| /* |
| * Tiny Code Generator for QEMU |
| * |
| * Copyright (c) 2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| /* We only support generating code for 64-bit mode. */ |
| #ifndef __arch64__ |
| #error "unsupported code generation mode" |
| #endif |
| |
| #include "../tcg-pool.c.inc" |
| |
| #ifdef CONFIG_DEBUG_TCG |
| static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { |
| "%g0", |
| "%g1", |
| "%g2", |
| "%g3", |
| "%g4", |
| "%g5", |
| "%g6", |
| "%g7", |
| "%o0", |
| "%o1", |
| "%o2", |
| "%o3", |
| "%o4", |
| "%o5", |
| "%o6", |
| "%o7", |
| "%l0", |
| "%l1", |
| "%l2", |
| "%l3", |
| "%l4", |
| "%l5", |
| "%l6", |
| "%l7", |
| "%i0", |
| "%i1", |
| "%i2", |
| "%i3", |
| "%i4", |
| "%i5", |
| "%i6", |
| "%i7", |
| }; |
| #endif |
| |
| #define TCG_CT_CONST_S11 0x100 |
| #define TCG_CT_CONST_S13 0x200 |
| #define TCG_CT_CONST_ZERO 0x400 |
| |
| /* |
| * For softmmu, we need to avoid conflicts with the first 3 |
| * argument registers to perform the tlb lookup, and to call |
| * the helper function. |
| */ |
| #ifdef CONFIG_SOFTMMU |
| #define SOFTMMU_RESERVE_REGS MAKE_64BIT_MASK(TCG_REG_O0, 3) |
| #else |
| #define SOFTMMU_RESERVE_REGS 0 |
| #endif |
| |
| /* |
| * Note that sparcv8plus can only hold 64 bit quantities in %g and %o |
| * registers. These are saved manually by the kernel in full 64-bit |
| * slots. The %i and %l registers are saved by the register window |
| * mechanism, which only allocates space for 32 bits. Given that this |
| * window spill/fill can happen on any signal, we must consider the |
| * high bits of the %i and %l registers garbage at all times. |
| */ |
| #define ALL_GENERAL_REGS MAKE_64BIT_MASK(0, 32) |
| # define ALL_GENERAL_REGS64 ALL_GENERAL_REGS |
| #define ALL_QLDST_REGS (ALL_GENERAL_REGS & ~SOFTMMU_RESERVE_REGS) |
| #define ALL_QLDST_REGS64 (ALL_GENERAL_REGS64 & ~SOFTMMU_RESERVE_REGS) |
| |
| /* Define some temporary registers. T2 is used for constant generation. */ |
| #define TCG_REG_T1 TCG_REG_G1 |
| #define TCG_REG_T2 TCG_REG_O7 |
| |
| #ifndef CONFIG_SOFTMMU |
| # define TCG_GUEST_BASE_REG TCG_REG_I5 |
| #endif |
| |
| #define TCG_REG_TB TCG_REG_I1 |
| #define USE_REG_TB (sizeof(void *) > 4) |
| |
| static const int tcg_target_reg_alloc_order[] = { |
| TCG_REG_L0, |
| TCG_REG_L1, |
| TCG_REG_L2, |
| TCG_REG_L3, |
| TCG_REG_L4, |
| TCG_REG_L5, |
| TCG_REG_L6, |
| TCG_REG_L7, |
| |
| TCG_REG_I0, |
| TCG_REG_I1, |
| TCG_REG_I2, |
| TCG_REG_I3, |
| TCG_REG_I4, |
| TCG_REG_I5, |
| |
| TCG_REG_G2, |
| TCG_REG_G3, |
| TCG_REG_G4, |
| TCG_REG_G5, |
| |
| TCG_REG_O0, |
| TCG_REG_O1, |
| TCG_REG_O2, |
| TCG_REG_O3, |
| TCG_REG_O4, |
| TCG_REG_O5, |
| }; |
| |
| static const int tcg_target_call_iarg_regs[6] = { |
| TCG_REG_O0, |
| TCG_REG_O1, |
| TCG_REG_O2, |
| TCG_REG_O3, |
| TCG_REG_O4, |
| TCG_REG_O5, |
| }; |
| |
| static const int tcg_target_call_oarg_regs[] = { |
| TCG_REG_O0, |
| TCG_REG_O1, |
| TCG_REG_O2, |
| TCG_REG_O3, |
| }; |
| |
| #define INSN_OP(x) ((x) << 30) |
| #define INSN_OP2(x) ((x) << 22) |
| #define INSN_OP3(x) ((x) << 19) |
| #define INSN_OPF(x) ((x) << 5) |
| #define INSN_RD(x) ((x) << 25) |
| #define INSN_RS1(x) ((x) << 14) |
| #define INSN_RS2(x) (x) |
| #define INSN_ASI(x) ((x) << 5) |
| |
| #define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff)) |
| #define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff)) |
| #define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff)) |
| #define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20)) |
| #define INSN_OFF19(x) (((x) >> 2) & 0x07ffff) |
| #define INSN_COND(x) ((x) << 25) |
| |
| #define COND_N 0x0 |
| #define COND_E 0x1 |
| #define COND_LE 0x2 |
| #define COND_L 0x3 |
| #define COND_LEU 0x4 |
| #define COND_CS 0x5 |
| #define COND_NEG 0x6 |
| #define COND_VS 0x7 |
| #define COND_A 0x8 |
| #define COND_NE 0x9 |
| #define COND_G 0xa |
| #define COND_GE 0xb |
| #define COND_GU 0xc |
| #define COND_CC 0xd |
| #define COND_POS 0xe |
| #define COND_VC 0xf |
| #define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2)) |
| |
| #define RCOND_Z 1 |
| #define RCOND_LEZ 2 |
| #define RCOND_LZ 3 |
| #define RCOND_NZ 5 |
| #define RCOND_GZ 6 |
| #define RCOND_GEZ 7 |
| |
| #define MOVCC_ICC (1 << 18) |
| #define MOVCC_XCC (1 << 18 | 1 << 12) |
| |
| #define BPCC_ICC 0 |
| #define BPCC_XCC (2 << 20) |
| #define BPCC_PT (1 << 19) |
| #define BPCC_PN 0 |
| #define BPCC_A (1 << 29) |
| |
| #define BPR_PT BPCC_PT |
| |
| #define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00)) |
| #define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10)) |
| #define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01)) |
| #define ARITH_ANDCC (INSN_OP(2) | INSN_OP3(0x11)) |
| #define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05)) |
| #define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02)) |
| #define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12)) |
| #define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06)) |
| #define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03)) |
| #define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04)) |
| #define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14)) |
| #define ARITH_ADDC (INSN_OP(2) | INSN_OP3(0x08)) |
| #define ARITH_SUBC (INSN_OP(2) | INSN_OP3(0x0c)) |
| #define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a)) |
| #define ARITH_SMUL (INSN_OP(2) | INSN_OP3(0x0b)) |
| #define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e)) |
| #define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f)) |
| #define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09)) |
| #define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d)) |
| #define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d)) |
| #define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c)) |
| #define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f)) |
| |
| #define ARITH_ADDXC (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x11)) |
| #define ARITH_UMULXHI (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x16)) |
| |
| #define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25)) |
| #define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26)) |
| #define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27)) |
| |
| #define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12)) |
| #define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12)) |
| #define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12)) |
| |
| #define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0)) |
| #define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0)) |
| #define JMPL (INSN_OP(2) | INSN_OP3(0x38)) |
| #define RETURN (INSN_OP(2) | INSN_OP3(0x39)) |
| #define SAVE (INSN_OP(2) | INSN_OP3(0x3c)) |
| #define RESTORE (INSN_OP(2) | INSN_OP3(0x3d)) |
| #define SETHI (INSN_OP(0) | INSN_OP2(0x4)) |
| #define CALL INSN_OP(1) |
| #define LDUB (INSN_OP(3) | INSN_OP3(0x01)) |
| #define LDSB (INSN_OP(3) | INSN_OP3(0x09)) |
| #define LDUH (INSN_OP(3) | INSN_OP3(0x02)) |
| #define LDSH (INSN_OP(3) | INSN_OP3(0x0a)) |
| #define LDUW (INSN_OP(3) | INSN_OP3(0x00)) |
| #define LDSW (INSN_OP(3) | INSN_OP3(0x08)) |
| #define LDX (INSN_OP(3) | INSN_OP3(0x0b)) |
| #define STB (INSN_OP(3) | INSN_OP3(0x05)) |
| #define STH (INSN_OP(3) | INSN_OP3(0x06)) |
| #define STW (INSN_OP(3) | INSN_OP3(0x04)) |
| #define STX (INSN_OP(3) | INSN_OP3(0x0e)) |
| #define LDUBA (INSN_OP(3) | INSN_OP3(0x11)) |
