| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "target/arm/idau.h" |
| #include "trace.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "exec/gdbstub.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/host-utils.h" |
| #include "sysemu/arch_init.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/bitops.h" |
| #include "qemu/crc32c.h" |
| #include "qemu/qemu-print.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "arm_ldst.h" |
| #include <zlib.h> /* For crc32 */ |
| #include "exec/semihost.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/kvm.h" |
| #include "fpu/softfloat.h" |
| #include "qemu/range.h" |
| #include "qapi/qapi-commands-target.h" |
| |
| #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Cacheability and shareability attributes for a memory access */ |
| typedef struct ARMCacheAttrs { |
| unsigned int attrs:8; /* as in the MAIR register encoding */ |
| unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ |
| } ARMCacheAttrs; |
| |
| static bool get_phys_addr(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| target_ulong *page_size, |
| ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
| |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
| target_ulong *page_size_ptr, |
| ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); |
| |
| /* Security attributes for an address, as returned by v8m_security_lookup. */ |
| typedef struct V8M_SAttributes { |
| bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ |
| bool ns; |
| bool nsc; |
| uint8_t sregion; |
| bool srvalid; |
| uint8_t iregion; |
| bool irvalid; |
| } V8M_SAttributes; |
| |
| static void v8m_security_lookup(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| V8M_SAttributes *sattrs); |
| #endif |
| |
| static void switch_mode(CPUARMState *env, int mode); |
| |
| static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| /* VFP data registers are always little-endian. */ |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| stq_le_p(buf, *aa32_vfp_dreg(env, reg)); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| /* Aliases for Q regs. */ |
| nregs += 16; |
| if (reg < nregs) { |
| uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
| stq_le_p(buf, q[0]); |
| stq_le_p(buf + 8, q[1]); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; |
| case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; |
| case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| nregs += 16; |
| if (reg < nregs) { |
| uint64_t *q = aa32_vfp_qreg(env, reg - 32); |
| q[0] = ldq_le_p(buf); |
| q[1] = ldq_le_p(buf + 8); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; |
| case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; |
| case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
| } |
| return 0; |
| } |
| |
| static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| switch (reg) { |
| case 0 ... 31: |
| /* 128 bit FP register */ |
| { |
| uint64_t *q = aa64_vfp_qreg(env, reg); |
| stq_le_p(buf, q[0]); |
| stq_le_p(buf + 8, q[1]); |
| return 16; |
| } |
| case 32: |
| /* FPSR */ |
| stl_p(buf, vfp_get_fpsr(env)); |
| return 4; |
| case 33: |
| /* FPCR */ |
| stl_p(buf, vfp_get_fpcr(env)); |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| switch (reg) { |
| case 0 ... 31: |
| /* 128 bit FP register */ |
| { |
| uint64_t *q = aa64_vfp_qreg(env, reg); |
| q[0] = ldq_le_p(buf); |
| q[1] = ldq_le_p(buf + 8); |
| return 16; |
| } |
| case 32: |
| /* FPSR */ |
| vfp_set_fpsr(env, ldl_p(buf)); |
| return 4; |
| case 33: |
| /* FPCR */ |
| vfp_set_fpcr(env, ldl_p(buf)); |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| assert(ri->fieldoffset); |
| if (cpreg_field_is_64bit(ri)) { |
| return CPREG_FIELD64(env, ri); |
| } else { |
| return CPREG_FIELD32(env, ri); |
| } |
| } |
| |
| static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| assert(ri->fieldoffset); |
| if (cpreg_field_is_64bit(ri)) { |
| CPREG_FIELD64(env, ri) = value; |
| } else { |
| CPREG_FIELD32(env, ri) = value; |
| } |
| } |
| |
| static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return (char *)env + ri->fieldoffset; |
| } |
| |
| uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Raw read of a coprocessor register (as needed for migration, etc). */ |
| if (ri->type & ARM_CP_CONST) { |
| return ri->resetvalue; |
| } else if (ri->raw_readfn) { |
| return ri->raw_readfn(env, ri); |
