| /* PAUSE being set will deactivate (or prevent activation) |
| * of the channel. We just copy it over for now, ACTIVE will |
| * be re-evaluated later. |
| */ |
| if (mask & PAUSE) { |
| status = (status & ~PAUSE) | (value & PAUSE); |
| DBDMA_DPRINTFCH(ch, " %sing PAUSE !\n", |
| (value & PAUSE) ? "sett" : "clear"); |
| } |
| |
| /* FLUSH is its own thing */ |
| if ((mask & FLUSH) && (value & FLUSH)) { |
| DBDMA_DPRINTFCH(ch, " Setting FLUSH !\n"); |
| /* We set flush directly in the status register, we do *NOT* |
| * set it in "status" so that it gets naturally cleared when |
| * we update the status register further down. That way it |
| * will be set only during the HW flush operation so it is |
| * visible to any completions happening during that time. |
| */ |
| ch->regs[DBDMA_STATUS] |= FLUSH; |
| do_flush = true; |
| } |
| |
| /* If either RUN or PAUSE is clear, so should ACTIVE be, |
| * otherwise, ACTIVE will be set if we modified RUN, PAUSE or |
| * set WAKE. That means that PAUSE was just cleared, RUN was |
| * just set or WAKE was just set. |
| */ |
| if ((status & PAUSE) || !(status & RUN)) { |
| status &= ~ACTIVE; |
| DBDMA_DPRINTFCH(ch, " -> ACTIVE down !\n"); |
| |
| /* We stopped processing, we want the underlying HW command |
| * to complete *before* we clear the ACTIVE bit. Otherwise |
| * we can get into a situation where the command status will |
| * have RUN or ACTIVE not set which is going to confuse the |
| * MacOS driver. |
| */ |
| do_flush = true; |
| } else if (mask & (RUN | PAUSE)) { |
| status |= ACTIVE; |
| DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n"); |
| } else if ((mask & WAKE) && (value & WAKE)) { |
| status |= ACTIVE; |
| DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n"); |
| } |
| |
| DBDMA_DPRINTFCH(ch, " new status=0x%08x\n", status); |
| |
| /* If we need to flush the underlying HW, do it now, this happens |
| * both on FLUSH commands and when stopping the channel for safety. |
| */ |
| if (do_flush && ch->flush) { |
| ch->flush(&ch->io); |
| } |
| |
| /* Finally update the status register image */ |
| ch->regs[DBDMA_STATUS] = status; |
| |
| /* If active, make sure the BH gets to run */ |
| if (status & ACTIVE) { |
| DBDMA_kick(dbdma_from_ch(ch)); |
| } |
| } |
| |
| static void dbdma_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| int channel = addr >> DBDMA_CHANNEL_SHIFT; |
| DBDMAState *s = opaque; |
| DBDMA_channel *ch = &s->channels[channel]; |
| int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; |
| |
| DBDMA_DPRINTFCH(ch, "writel 0x" TARGET_FMT_plx " <= 0x%08"PRIx64"\n", |
| addr, value); |
| DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n", |
| (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); |
| |
| /* cmdptr cannot be modified if channel is ACTIVE */ |
| |
| if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) { |
| return; |
| } |
| |
| ch->regs[reg] = value; |
| |
| switch(reg) { |
| case DBDMA_CONTROL: |
| dbdma_control_write(ch); |
| break; |
| case DBDMA_CMDPTR_LO: |
| /* 16-byte aligned */ |
| ch->regs[DBDMA_CMDPTR_LO] &= ~0xf; |
| dbdma_cmdptr_load(ch); |
| break; |
| case DBDMA_STATUS: |
| case DBDMA_INTR_SEL: |
| case DBDMA_BRANCH_SEL: |
| case DBDMA_WAIT_SEL: |
| /* nothing to do */ |
| break; |
| case DBDMA_XFER_MODE: |
| case DBDMA_CMDPTR_HI: |
| case DBDMA_DATA2PTR_HI: |
| case DBDMA_DATA2PTR_LO: |
| case DBDMA_ADDRESS_HI: |
| case DBDMA_BRANCH_ADDR_HI: |
| case DBDMA_RES1: |
| case DBDMA_RES2: |
| case DBDMA_RES3: |
| case DBDMA_RES4: |
| /* unused */ |
| break; |
| } |
| } |
| |
| static uint64_t dbdma_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| uint32_t value; |
| int channel = addr >> DBDMA_CHANNEL_SHIFT; |
| DBDMAState *s = opaque; |
| DBDMA_channel *ch = &s->channels[channel]; |
| int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; |
| |
| value = ch->regs[reg]; |
| |
| switch(reg) { |
| case DBDMA_CONTROL: |
| value = ch->regs[DBDMA_STATUS]; |
| break; |
| case DBDMA_STATUS: |
| case DBDMA_CMDPTR_LO: |
| case DBDMA_INTR_SEL: |
| case DBDMA_BRANCH_SEL: |
| case DBDMA_WAIT_SEL: |
| /* nothing to do */ |
| break; |
| case DBDMA_XFER_MODE: |
| case DBDMA_CMDPTR_HI: |
| case DBDMA_DATA2PTR_HI: |
| case DBDMA_DATA2PTR_LO: |