| #define LDSBA (INSN_OP(3) | INSN_OP3(0x19)) |
| #define LDUHA (INSN_OP(3) | INSN_OP3(0x12)) |
| #define LDSHA (INSN_OP(3) | INSN_OP3(0x1a)) |
| #define LDUWA (INSN_OP(3) | INSN_OP3(0x10)) |
| #define LDSWA (INSN_OP(3) | INSN_OP3(0x18)) |
| #define LDXA (INSN_OP(3) | INSN_OP3(0x1b)) |
| #define STBA (INSN_OP(3) | INSN_OP3(0x15)) |
| #define STHA (INSN_OP(3) | INSN_OP3(0x16)) |
| #define STWA (INSN_OP(3) | INSN_OP3(0x14)) |
| #define STXA (INSN_OP(3) | INSN_OP3(0x1e)) |
| |
| #define MEMBAR (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(15) | (1 << 13)) |
| |
| #define NOP (SETHI | INSN_RD(TCG_REG_G0) | 0) |
| |
| #ifndef ASI_PRIMARY_LITTLE |
| #define ASI_PRIMARY_LITTLE 0x88 |
| #endif |
| |
| #define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| #define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| #define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| #define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| #define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| |
| #define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| #define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| #define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE)) |
| |
| #ifndef use_vis3_instructions |
| bool use_vis3_instructions; |
| #endif |
| |
| static bool check_fit_i64(int64_t val, unsigned int bits) |
| { |
| return val == sextract64(val, 0, bits); |
| } |
| |
| static bool check_fit_i32(int32_t val, unsigned int bits) |
| { |
| return val == sextract32(val, 0, bits); |
| } |
| |
| #define check_fit_tl check_fit_i64 |
| #define check_fit_ptr check_fit_i64 |
| |
| static bool patch_reloc(tcg_insn_unit *src_rw, int type, |
| intptr_t value, intptr_t addend) |
| { |
| const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); |
| uint32_t insn = *src_rw; |
| intptr_t pcrel; |
| |
| value += addend; |
| pcrel = tcg_ptr_byte_diff((tcg_insn_unit *)value, src_rx); |
| |
| switch (type) { |
| case R_SPARC_WDISP16: |
| if (!check_fit_ptr(pcrel >> 2, 16)) { |
| return false; |
| } |
| insn &= ~INSN_OFF16(-1); |
| insn |= INSN_OFF16(pcrel); |
| break; |
| case R_SPARC_WDISP19: |
| if (!check_fit_ptr(pcrel >> 2, 19)) { |
| return false; |
| } |
| insn &= ~INSN_OFF19(-1); |
| insn |= INSN_OFF19(pcrel); |
| break; |
| case R_SPARC_13: |
| if (!check_fit_ptr(value, 13)) { |
| return false; |
| } |
| insn &= ~INSN_IMM13(-1); |
| insn |= INSN_IMM13(value); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| *src_rw = insn; |
| return true; |
| } |
| |
| /* test if a constant matches the constraint */ |
| static bool tcg_target_const_match(int64_t val, TCGType type, int ct) |
| { |
| if (ct & TCG_CT_CONST) { |
| return 1; |
| } |
| |
| if (type == TCG_TYPE_I32) { |
| val = (int32_t)val; |
| } |
| |
| if ((ct & TCG_CT_CONST_ZERO) && val == 0) { |
| return 1; |
| } else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) { |
| return 1; |
| } else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void tcg_out_nop(TCGContext *s) |
| { |
| tcg_out32(s, NOP); |
| } |
| |
| static void tcg_out_arith(TCGContext *s, TCGReg rd, TCGReg rs1, |
| TCGReg rs2, int op) |
| { |
| tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2)); |
| } |
| |
| static void tcg_out_arithi(TCGContext *s, TCGReg rd, TCGReg rs1, |
| int32_t offset, int op) |
| { |
| tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset)); |
| } |
| |
| static void tcg_out_arithc(TCGContext *s, TCGReg rd, TCGReg rs1, |
| int32_t val2, int val2const, int op) |
| { |
| tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) |
| | (val2const ? INSN_IMM13(val2) : INSN_RS2(val2))); |
| } |
| |
| static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) |
| { |
| if (ret != arg) { |
| tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR); |
| } |
| return true; |
| } |
| |
| static void tcg_out_mov_delay(TCGContext *s, TCGReg ret, TCGReg arg) |
| { |
| if (ret != arg) { |
| tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR); |
| } else { |
| tcg_out_nop(s); |
| } |
| } |
| |
| static void tcg_out_sethi(TCGContext *s, TCGReg ret, uint32_t arg) |
| { |
| tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10)); |
| } |
| |
| static void tcg_out_movi_imm13(TCGContext *s, TCGReg ret, int32_t arg) |
| { |
| tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR); |
| } |
| |
| static void tcg_out_movi_imm32(TCGContext *s, TCGReg ret, int32_t arg) |
| { |
| if (check_fit_i32(arg, 13)) { |
| /* A 13-bit constant sign-extended to 64-bits. */ |
| tcg_out_movi_imm13(s, ret, arg); |
| } else { |
| /* A 32-bit constant zero-extended to 64 bits. */ |
| tcg_out_sethi(s, ret, arg); |
| if (arg & 0x3ff) { |
| tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR); |
| } |
| } |
| } |
| |
| static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret, |
| tcg_target_long arg, bool in_prologue, |
| TCGReg scratch) |
| { |
| tcg_target_long hi, lo = (int32_t)arg; |
| tcg_target_long test, lsb; |
| |
| /* A 32-bit constant, or 32-bit zero-extended to 64-bits. */ |
| if (type == TCG_TYPE_I32 || arg == (uint32_t)arg) { |
| tcg_out_movi_imm32(s, ret, arg); |
| return; |
| } |
| |
| /* A 13-bit constant sign-extended to 64-bits. */ |
| if (check_fit_tl(arg, 13)) { |
| tcg_out_movi_imm13(s, ret, arg); |
| return; |
| } |
| |
| /* A 13-bit constant relative to the TB. */ |
| if (!in_prologue && USE_REG_TB) { |
| test = tcg_tbrel_diff(s, (void *)arg); |
| if (check_fit_ptr(test, 13)) { |
| tcg_out_arithi(s, ret, TCG_REG_TB, test, ARITH_ADD); |
| return; |
| } |
| } |
| |
| /* A 32-bit constant sign-extended to 64-bits. */ |
| if (arg == lo) { |
| tcg_out_sethi(s, ret, ~arg); |
| tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR); |
| return; |
| } |
| |
| /* A 32-bit constant, shifted. */ |
| lsb = ctz64(arg); |
| test = (tcg_target_long)arg >> lsb; |
| if (lsb > 10 && test == extract64(test, 0, 21)) { |
| tcg_out_sethi(s, ret, test << 10); |
| tcg_out_arithi(s, ret, ret, lsb - 10, SHIFT_SLLX); |
| return; |
| } else if (test == (uint32_t)test || test == (int32_t)test) { |
| tcg_out_movi_int(s, TCG_TYPE_I64, ret, test, in_prologue, scratch); |
| tcg_out_arithi(s, ret, ret, lsb, SHIFT_SLLX); |
| return; |
| } |
| |
| /* Use the constant pool, if possible. */ |
| if (!in_prologue && USE_REG_TB) { |
| new_pool_label(s, arg, R_SPARC_13, s->code_ptr, |
| tcg_tbrel_diff(s, NULL)); |
| tcg_out32(s, LDX | INSN_RD(ret) | INSN_RS1(TCG_REG_TB)); |
| return; |
| } |
| |
| /* A 64-bit constant decomposed into 2 32-bit pieces. */ |
| if (check_fit_i32(lo, 13)) { |
| hi = (arg - lo) >> 32; |
| tcg_out_movi_imm32(s, ret, hi); |
| tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX); |
| tcg_out_arithi(s, ret, ret, lo, ARITH_ADD); |
| } else { |
| hi = arg >> 32; |
| tcg_out_movi_imm32(s, ret, hi); |
| tcg_out_movi_imm32(s, scratch, lo); |
| tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX); |
| tcg_out_arith(s, ret, ret, scratch, ARITH_OR); |
| } |
| } |
| |
| static void tcg_out_movi(TCGContext *s, TCGType type, |
| TCGReg ret, tcg_target_long arg) |
| { |
| tcg_debug_assert(ret != TCG_REG_T2); |
| tcg_out_movi_int(s, type, ret, arg, false, TCG_REG_T2); |
| } |
| |
| static void tcg_out_ldst_rr(TCGContext *s, TCGReg data, TCGReg a1, |
| TCGReg a2, int op) |
| { |
| tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2)); |
| } |
| |
| static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr, |