| } else if (ri->readfn) { |
| return ri->readfn(env, ri); |
| } else { |
| return raw_read(env, ri); |
| } |
| } |
| |
| static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t v) |
| { |
| /* Raw write of a coprocessor register (as needed for migration, etc). |
| * Note that constant registers are treated as write-ignored; the |
| * caller should check for success by whether a readback gives the |
| * value written. |
| */ |
| if (ri->type & ARM_CP_CONST) { |
| return; |
| } else if (ri->raw_writefn) { |
| ri->raw_writefn(env, ri, v); |
| } else if (ri->writefn) { |
| ri->writefn(env, ri, v); |
| } else { |
| raw_write(env, ri, v); |
| } |
| } |
| |
| static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| const ARMCPRegInfo *ri; |
| uint32_t key; |
| |
| key = cpu->dyn_xml.cpregs_keys[reg]; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, key); |
| if (ri) { |
| if (cpreg_field_is_64bit(ri)) { |
| return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); |
| } else { |
| return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); |
| } |
| } |
| return 0; |
| } |
| |
| static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| return 0; |
| } |
| |
| static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
| { |
| /* Return true if the regdef would cause an assertion if you called |
| * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a |
| * program bug for it not to have the NO_RAW flag). |
| * NB that returning false here doesn't necessarily mean that calling |
| * read/write_raw_cp_reg() is safe, because we can't distinguish "has |
| * read/write access functions which are safe for raw use" from "has |
| * read/write access functions which have side effects but has forgotten |
| * to provide raw access functions". |
| * The tests here line up with the conditions in read/write_raw_cp_reg() |
| * and assertions in raw_read()/raw_write(). |
| */ |
| if ((ri->type & ARM_CP_CONST) || |
| ri->fieldoffset || |
| ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) |
| { |
| /* Write the coprocessor state from cpu->env to the (index,value) list. */ |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| const ARMCPRegInfo *ri; |
| uint64_t newval; |
| |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| if (!ri) { |
| ok = false; |
| continue; |
| } |
| if (ri->type & ARM_CP_NO_RAW) { |
| continue; |
| } |
| |
| newval = read_raw_cp_reg(&cpu->env, ri); |
| if (kvm_sync) { |
| /* |
| * Only sync if the previous list->cpustate sync succeeded. |
| * Rather than tracking the success/failure state for every |
| * item in the list, we just recheck "does the raw write we must |
| * have made in write_list_to_cpustate() read back OK" here. |
| */ |
| uint64_t oldval = cpu->cpreg_values[i]; |
| |
| if (oldval == newval) { |
| continue; |
| } |
| |
| write_raw_cp_reg(&cpu->env, ri, oldval); |
| if (read_raw_cp_reg(&cpu->env, ri) != oldval) { |
| continue; |
| } |
| |
| write_raw_cp_reg(&cpu->env, ri, newval); |
| } |
| cpu->cpreg_values[i] = newval; |
| } |
| return ok; |
| } |
| |
| bool write_list_to_cpustate(ARMCPU *cpu) |
| { |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| uint64_t v = cpu->cpreg_values[i]; |
| const ARMCPRegInfo *ri; |
| |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| if (!ri) { |
| ok = false; |
| continue; |
| } |
| if (ri->type & ARM_CP_NO_RAW) { |
| continue; |
| } |
| /* Write value and confirm it reads back as written |
| * (to catch read-only registers and partially read-only |
| * registers where the incoming migration value doesn't match) |
| */ |
| write_raw_cp_reg(&cpu->env, ri, v); |
| if (read_raw_cp_reg(&cpu->env, ri) != v) { |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| static void add_cpreg_to_list(gpointer key, gpointer opaque) |
| { |
| ARMCPU *cpu = opaque; |
| uint64_t regidx; |
| const ARMCPRegInfo *ri; |
| |
| regidx = *(uint32_t *)key; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| |
| if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
| cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
| /* The value array need not be initialized at this point */ |
| cpu->cpreg_array_len++; |
| } |
| } |
| |
| static void count_cpreg(gpointer key, gpointer opaque) |
| { |
| ARMCPU *cpu = opaque; |
| uint64_t regidx; |
| const ARMCPRegInfo *ri; |
| |
| regidx = *(uint32_t *)key; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| |