| case DBDMA_ADDRESS_HI: |
| case DBDMA_BRANCH_ADDR_HI: |
| /* unused */ |
| value = 0; |
| break; |
| case DBDMA_RES1: |
| case DBDMA_RES2: |
| case DBDMA_RES3: |
| case DBDMA_RES4: |
| /* reserved */ |
| break; |
| } |
| |
| DBDMA_DPRINTFCH(ch, "readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value); |
| DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n", |
| (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); |
| |
| return value; |
| } |
| |
| static const MemoryRegionOps dbdma_ops = { |
| .read = dbdma_read, |
| .write = dbdma_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_dbdma_io = { |
| .name = "dbdma_io", |
| .version_id = 0, |
| .minimum_version_id = 0, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(addr, struct DBDMA_io), |
| VMSTATE_INT32(len, struct DBDMA_io), |
| VMSTATE_INT32(is_last, struct DBDMA_io), |
| VMSTATE_INT32(is_dma_out, struct DBDMA_io), |
| VMSTATE_BOOL(processing, struct DBDMA_io), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_dbdma_cmd = { |
| .name = "dbdma_cmd", |
| .version_id = 0, |
| .minimum_version_id = 0, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT16(req_count, dbdma_cmd), |
| VMSTATE_UINT16(command, dbdma_cmd), |
| VMSTATE_UINT32(phy_addr, dbdma_cmd), |
| VMSTATE_UINT32(cmd_dep, dbdma_cmd), |
| VMSTATE_UINT16(res_count, dbdma_cmd), |
| VMSTATE_UINT16(xfer_status, dbdma_cmd), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_dbdma_channel = { |
| .name = "dbdma_channel", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS), |
| VMSTATE_STRUCT(io, struct DBDMA_channel, 0, vmstate_dbdma_io, DBDMA_io), |
| VMSTATE_STRUCT(current, struct DBDMA_channel, 0, vmstate_dbdma_cmd, |
| dbdma_cmd), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_dbdma = { |
| .name = "dbdma", |
| .version_id = 3, |
| .minimum_version_id = 3, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1, |
| vmstate_dbdma_channel, DBDMA_channel), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void mac_dbdma_reset(DeviceState *d) |
| { |
| DBDMAState *s = MAC_DBDMA(d); |
| int i; |
| |
| for (i = 0; i < DBDMA_CHANNELS; i++) { |
| memset(s->channels[i].regs, 0, DBDMA_SIZE); |
| } |
| } |
| |
| static void dbdma_unassigned_rw(DBDMA_io *io) |
| { |
| DBDMA_channel *ch = io->channel; |
| dbdma_cmd *current = &ch->current; |
| uint16_t cmd; |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n", |
| __func__, ch->channel); |
| ch->io.processing = false; |
| |
| cmd = le16_to_cpu(current->command) & COMMAND_MASK; |
| if (cmd == OUTPUT_MORE || cmd == OUTPUT_LAST || |
| cmd == INPUT_MORE || cmd == INPUT_LAST) { |
| current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); |
| current->res_count = cpu_to_le16(io->len); |
| dbdma_cmdptr_save(ch); |
| } |
| } |
| |
| static void dbdma_unassigned_flush(DBDMA_io *io) |
| { |
| DBDMA_channel *ch = io->channel; |
| qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n", |
| __func__, ch->channel); |
| } |
| |
| static void mac_dbdma_init(Object *obj) |
| { |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| DBDMAState *s = MAC_DBDMA(obj); |
| int i; |
| |
| for (i = 0; i < DBDMA_CHANNELS; i++) { |
| DBDMA_channel *ch = &s->channels[i]; |
| |
| ch->rw = dbdma_unassigned_rw; |
| ch->flush = dbdma_unassigned_flush; |
| ch->channel = i; |
| ch->io.channel = ch; |
| } |
| |
| memory_region_init_io(&s->mem, obj, &dbdma_ops, s, "dbdma", 0x1000); |
| sysbus_init_mmio(sbd, &s->mem); |
| } |
| |
| static void mac_dbdma_realize(DeviceState *dev, Error **errp) |
| { |
| DBDMAState *s = MAC_DBDMA(dev); |
| |
| s->bh = qemu_bh_new(DBDMA_run_bh, s); |
| } |
| |
| static void mac_dbdma_class_init(ObjectClass *oc, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| |
| dc->realize = mac_dbdma_realize; |
| dc->reset = mac_dbdma_reset; |
| dc->vmsd = &vmstate_dbdma; |
| } |
| |
| static const TypeInfo mac_dbdma_type_info = { |
| .name = TYPE_MAC_DBDMA, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(DBDMAState), |
| .instance_init = mac_dbdma_init, |
| .class_init = mac_dbdma_class_init |
| }; |
| |
| static void mac_dbdma_register_types(void) |
| { |
| type_register_static(&mac_dbdma_type_info); |
| } |
| |
| type_init(mac_dbdma_register_types) |