| intptr_t offset, int op) |
| { |
| if (check_fit_ptr(offset, 13)) { |
| tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) | |
| INSN_IMM13(offset)); |
| } else { |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset); |
| tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op); |
| } |
| } |
| |
| static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, |
| TCGReg arg1, intptr_t arg2) |
| { |
| tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX)); |
| } |
| |
| static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, |
| TCGReg arg1, intptr_t arg2) |
| { |
| tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX)); |
| } |
| |
| static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, |
| TCGReg base, intptr_t ofs) |
| { |
| if (val == 0) { |
| tcg_out_st(s, type, TCG_REG_G0, base, ofs); |
| return true; |
| } |
| return false; |
| } |
| |
| static void tcg_out_ld_ptr(TCGContext *s, TCGReg ret, const void *arg) |
| { |
| intptr_t diff = tcg_tbrel_diff(s, arg); |
| if (USE_REG_TB && check_fit_ptr(diff, 13)) { |
| tcg_out_ld(s, TCG_TYPE_PTR, ret, TCG_REG_TB, diff); |
| return; |
| } |
| tcg_out_movi(s, TCG_TYPE_PTR, ret, (uintptr_t)arg & ~0x3ff); |
| tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, (uintptr_t)arg & 0x3ff); |
| } |
| |
| static void tcg_out_sety(TCGContext *s, TCGReg rs) |
| { |
| tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs)); |
| } |
| |
| static void tcg_out_div32(TCGContext *s, TCGReg rd, TCGReg rs1, |
| int32_t val2, int val2const, int uns) |
| { |
| /* Load Y with the sign/zero extension of RS1 to 64-bits. */ |
| if (uns) { |
| tcg_out_sety(s, TCG_REG_G0); |
| } else { |
| tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA); |
| tcg_out_sety(s, TCG_REG_T1); |
| } |
| |
| tcg_out_arithc(s, rd, rs1, val2, val2const, |
| uns ? ARITH_UDIV : ARITH_SDIV); |
| } |
| |
| static const uint8_t tcg_cond_to_bcond[] = { |
| [TCG_COND_EQ] = COND_E, |
| [TCG_COND_NE] = COND_NE, |
| [TCG_COND_LT] = COND_L, |
| [TCG_COND_GE] = COND_GE, |
| [TCG_COND_LE] = COND_LE, |
| [TCG_COND_GT] = COND_G, |
| [TCG_COND_LTU] = COND_CS, |
| [TCG_COND_GEU] = COND_CC, |
| [TCG_COND_LEU] = COND_LEU, |
| [TCG_COND_GTU] = COND_GU, |
| }; |
| |
| static const uint8_t tcg_cond_to_rcond[] = { |
| [TCG_COND_EQ] = RCOND_Z, |
| [TCG_COND_NE] = RCOND_NZ, |
| [TCG_COND_LT] = RCOND_LZ, |
| [TCG_COND_GT] = RCOND_GZ, |
| [TCG_COND_LE] = RCOND_LEZ, |
| [TCG_COND_GE] = RCOND_GEZ |
| }; |
| |
| static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19) |
| { |
| tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19); |
| } |
| |
| static void tcg_out_bpcc(TCGContext *s, int scond, int flags, TCGLabel *l) |
| { |
| int off19 = 0; |
| |
| if (l->has_value) { |
| off19 = INSN_OFF19(tcg_pcrel_diff(s, l->u.value_ptr)); |
| } else { |
| tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, l, 0); |
| } |
| tcg_out_bpcc0(s, scond, flags, off19); |
| } |
| |
| static void tcg_out_cmp(TCGContext *s, TCGReg c1, int32_t c2, int c2const) |
| { |
| tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC); |
| } |
| |
| static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGReg arg1, |
| int32_t arg2, int const_arg2, TCGLabel *l) |
| { |
| tcg_out_cmp(s, arg1, arg2, const_arg2); |
| tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, l); |
| tcg_out_nop(s); |
| } |
| |
| static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGReg ret, |
| int32_t v1, int v1const) |
| { |
| tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret) |
| | INSN_RS1(tcg_cond_to_bcond[cond]) |
| | (v1const ? INSN_IMM11(v1) : INSN_RS2(v1))); |
| } |
| |
| static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGReg ret, |
| TCGReg c1, int32_t c2, int c2const, |
| int32_t v1, int v1const) |
| { |
| tcg_out_cmp(s, c1, c2, c2const); |
| tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const); |
| } |
| |
| static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGReg arg1, |
| int32_t arg2, int const_arg2, TCGLabel *l) |
| { |
| /* For 64-bit signed comparisons vs zero, we can avoid the compare. */ |
| if (arg2 == 0 && !is_unsigned_cond(cond)) { |
| int off16 = 0; |
| |
| if (l->has_value) { |
| off16 = INSN_OFF16(tcg_pcrel_diff(s, l->u.value_ptr)); |
| } else { |
| tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, l, 0); |
| } |
| tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1) |
| | INSN_COND(tcg_cond_to_rcond[cond]) | off16); |
| } else { |
| tcg_out_cmp(s, arg1, arg2, const_arg2); |
| tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, l); |
| } |
| tcg_out_nop(s); |
| } |
| |
| static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1, |
| int32_t v1, int v1const) |
| { |
| tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1) |
| | (tcg_cond_to_rcond[cond] << 10) |
| | (v1const ? INSN_IMM10(v1) : INSN_RS2(v1))); |
| } |
| |
| static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGReg ret, |
| TCGReg c1, int32_t c2, int c2const, |
| int32_t v1, int v1const) |
| { |
| /* For 64-bit signed comparisons vs zero, we can avoid the compare. |
| Note that the immediate range is one bit smaller, so we must check |
| for that as well. */ |
| if (c2 == 0 && !is_unsigned_cond(cond) |
| && (!v1const || check_fit_i32(v1, 10))) { |
| tcg_out_movr(s, cond, ret, c1, v1, v1const); |
| } else { |
| tcg_out_cmp(s, c1, c2, c2const); |
| tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const); |
| } |
| } |
| |
| static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGReg ret, |
| TCGReg c1, int32_t c2, int c2const) |
| { |
| /* For 32-bit comparisons, we can play games with ADDC/SUBC. */ |
| switch (cond) { |
| case TCG_COND_LTU: |
| case TCG_COND_GEU: |
| /* The result of the comparison is in the carry bit. */ |
| break; |
| |
| case TCG_COND_EQ: |
| case TCG_COND_NE: |
| /* For equality, we can transform to inequality vs zero. */ |
| if (c2 != 0) { |
| tcg_out_arithc(s, TCG_REG_T1, c1, c2, c2const, ARITH_XOR); |
| c2 = TCG_REG_T1; |
| } else { |
| c2 = c1; |
| } |
| c1 = TCG_REG_G0, c2const = 0; |
| cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU); |
| break; |
| |
| case TCG_COND_GTU: |
| case TCG_COND_LEU: |
| /* If we don't need to load a constant into a register, we can |
| swap the operands on GTU/LEU. There's no benefit to loading |
| the constant into a temporary register. */ |
| if (!c2const || c2 == 0) { |
| TCGReg t = c1; |
| c1 = c2; |
| c2 = t; |
| c2const = 0; |
| cond = tcg_swap_cond(cond); |
| break; |
| } |
| /* FALLTHRU */ |
| |
| default: |
| tcg_out_cmp(s, c1, c2, c2const); |
| tcg_out_movi_imm13(s, ret, 0); |
| tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1); |
| return; |
| } |
| |
| tcg_out_cmp(s, c1, c2, c2const); |
| if (cond == TCG_COND_LTU) { |
| tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDC); |
| } else { |
| tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBC); |
| } |
| } |
| |
| static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGReg ret, |
| TCGReg c1, int32_t c2, int c2const) |
| { |
| if (use_vis3_instructions) { |
| switch (cond) { |
| case TCG_COND_NE: |
| if (c2 != 0) { |
| break; |
| } |
| c2 = c1, c2const = 0, c1 = TCG_REG_G0; |
| /* FALLTHRU */ |
| case TCG_COND_LTU: |
| tcg_out_cmp(s, c1, c2, c2const); |
| tcg_out_arith(s, ret, TCG_REG_G0, TCG_REG_G0, ARITH_ADDXC); |
| return; |
| default: |
| break; |
| } |
| } |
| |
| /* For 64-bit signed comparisons vs zero, we can avoid the compare |
| if the input does not overlap the output. */ |
| if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) { |
| tcg_out_movi_imm13(s, ret, 0); |
| tcg_out_movr(s, cond, ret, c1, 1, 1); |
| } else { |
| tcg_out_cmp(s, c1, c2, c2const); |
| tcg_out_movi_imm13(s, ret, 0); |
| tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1); |
| } |
| } |
| |
| static void tcg_out_addsub2_i32(TCGContext *s, TCGReg rl, TCGReg rh, |
| TCGReg al, TCGReg ah, int32_t bl, int blconst, |
| int32_t bh, int bhconst, int opl, int oph) |
| { |
| TCGReg tmp = TCG_REG_T1; |
| |
| /* Note that the low parts are fully consumed before tmp is set. */ |
| if (rl != ah && (bhconst || rl != bh)) { |
| tmp = rl; |
| } |
| |
| tcg_out_arithc(s, tmp, al, bl, blconst, opl); |
| tcg_out_arithc(s, rh, ah, bh, bhconst, oph); |
| tcg_out_mov(s, TCG_TYPE_I32, rl, tmp); |
| } |
| |
| static void tcg_out_addsub2_i64(TCGContext *s, TCGReg rl, TCGReg rh, |
| TCGReg al, TCGReg ah, int32_t bl, int blconst, |
| int32_t bh, int bhconst, bool is_sub) |
| { |
| TCGReg tmp = TCG_REG_T1; |
| |
| /* Note that the low parts are fully consumed before tmp is set. */ |
| if (rl != ah && (bhconst || rl != bh)) { |
| tmp = rl; |
| } |
| |
| tcg_out_arithc(s, tmp, al, bl, blconst, is_sub ? ARITH_SUBCC : ARITH_ADDCC); |
| |
| if (use_vis3_instructions && !is_sub) { |
| /* Note that ADDXC doesn't accept immediates. */ |
| if (bhconst && bh != 0) { |
| tcg_out_movi_imm13(s, TCG_REG_T2, bh); |
| bh = TCG_REG_T2; |
| } |
| tcg_out_arith(s, rh, ah, bh, ARITH_ADDXC); |
| } else if (bh == TCG_REG_G0) { |
| /* If we have a zero, we can perform the operation in two insns, |
| with the arithmetic first, and a conditional move into place. */ |
| if (rh == ah) { |
| tcg_out_arithi(s, TCG_REG_T2, ah, 1, |
| is_sub ? ARITH_SUB : ARITH_ADD); |
| tcg_out_movcc(s, TCG_COND_LTU, MOVCC_XCC, rh, TCG_REG_T2, 0); |
| } else { |
| tcg_out_arithi(s, rh, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD); |
| tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, rh, ah, 0); |
| } |
| } else { |
| /* |
| * Otherwise adjust BH as if there is carry into T2. |
| * Note that constant BH is constrained to 11 bits for the MOVCC, |
| * so the adjustment fits 12 bits. |
| */ |
| if (bhconst) { |
| tcg_out_movi_imm13(s, TCG_REG_T2, bh + (is_sub ? -1 : 1)); |
| } else { |
| tcg_out_arithi(s, TCG_REG_T2, bh, 1, |
| is_sub ? ARITH_SUB : ARITH_ADD); |
| } |
| /* ... smoosh T2 back to original BH if carry is clear ... */ |
| tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, TCG_REG_T2, bh, bhconst); |
| /* ... and finally perform the arithmetic with the new operand. */ |
| tcg_out_arith(s, rh, ah, TCG_REG_T2, is_sub ? ARITH_SUB : ARITH_ADD); |
| } |
| |
| tcg_out_mov(s, TCG_TYPE_I64, rl, tmp); |
| } |
| |
| static void tcg_out_jmpl_const(TCGContext *s, const tcg_insn_unit *dest, |
| bool in_prologue, bool tail_call) |
| { |
| uintptr_t desti = (uintptr_t)dest; |
| |
| /* Be careful not to clobber %o7 for a tail call. */ |
| tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_REG_T1, |
| desti & ~0xfff, in_prologue, |
| tail_call ? TCG_REG_G2 : TCG_REG_O7); |
| tcg_out_arithi(s, tail_call ? TCG_REG_G0 : TCG_REG_O7, |
| TCG_REG_T1, desti & 0xfff, JMPL); |
| } |
| |
| static void tcg_out_call_nodelay(TCGContext *s, const tcg_insn_unit *dest, |
| bool in_prologue) |
| { |
| ptrdiff_t disp = tcg_pcrel_diff(s, dest); |
| |
| if (disp == (int32_t)disp) { |
| tcg_out32(s, CALL | (uint32_t)disp >> 2); |
| } else { |
| tcg_out_jmpl_const(s, dest, in_prologue, false); |
| } |
| } |
| |
| static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest) |
| { |
| tcg_out_call_nodelay(s, dest, false); |
| tcg_out_nop(s); |
| } |
| |
| static void tcg_out_mb(TCGContext *s, TCGArg a0) |
| { |
| /* Note that the TCG memory order constants mirror the Sparc MEMBAR. */ |
| tcg_out32(s, MEMBAR | (a0 & TCG_MO_ALL)); |
| } |
| |
| #ifdef CONFIG_SOFTMMU |
| static const tcg_insn_unit *qemu_ld_trampoline[(MO_SSIZE | MO_BSWAP) + 1]; |
| static const tcg_insn_unit *qemu_st_trampoline[(MO_SIZE | MO_BSWAP) + 1]; |
| |
| static void emit_extend(TCGContext *s, TCGReg r, int op) |
| { |
| /* Emit zero extend of 8, 16 or 32 bit data as |
| * required by the MO_* value op; do nothing for 64 bit. |
| */ |
| switch (op & MO_SIZE) { |
| case MO_8: |
| tcg_out_arithi(s, r, r, 0xff, ARITH_AND); |
| break; |
| case MO_16: |
| tcg_out_arithi(s, r, r, 16, SHIFT_SLL); |
| tcg_out_arithi(s, r, r, 16, SHIFT_SRL); |
| break; |
| case MO_32: |
| tcg_out_arith(s, r, r, 0, SHIFT_SRL); |
| break; |
| case MO_64: |
| break; |
| } |
| } |
| |
| static void build_trampolines(TCGContext *s) |
| { |
| static void * const qemu_ld_helpers[] = { |
| [MO_UB] = helper_ret_ldub_mmu, |
| [MO_SB] = helper_ret_ldsb_mmu, |
| [MO_LEUW] = helper_le_lduw_mmu, |
| [MO_LESW] = helper_le_ldsw_mmu, |
| [MO_LEUL] = helper_le_ldul_mmu, |
| [MO_LEUQ] = helper_le_ldq_mmu, |
| [MO_BEUW] = helper_be_lduw_mmu, |
| [MO_BESW] = helper_be_ldsw_mmu, |
| [MO_BEUL] = helper_be_ldul_mmu, |
| [MO_BEUQ] = helper_be_ldq_mmu, |
| }; |
| static void * const qemu_st_helpers[] = { |
| [MO_UB] = helper_ret_stb_mmu, |
| [MO_LEUW] = helper_le_stw_mmu, |
| [MO_LEUL] = helper_le_stl_mmu, |
| [MO_LEUQ] = helper_le_stq_mmu, |
| [MO_BEUW] = helper_be_stw_mmu, |
| [MO_BEUL] = helper_be_stl_mmu, |
| [MO_BEUQ] = helper_be_stq_mmu, |
| }; |
| |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(qemu_ld_helpers); ++i) { |
| if (qemu_ld_helpers[i] == NULL) { |
| continue; |
| } |
| |
| /* May as well align the trampoline. */ |
| while ((uintptr_t)s->code_ptr & 15) { |
| tcg_out_nop(s); |
| } |
| qemu_ld_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr); |
| |
| /* Set the retaddr operand. */ |
| tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O3, TCG_REG_O7); |
| /* Tail call. */ |
| tcg_out_jmpl_const(s, qemu_ld_helpers[i], true, true); |
| /* delay slot -- set the env argument */ |
| tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(qemu_st_helpers); ++i) { |
| if (qemu_st_helpers[i] == NULL) { |
| continue; |
| } |
| |
| /* May as well align the trampoline. */ |
| while ((uintptr_t)s->code_ptr & 15) { |
| tcg_out_nop(s); |
| } |
| qemu_st_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr); |
| |
| emit_extend(s, TCG_REG_O2, i); |
| |
| /* Set the retaddr operand. */ |
| tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O4, TCG_REG_O7); |
| |
| /* Tail call. */ |
| tcg_out_jmpl_const(s, qemu_st_helpers[i], true, true); |
| /* delay slot -- set the env argument */ |
| tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0); |
| } |
| } |
| #else |
| static const tcg_insn_unit *qemu_unalign_ld_trampoline; |
| static const tcg_insn_unit *qemu_unalign_st_trampoline; |
| |
| static void build_trampolines(TCGContext *s) |
| { |
| for (int ld = 0; ld < 2; ++ld) { |
| void *helper; |
| |
| while ((uintptr_t)s->code_ptr & 15) { |
| tcg_out_nop(s); |
| } |
| |
| if (ld) { |
| helper = helper_unaligned_ld; |
| qemu_unalign_ld_trampoline = tcg_splitwx_to_rx(s->code_ptr); |
| } else { |
| helper = helper_unaligned_st; |
| qemu_unalign_st_trampoline = tcg_splitwx_to_rx(s->code_ptr); |
| } |
| |
| /* Tail call. */ |
| tcg_out_jmpl_const(s, helper, true, true); |
| /* delay slot -- set the env argument */ |
| tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0); |
| } |
| } |
| #endif |
| |
| /* Generate global QEMU prologue and epilogue code */ |
| static void tcg_target_qemu_prologue(TCGContext *s) |
| { |
| int tmp_buf_size, frame_size; |
| |
| /* |
| * The TCG temp buffer is at the top of the frame, immediately |
| * below the frame pointer. Use the logical (aligned) offset here; |
| * the stack bias is applied in temp_allocate_frame(). |
| */ |
| tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long); |
| tcg_set_frame(s, TCG_REG_I6, -tmp_buf_size, tmp_buf_size); |
| |
| /* |
| * TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is |
| * otherwise the minimal frame usable by callees. |
| */ |
| frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS; |
| frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size; |
| frame_size += TCG_TARGET_STACK_ALIGN - 1; |
| frame_size &= -TCG_TARGET_STACK_ALIGN; |
| tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) | |
| INSN_IMM13(-frame_size)); |
| |
| #ifndef CONFIG_SOFTMMU |
| if (guest_base != 0) { |
| tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, |
| guest_base, true, TCG_REG_T1); |
| tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); |
| } |
| #endif |
| |
| /* We choose TCG_REG_TB such that no move is required. */ |
| if (USE_REG_TB) { |
| QEMU_BUILD_BUG_ON(TCG_REG_TB != TCG_REG_I1); |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); |
| } |
| |
| tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I1, 0, JMPL); |
| /* delay slot */ |
| tcg_out_nop(s); |
| |
| /* Epilogue for goto_ptr. */ |
| tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); |
| tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); |
| /* delay slot */ |
| tcg_out_movi_imm13(s, TCG_REG_O0, 0); |
| |
| build_trampolines(s); |
| } |
| |
| static void tcg_out_nop_fill(tcg_insn_unit *p, int count) |
| { |
| int i; |
| for (i = 0; i < count; ++i) { |
| p[i] = NOP; |
| } |
| } |
| |
| #if defined(CONFIG_SOFTMMU) |
| |
| /* We expect to use a 13-bit negative offset from ENV. */ |
| QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0); |
| QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 12)); |
| |
| /* Perform the TLB load and compare. |
| |
| Inputs: |
| ADDRLO and ADDRHI contain the possible two parts of the address. |
| |
| MEM_INDEX and S_BITS are the memory context and log2 size of the load. |
| |
| WHICH is the offset into the CPUTLBEntry structure of the slot to read. |
| This should be offsetof addr_read or addr_write. |
| |
| The result of the TLB comparison is in %[ix]cc. The sanitized address |
| is in the returned register, maybe %o0. The TLB addend is in %o1. */ |
| |
| static TCGReg tcg_out_tlb_load(TCGContext *s, TCGReg addr, int mem_index, |
| MemOp opc, int which) |
| { |
| int fast_off = TLB_MASK_TABLE_OFS(mem_index); |
| int mask_off = fast_off + offsetof(CPUTLBDescFast, mask); |
| int table_off = fast_off + offsetof(CPUTLBDescFast, table); |
| const TCGReg r0 = TCG_REG_O0; |
| const TCGReg r1 = TCG_REG_O1; |
| const TCGReg r2 = TCG_REG_O2; |
| unsigned s_bits = opc & MO_SIZE; |
| unsigned a_bits = get_alignment_bits(opc); |
| tcg_target_long compare_mask; |
| |
| /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */ |
| tcg_out_ld(s, TCG_TYPE_PTR, r0, TCG_AREG0, mask_off); |
| tcg_out_ld(s, TCG_TYPE_PTR, r1, TCG_AREG0, table_off); |
| |
| /* Extract the page index, shifted into place for tlb index. */ |
| tcg_out_arithi(s, r2, addr, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS, |
| SHIFT_SRL); |
| tcg_out_arith(s, r2, r2, r0, ARITH_AND); |
| |
| /* Add the tlb_table pointer, creating the CPUTLBEntry address into R2. */ |
| tcg_out_arith(s, r2, r2, r1, ARITH_ADD); |
| |
| /* Load the tlb comparator and the addend. */ |
| tcg_out_ld(s, TCG_TYPE_TL, r0, r2, which); |
| tcg_out_ld(s, TCG_TYPE_PTR, r1, r2, offsetof(CPUTLBEntry, addend)); |
| |
| /* Mask out the page offset, except for the required alignment. |
| We don't support unaligned accesses. */ |
| if (a_bits < s_bits) { |
| a_bits = s_bits; |
| } |
| compare_mask = (tcg_target_ulong)TARGET_PAGE_MASK | ((1 << a_bits) - 1); |
| if (check_fit_tl(compare_mask, 13)) { |
| tcg_out_arithi(s, r2, addr, compare_mask, ARITH_AND); |
| } else { |
| tcg_out_movi(s, TCG_TYPE_TL, r2, compare_mask); |
| tcg_out_arith(s, r2, addr, r2, ARITH_AND); |
| } |
| tcg_out_cmp(s, r0, r2, 0); |
| |
| /* If the guest address must be zero-extended, do so now. */ |
| if (TARGET_LONG_BITS == 32) { |
| tcg_out_arithi(s, r0, addr, 0, SHIFT_SRL); |
| return r0; |
| } |
| return addr; |
| } |
| #endif /* CONFIG_SOFTMMU */ |
| |
| static const int qemu_ld_opc[(MO_SSIZE | MO_BSWAP) + 1] = { |
| [MO_UB] = LDUB, |
| [MO_SB] = LDSB, |
| [MO_UB | MO_LE] = LDUB, |
| [MO_SB | MO_LE] = LDSB, |
| |
| [MO_BEUW] = LDUH, |
| [MO_BESW] = LDSH, |
| [MO_BEUL] = LDUW, |
| [MO_BESL] = LDSW, |
| [MO_BEUQ] = LDX, |
| [MO_BESQ] = LDX, |
| |
| [MO_LEUW] = LDUH_LE, |
| [MO_LESW] = LDSH_LE, |
| [MO_LEUL] = LDUW_LE, |
| [MO_LESL] = LDSW_LE, |
| [MO_LEUQ] = LDX_LE, |
| [MO_LESQ] = LDX_LE, |
| }; |
| |
| static const int qemu_st_opc[(MO_SIZE | MO_BSWAP) + 1] = { |
| [MO_UB] = STB, |
| |
| [MO_BEUW] = STH, |
| [MO_BEUL] = STW, |
| [MO_BEUQ] = STX, |
| |
| [MO_LEUW] = STH_LE, |
| [MO_LEUL] = STW_LE, |
| [MO_LEUQ] = STX_LE, |
| }; |
| |
| static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr, |
| MemOpIdx oi, bool is_64) |
| { |
| MemOp memop = get_memop(oi); |
| tcg_insn_unit *label_ptr; |
| |
| #ifdef CONFIG_SOFTMMU |
| unsigned memi = get_mmuidx(oi); |
| TCGReg addrz; |
| const tcg_insn_unit *func; |
| |
| addrz = tcg_out_tlb_load(s, addr, memi, memop, |
| offsetof(CPUTLBEntry, addr_read)); |
| |
| /* The fast path is exactly one insn. Thus we can perform the |
| entire TLB Hit in the (annulled) delay slot of the branch |
| over the TLB Miss case. */ |
| |
| /* beq,a,pt %[xi]cc, label0 */ |
| label_ptr = s->code_ptr; |
| tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT |
| | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); |
| /* delay slot */ |
| tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1, |
| qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]); |
| |
| /* TLB Miss. */ |
| |
| tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O1, addrz); |
| |
| /* We use the helpers to extend SB and SW data, leaving the case |
| of SL needing explicit extending below. */ |
| if ((memop & MO_SSIZE) == MO_SL) { |
| func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)]; |
| } else { |
| func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)]; |
| } |
| tcg_debug_assert(func != NULL); |
| tcg_out_call_nodelay(s, func, false); |
| /* delay slot */ |
| tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_O2, oi); |
| |
| /* We let the helper sign-extend SB and SW, but leave SL for here. */ |
| if (is_64 && (memop & MO_SSIZE) == MO_SL) { |
| tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA); |
| } else { |
| tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0); |
| } |
| |
| *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr)); |
| #else |
| TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0); |
| unsigned a_bits = get_alignment_bits(memop); |
| unsigned s_bits = memop & MO_SIZE; |
| unsigned t_bits; |
| |
| if (TARGET_LONG_BITS == 32) { |
| tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL); |
| addr = TCG_REG_T1; |
| } |
| |
| /* |
| * Normal case: alignment equal to access size. |
| */ |
| if (a_bits == s_bits) { |
| tcg_out_ldst_rr(s, data, addr, index, |
| qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]); |
| return; |
| } |
| |
| /* |
| * Test for at least natural alignment, and assume most accesses |
| * will be aligned -- perform a straight load in the delay slot. |
| * This is required to preserve atomicity for aligned accesses. |
| */ |
| t_bits = MAX(a_bits, s_bits); |
| tcg_debug_assert(t_bits < 13); |
| tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC); |
| |
| /* beq,a,pt %icc, label */ |
| label_ptr = s->code_ptr; |
| tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0); |
| /* delay slot */ |
| tcg_out_ldst_rr(s, data, addr, index, |
| qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]); |
| |
| if (a_bits >= s_bits) { |
| /* |
| * Overalignment: A successful alignment test will perform the memory |
| * operation in the delay slot, and failure need only invoke the |
| * handler for SIGBUS. |
| */ |
| tcg_out_call_nodelay(s, qemu_unalign_ld_trampoline, false); |
| /* delay slot -- move to low part of argument reg */ |
| tcg_out_mov_delay(s, TCG_REG_O1, addr); |
| } else { |
| /* Underalignment: load by pieces of minimum alignment. */ |
| int ld_opc, a_size, s_size, i; |
| |
| /* |
| * Force full address into T1 early; avoids problems with |
| * overlap between @addr and @data. |
| */ |
| tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD); |
| |
| a_size = 1 << a_bits; |
| s_size = 1 << s_bits; |
| if ((memop & MO_BSWAP) == MO_BE) { |
| ld_opc = qemu_ld_opc[a_bits | MO_BE | (memop & MO_SIGN)]; |
| tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc); |
| ld_opc = qemu_ld_opc[a_bits | MO_BE]; |
| for (i = a_size; i < s_size; i += a_size) { |
| tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc); |
| tcg_out_arithi(s, data, data, a_size, SHIFT_SLLX); |
| tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR); |
| } |
| } else if (a_bits == 0) { |
| ld_opc = LDUB; |
| tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc); |
| for (i = a_size; i < s_size; i += a_size) { |
| if ((memop & MO_SIGN) && i == s_size - a_size) { |
| ld_opc = LDSB; |
| } |
| tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc); |
| tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX); |
| tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR); |
| } |
| } else { |
| ld_opc = qemu_ld_opc[a_bits | MO_LE]; |
| tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, ld_opc); |
| for (i = a_size; i < s_size; i += a_size) { |
| tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD); |
| if ((memop & MO_SIGN) && i == s_size - a_size) { |
| ld_opc = qemu_ld_opc[a_bits | MO_LE | MO_SIGN]; |
| } |
| tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, ld_opc); |
| tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX); |
| tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR); |
| } |
| } |
| } |
| |
| *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr)); |
| #endif /* CONFIG_SOFTMMU */ |
| } |
| |
| static void tcg_out_qemu_st(TCGContext *s, TCGReg data, TCGReg addr, |
| MemOpIdx oi) |
| { |
| MemOp memop = get_memop(oi); |
| tcg_insn_unit *label_ptr; |
| |
| #ifdef CONFIG_SOFTMMU |
| unsigned memi = get_mmuidx(oi); |
| TCGReg addrz; |
| const tcg_insn_unit *func; |
| |
| addrz = tcg_out_tlb_load(s, addr, memi, memop, |
| offsetof(CPUTLBEntry, addr_write)); |
| |
| /* The fast path is exactly one insn. Thus we can perform the entire |
| TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */ |
| /* beq,a,pt %[xi]cc, label0 */ |
| label_ptr = s->code_ptr; |
| tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT |
| | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0); |
| /* delay slot */ |
| tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1, |
| qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]); |
| |
| /* TLB Miss. */ |
| |
| tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O1, addrz); |
| tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O2, data); |
| |
| func = qemu_st_trampoline[memop & (MO_BSWAP | MO_SIZE)]; |
| tcg_debug_assert(func != NULL); |
| tcg_out_call_nodelay(s, func, false); |
| /* delay slot */ |
| tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_O3, oi); |
| |
| *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr)); |
| #else |
| TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0); |
| unsigned a_bits = get_alignment_bits(memop); |
| unsigned s_bits = memop & MO_SIZE; |
| unsigned t_bits; |
| |
| if (TARGET_LONG_BITS == 32) { |
| tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL); |
| addr = TCG_REG_T1; |
| } |
| |
| /* |
| * Normal case: alignment equal to access size. |
| */ |
| if (a_bits == s_bits) { |
| tcg_out_ldst_rr(s, data, addr, index, |
| qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]); |
| return; |
| } |
| |
| /* |
| * Test for at least natural alignment, and assume most accesses |
| * will be aligned -- perform a straight store in the delay slot. |
| * This is required to preserve atomicity for aligned accesses. |
| */ |
| t_bits = MAX(a_bits, s_bits); |
| tcg_debug_assert(t_bits < 13); |
| tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC); |
| |
| /* beq,a,pt %icc, label */ |
| label_ptr = s->code_ptr; |
| tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0); |
| /* delay slot */ |
| tcg_out_ldst_rr(s, data, addr, index, |
| qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]); |
| |
| if (a_bits >= s_bits) { |
| /* |
| * Overalignment: A successful alignment test will perform the memory |
| * operation in the delay slot, and failure need only invoke the |
| * handler for SIGBUS. |
| */ |
| tcg_out_call_nodelay(s, qemu_unalign_st_trampoline, false); |
| /* delay slot -- move to low part of argument reg */ |
| tcg_out_mov_delay(s, TCG_REG_O1, addr); |
| } else { |
| /* Underalignment: store by pieces of minimum alignment. */ |
| int st_opc, a_size, s_size, i; |
| |
| /* |
| * Force full address into T1 early; avoids problems with |
| * overlap between @addr and @data. |
| */ |
| tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD); |
| |
| a_size = 1 << a_bits; |
| s_size = 1 << s_bits; |
| if ((memop & MO_BSWAP) == MO_BE) { |
| st_opc = qemu_st_opc[a_bits | MO_BE]; |
| for (i = 0; i < s_size; i += a_size) { |
| TCGReg d = data; |
| int shift = (s_size - a_size - i) * 8; |
| if (shift) { |
| d = TCG_REG_T2; |
| tcg_out_arithi(s, d, data, shift, SHIFT_SRLX); |
| } |
| tcg_out_ldst(s, d, TCG_REG_T1, i, st_opc); |
| } |
| } else if (a_bits == 0) { |
| tcg_out_ldst(s, data, TCG_REG_T1, 0, STB); |
| for (i = 1; i < s_size; i++) { |
| tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX); |
| tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, STB); |
| } |
| } else { |
| /* Note that ST*A with immediate asi must use indexed address. */ |
| st_opc = qemu_st_opc[a_bits + MO_LE]; |
| tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, st_opc); |
| for (i = a_size; i < s_size; i += a_size) { |
| tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX); |
| tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD); |
| tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, st_opc); |
| } |
| } |
| } |
| |
| *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr)); |
| #endif /* CONFIG_SOFTMMU */ |
| } |
| |
| static void tcg_out_op(TCGContext *s, TCGOpcode opc, |
| const TCGArg args[TCG_MAX_OP_ARGS], |
| const int const_args[TCG_MAX_OP_ARGS]) |
| { |
| TCGArg a0, a1, a2; |
| int c, c2; |
| |
| /* Hoist the loads of the most common arguments. */ |
| a0 = args[0]; |
| a1 = args[1]; |
| a2 = args[2]; |
| c2 = const_args[2]; |
| |
| switch (opc) { |
| case INDEX_op_exit_tb: |
| if (check_fit_ptr(a0, 13)) { |
| tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); |
| tcg_out_movi_imm13(s, TCG_REG_O0, a0); |
| break; |
| } else if (USE_REG_TB) { |
| intptr_t tb_diff = tcg_tbrel_diff(s, (void *)a0); |
| if (check_fit_ptr(tb_diff, 13)) { |
| tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); |
| /* Note that TCG_REG_TB has been unwound to O1. */ |
| tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O1, tb_diff, ARITH_ADD); |
| break; |
| } |
| } |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, a0 & ~0x3ff); |
| tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN); |
| tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, a0 & 0x3ff, ARITH_OR); |
| break; |
| case INDEX_op_goto_tb: |
| if (s->tb_jmp_insn_offset) { |
| /* direct jump method */ |
| if (USE_REG_TB) { |
| /* make sure the patch is 8-byte aligned. */ |
| if ((intptr_t)s->code_ptr & 4) { |
| tcg_out_nop(s); |
| } |
| s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s); |
| tcg_out_sethi(s, TCG_REG_T1, 0); |
| tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, 0, ARITH_OR); |
| tcg_out_arith(s, TCG_REG_G0, TCG_REG_TB, TCG_REG_T1, JMPL); |
| tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD); |
| } else { |
| s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s); |
| tcg_out32(s, CALL); |
| tcg_out_nop(s); |
| } |
| } else { |
| /* indirect jump method */ |
| tcg_out_ld_ptr(s, TCG_REG_TB, s->tb_jmp_target_addr + a0); |
| tcg_out_arithi(s, TCG_REG_G0, TCG_REG_TB, 0, JMPL); |
| tcg_out_nop(s); |
| } |
| set_jmp_reset_offset(s, a0); |
| |
| /* For the unlinked path of goto_tb, we need to reset |
| TCG_REG_TB to the beginning of this TB. */ |
| if (USE_REG_TB) { |
| c = -tcg_current_code_size(s); |
| if (check_fit_i32(c, 13)) { |
| tcg_out_arithi(s, TCG_REG_TB, TCG_REG_TB, c, ARITH_ADD); |
| } else { |
| tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, c); |
| tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, |
| TCG_REG_T1, ARITH_ADD); |
| } |
| } |
| break; |
| case INDEX_op_goto_ptr: |
| tcg_out_arithi(s, TCG_REG_G0, a0, 0, JMPL); |
| if (USE_REG_TB) { |
| tcg_out_mov_delay(s, TCG_REG_TB, a0); |
| } else { |
| tcg_out_nop(s); |
| } |
| break; |
| case INDEX_op_br: |
| tcg_out_bpcc(s, COND_A, BPCC_PT, arg_label(a0)); |
| tcg_out_nop(s); |
| break; |
| |
| #define OP_32_64(x) \ |
| glue(glue(case INDEX_op_, x), _i32): \ |
| glue(glue(case INDEX_op_, x), _i64) |
| |
| OP_32_64(ld8u): |
| tcg_out_ldst(s, a0, a1, a2, LDUB); |
| break; |
| OP_32_64(ld8s): |
| tcg_out_ldst(s, a0, a1, a2, LDSB); |
| break; |
| OP_32_64(ld16u): |
| tcg_out_ldst(s, a0, a1, a2, LDUH); |
| break; |
| OP_32_64(ld16s): |
| tcg_out_ldst(s, a0, a1, a2, LDSH); |
| break; |
| case INDEX_op_ld_i32: |
| case INDEX_op_ld32u_i64: |
| tcg_out_ldst(s, a0, a1, a2, LDUW); |
| break; |
| OP_32_64(st8): |
| tcg_out_ldst(s, a0, a1, a2, STB); |
| break; |
| OP_32_64(st16): |
| tcg_out_ldst(s, a0, a1, a2, STH); |
| break; |
| case INDEX_op_st_i32: |
| case INDEX_op_st32_i64: |
| tcg_out_ldst(s, a0, a1, a2, STW); |
| break; |
| OP_32_64(add): |
| c = ARITH_ADD; |
| goto gen_arith; |
| OP_32_64(sub): |
| c = ARITH_SUB; |
| goto gen_arith; |
| OP_32_64(and): |
| c = ARITH_AND; |
| goto gen_arith; |
| OP_32_64(andc): |
| c = ARITH_ANDN; |
| goto gen_arith; |
| OP_32_64(or): |
| c = ARITH_OR; |
| goto gen_arith; |
| OP_32_64(orc): |
| c = ARITH_ORN; |
| goto gen_arith; |
| OP_32_64(xor): |
| c = ARITH_XOR; |
| goto gen_arith; |
| case INDEX_op_shl_i32: |
| c = SHIFT_SLL; |
| do_shift32: |
| /* Limit immediate shift count lest we create an illegal insn. */ |
| tcg_out_arithc(s, a0, a1, a2 & 31, c2, c); |
| break; |
| case INDEX_op_shr_i32: |
| c = SHIFT_SRL; |
| goto do_shift32; |
| case INDEX_op_sar_i32: |
| c = SHIFT_SRA; |
| goto do_shift32; |
| case INDEX_op_mul_i32: |
| c = ARITH_UMUL; |
| goto gen_arith; |
| |
| OP_32_64(neg): |
| c = ARITH_SUB; |
| goto gen_arith1; |
| OP_32_64(not): |
| c = ARITH_ORN; |
| goto gen_arith1; |
| |
| case INDEX_op_div_i32: |
| tcg_out_div32(s, a0, a1, a2, c2, 0); |
| break; |
| case INDEX_op_divu_i32: |
| tcg_out_div32(s, a0, a1, a2, c2, 1); |
| break; |
| |
| case INDEX_op_brcond_i32: |
| tcg_out_brcond_i32(s, a2, a0, a1, const_args[1], arg_label(args[3])); |
| break; |
| case INDEX_op_setcond_i32: |
| tcg_out_setcond_i32(s, args[3], a0, a1, a2, c2); |
| break; |
| case INDEX_op_movcond_i32: |
| tcg_out_movcond_i32(s, args[5], a0, a1, a2, c2, args[3], const_args[3]); |
| break; |
| |
| case INDEX_op_add2_i32: |
| tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3], |
| args[4], const_args[4], args[5], const_args[5], |
| ARITH_ADDCC, ARITH_ADDC); |
| break; |
| case INDEX_op_sub2_i32: |
| tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3], |
| args[4], const_args[4], args[5], const_args[5], |
| ARITH_SUBCC, ARITH_SUBC); |
| break; |
| case INDEX_op_mulu2_i32: |
| c = ARITH_UMUL; |
| goto do_mul2; |
| case INDEX_op_muls2_i32: |
| c = ARITH_SMUL; |
| do_mul2: |
| /* The 32-bit multiply insns produce a full 64-bit result. */ |
| tcg_out_arithc(s, a0, a2, args[3], const_args[3], c); |
| tcg_out_arithi(s, a1, a0, 32, SHIFT_SRLX); |
| break; |
| |
| case INDEX_op_qemu_ld_i32: |
| tcg_out_qemu_ld(s, a0, a1, a2, false); |
| break; |
| case INDEX_op_qemu_ld_i64: |
| tcg_out_qemu_ld(s, a0, a1, a2, true); |
| break; |
| case INDEX_op_qemu_st_i32: |
| case INDEX_op_qemu_st_i64: |
| tcg_out_qemu_st(s, a0, a1, a2); |
| break; |
| |
| case INDEX_op_ld32s_i64: |
| tcg_out_ldst(s, a0, a1, a2, LDSW); |
| break; |
| case INDEX_op_ld_i64: |
| tcg_out_ldst(s, a0, a1, a2, LDX); |
| break; |
| case INDEX_op_st_i64: |
| tcg_out_ldst(s, a0, a1, a2, STX); |
| break; |
| case INDEX_op_shl_i64: |
| c = SHIFT_SLLX; |
| do_shift64: |
| /* Limit immediate shift count lest we create an illegal insn. */ |
| tcg_out_arithc(s, a0, a1, a2 & 63, c2, c); |
| break; |
| case INDEX_op_shr_i64: |
| c = SHIFT_SRLX; |
| goto do_shift64; |
| case INDEX_op_sar_i64: |
| c = SHIFT_SRAX; |
| goto do_shift64; |
| case INDEX_op_mul_i64: |
| c = ARITH_MULX; |
| goto gen_arith; |
| case INDEX_op_div_i64: |
| c = ARITH_SDIVX; |
| goto gen_arith; |
| case INDEX_op_divu_i64: |
| c = ARITH_UDIVX; |
| goto gen_arith; |
| case INDEX_op_ext_i32_i64: |
| case INDEX_op_ext32s_i64: |
| tcg_out_arithi(s, a0, a1, 0, SHIFT_SRA); |
| break; |
| case INDEX_op_extu_i32_i64: |
| case INDEX_op_ext32u_i64: |
| tcg_out_arithi(s, a0, a1, 0, SHIFT_SRL); |
| break; |
| case INDEX_op_extrl_i64_i32: |
| tcg_out_mov(s, TCG_TYPE_I32, a0, a1); |
| break; |
| case INDEX_op_extrh_i64_i32: |
| tcg_out_arithi(s, a0, a1, 32, SHIFT_SRLX); |
| break; |
| |
| case INDEX_op_brcond_i64: |
| tcg_out_brcond_i64(s, a2, a0, a1, const_args[1], arg_label(args[3])); |
| break; |
| case INDEX_op_setcond_i64: |
| tcg_out_setcond_i64(s, args[3], a0, a1, a2, c2); |
| break; |
| case INDEX_op_movcond_i64: |
| tcg_out_movcond_i64(s, args[5], a0, a1, a2, c2, args[3], const_args[3]); |
| break; |
| case INDEX_op_add2_i64: |
| tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4], |
| const_args[4], args[5], const_args[5], false); |
| break; |
| case INDEX_op_sub2_i64: |
| tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4], |
| const_args[4], args[5], const_args[5], true); |
| break; |
| case INDEX_op_muluh_i64: |
| tcg_out_arith(s, args[0], args[1], args[2], ARITH_UMULXHI); |
| break; |
| |
| gen_arith: |
| tcg_out_arithc(s, a0, a1, a2, c2, c); |
| break; |
| |
| gen_arith1: |
| tcg_out_arithc(s, a0, TCG_REG_G0, a1, const_args[1], c); |
| break; |
| |
| case INDEX_op_mb: |
| tcg_out_mb(s, a0); |
| break; |
| |
| case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ |
| case INDEX_op_mov_i64: |
| case INDEX_op_call: /* Always emitted via tcg_out_call. */ |
| default: |
| tcg_abort(); |
| } |
| } |
| |
| static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op) |
| { |
| switch (op) { |
| case INDEX_op_goto_ptr: |
| return C_O0_I1(r); |
| |
| case INDEX_op_ld8u_i32: |
| case INDEX_op_ld8s_i32: |
| case INDEX_op_ld16u_i32: |
| case INDEX_op_ld16s_i32: |
| case INDEX_op_ld_i32: |
| case INDEX_op_neg_i32: |
| case INDEX_op_not_i32: |
| return C_O1_I1(r, r); |
| |
| case INDEX_op_st8_i32: |
| case INDEX_op_st16_i32: |
| case INDEX_op_st_i32: |
| return C_O0_I2(rZ, r); |
| |
| case INDEX_op_add_i32: |
| case INDEX_op_mul_i32: |
| case INDEX_op_div_i32: |
| case INDEX_op_divu_i32: |
| case INDEX_op_sub_i32: |
| case INDEX_op_and_i32: |
| case INDEX_op_andc_i32: |
| case INDEX_op_or_i32: |
| case INDEX_op_orc_i32: |
| case INDEX_op_xor_i32: |
| case INDEX_op_shl_i32: |
| case INDEX_op_shr_i32: |
| case INDEX_op_sar_i32: |
| case INDEX_op_setcond_i32: |
| return C_O1_I2(r, rZ, rJ); |
| |
| case INDEX_op_brcond_i32: |
| return C_O0_I2(rZ, rJ); |
| case INDEX_op_movcond_i32: |
| return C_O1_I4(r, rZ, rJ, rI, 0); |
| case INDEX_op_add2_i32: |
| case INDEX_op_sub2_i32: |
| return C_O2_I4(r, r, rZ, rZ, rJ, rJ); |
| case INDEX_op_mulu2_i32: |
| case INDEX_op_muls2_i32: |
| return C_O2_I2(r, r, rZ, rJ); |
| |
| case INDEX_op_ld8u_i64: |
| case INDEX_op_ld8s_i64: |
| case INDEX_op_ld16u_i64: |
| case INDEX_op_ld16s_i64: |
| case INDEX_op_ld32u_i64: |
| case INDEX_op_ld32s_i64: |
| case INDEX_op_ld_i64: |
| case INDEX_op_ext_i32_i64: |
| case INDEX_op_extu_i32_i64: |
| return C_O1_I1(R, r); |
| |
| case INDEX_op_st8_i64: |
| case INDEX_op_st16_i64: |
| case INDEX_op_st32_i64: |
| case INDEX_op_st_i64: |
| return C_O0_I2(RZ, r); |
| |
| case INDEX_op_add_i64: |
| case INDEX_op_mul_i64: |
| case INDEX_op_div_i64: |
| case INDEX_op_divu_i64: |
| case INDEX_op_sub_i64: |
| case INDEX_op_and_i64: |
| case INDEX_op_andc_i64: |
| case INDEX_op_or_i64: |
| case INDEX_op_orc_i64: |
| case INDEX_op_xor_i64: |
| case INDEX_op_shl_i64: |
| case INDEX_op_shr_i64: |
| case INDEX_op_sar_i64: |
| case INDEX_op_setcond_i64: |
| return C_O1_I2(R, RZ, RJ); |
| |
| case INDEX_op_neg_i64: |
| case INDEX_op_not_i64: |
| case INDEX_op_ext32s_i64: |
| case INDEX_op_ext32u_i64: |
| return C_O1_I1(R, R); |
| |
| case INDEX_op_extrl_i64_i32: |
| case INDEX_op_extrh_i64_i32: |
| return C_O1_I1(r, R); |
| |
| case INDEX_op_brcond_i64: |
| return C_O0_I2(RZ, RJ); |
| case INDEX_op_movcond_i64: |
| return C_O1_I4(R, RZ, RJ, RI, 0); |
| case INDEX_op_add2_i64: |
| case INDEX_op_sub2_i64: |
| return C_O2_I4(R, R, RZ, RZ, RJ, RI); |
| case INDEX_op_muluh_i64: |
| return C_O1_I2(R, R, R); |
| |
| case INDEX_op_qemu_ld_i32: |
| return C_O1_I1(r, A); |
| case INDEX_op_qemu_ld_i64: |
| return C_O1_I1(R, A); |
| case INDEX_op_qemu_st_i32: |
| return C_O0_I2(sZ, A); |
| case INDEX_op_qemu_st_i64: |
| return C_O0_I2(SZ, A); |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void tcg_target_init(TCGContext *s) |
| { |
| /* |
| * Only probe for the platform and capabilities if we haven't already |
| * determined maximum values at compile time. |
| */ |
| #ifndef use_vis3_instructions |
| { |
| unsigned long hwcap = qemu_getauxval(AT_HWCAP); |
| use_vis3_instructions = (hwcap & HWCAP_SPARC_VIS3) != 0; |
| } |
| #endif |
| |
| tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS; |
| tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS64; |
| |
| tcg_target_call_clobber_regs = 0; |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G1); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G2); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G3); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G4); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G5); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G6); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G7); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O0); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O1); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O2); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O3); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O4); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O5); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O6); |
| tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O7); |
| |
| s->reserved_regs = 0; |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */ |
| tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */ |
| } |
| |
| #define ELF_HOST_MACHINE EM_SPARCV9 |
| |
| typedef struct { |
| DebugFrameHeader h; |
| uint8_t fde_def_cfa[4]; |
| uint8_t fde_win_save; |
| uint8_t fde_ret_save[3]; |
| } DebugFrame; |
| |
| static const DebugFrame debug_frame = { |
| .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ |
| .h.cie.id = -1, |
| .h.cie.version = 1, |
| .h.cie.code_align = 1, |
| .h.cie.data_align = -sizeof(void *) & 0x7f, |
| .h.cie.return_column = 15, /* o7 */ |
| |
| /* Total FDE size does not include the "len" member. */ |
| .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), |
| |
| .fde_def_cfa = { |
| 12, 30, /* DW_CFA_def_cfa i6, 2047 */ |
| (2047 & 0x7f) | 0x80, (2047 >> 7) |
| }, |
| .fde_win_save = 0x2d, /* DW_CFA_GNU_window_save */ |
| .fde_ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */ |
| }; |
| |
| void tcg_register_jit(const void *buf, size_t buf_size) |
| { |
| tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); |
| } |
| |
| void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx, |
| uintptr_t jmp_rw, uintptr_t addr) |
| { |
| intptr_t tb_disp = addr - tc_ptr; |
| intptr_t br_disp = addr - jmp_rx; |
| tcg_insn_unit i1, i2; |
| |
| /* We can reach the entire address space for ILP32. |
| For LP64, the code_gen_buffer can't be larger than 2GB. */ |
| tcg_debug_assert(tb_disp == (int32_t)tb_disp); |
| tcg_debug_assert(br_disp == (int32_t)br_disp); |
| |
| if (!USE_REG_TB) { |
| qatomic_set((uint32_t *)jmp_rw, |
| deposit32(CALL, 0, 30, br_disp >> 2)); |
| flush_idcache_range(jmp_rx, jmp_rw, 4); |
| return; |
| } |
| |
| /* This does not exercise the range of the branch, but we do |
| still need to be able to load the new value of TCG_REG_TB. |
| But this does still happen quite often. */ |
| if (check_fit_ptr(tb_disp, 13)) { |
| /* ba,pt %icc, addr */ |
| i1 = (INSN_OP(0) | INSN_OP2(1) | INSN_COND(COND_A) |
| | BPCC_ICC | BPCC_PT | INSN_OFF19(br_disp)); |
| i2 = (ARITH_ADD | INSN_RD(TCG_REG_TB) | INSN_RS1(TCG_REG_TB) |
| | INSN_IMM13(tb_disp)); |
| } else if (tb_disp >= 0) { |
| i1 = SETHI | INSN_RD(TCG_REG_T1) | ((tb_disp & 0xfffffc00) >> 10); |
| i2 = (ARITH_OR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1) |
| | INSN_IMM13(tb_disp & 0x3ff)); |
| } else { |
| i1 = SETHI | INSN_RD(TCG_REG_T1) | ((~tb_disp & 0xfffffc00) >> 10); |
| i2 = (ARITH_XOR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1) |
| | INSN_IMM13((tb_disp & 0x3ff) | -0x400)); |
| } |
| |
| qatomic_set((uint64_t *)jmp_rw, deposit64(i2, 32, 32, i1)); |
| flush_idcache_range(jmp_rx, jmp_rw, 8); |
| } |