| if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
| cpu->cpreg_array_len++; |
| } |
| } |
| |
| static gint cpreg_key_compare(gconstpointer a, gconstpointer b) |
| { |
| uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
| uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); |
| |
| if (aidx > bidx) { |
| return 1; |
| } |
| if (aidx < bidx) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| void init_cpreg_list(ARMCPU *cpu) |
| { |
| /* Initialise the cpreg_tuples[] array based on the cp_regs hash. |
| * Note that we require cpreg_tuples[] to be sorted by key ID. |
| */ |
| GList *keys; |
| int arraylen; |
| |
| keys = g_hash_table_get_keys(cpu->cp_regs); |
| keys = g_list_sort(keys, cpreg_key_compare); |
| |
| cpu->cpreg_array_len = 0; |
| |
| g_list_foreach(keys, count_cpreg, cpu); |
| |
| arraylen = cpu->cpreg_array_len; |
| cpu->cpreg_indexes = g_new(uint64_t, arraylen); |
| cpu->cpreg_values = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; |
| cpu->cpreg_array_len = 0; |
| |
| g_list_foreach(keys, add_cpreg_to_list, cpu); |
| |
| assert(cpu->cpreg_array_len == arraylen); |
| |
| g_list_free(keys); |
| } |
| |
| /* |
| * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but |
| * they are accessible when EL3 is using AArch64 regardless of EL3.NS. |
| * |
| * access_el3_aa32ns: Used to check AArch32 register views. |
| * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. |
| */ |
| static CPAccessResult access_el3_aa32ns(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| bool secure = arm_is_secure_below_el3(env); |
| |
| assert(!arm_el_is_aa64(env, 3)); |
| if (secure) { |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (!arm_el_is_aa64(env, 3)) { |
| return access_el3_aa32ns(env, ri, isread); |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Some secure-only AArch32 registers trap to EL3 if used from |
| * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). |
| * Note that an access from Secure EL1 can only happen if EL3 is AArch64. |
| * We assume that the .access field is set to PL1_RW. |
| */ |
| static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 3) { |
| return CP_ACCESS_OK; |
| } |
| if (arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| /* This will be EL1 NS and EL2 NS, which just UNDEF */ |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| |
| /* Check for traps to "powerdown debug" registers, which are controlled |
| * by MDCR.TDOSA |
| */ |
| static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || |
| (env->cp15.mdcr_el2 & MDCR_TDE) || |
| (arm_hcr_el2_eff(env) & HCR_TGE); |
| |
| if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Check for traps to "debug ROM" registers, which are controlled |
| * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. |
| */ |
| static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || |
| (env->cp15.mdcr_el2 & MDCR_TDE) || |
| (arm_hcr_el2_eff(env) & HCR_TGE); |
| |
| if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Check for traps to general debug registers, which are controlled |
| * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. |
| */ |
| static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || |
| (env->cp15.mdcr_el2 & MDCR_TDE) || |
| (arm_hcr_el2_eff(env) & HCR_TGE); |
| |
| if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Check for traps to performance monitor registers, which are controlled |
| * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. |
| */ |
| static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
| && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| raw_write(env, ri, value); |
| tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ |
| } |
| |
| static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (raw_read(env, ri) != value) { |
| /* Unlike real hardware the qemu TLB uses virtual addresses, |
| * not modified virtual addresses, so this causes a TLB flush. |
| */ |
| tlb_flush(CPU(cpu)); |
| raw_write(env, ri, value); |
| } |
| } |
| |
| static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) |
| && !extended_addresses_enabled(env)) { |
| /* For VMSA (when not using the LPAE long descriptor page table |
| * format) this register includes the ASID, so do a TLB flush. |
| * For PMSA it is purely a process ID and no action is needed. |
| */ |
| tlb_flush(CPU(cpu)); |
| } |
| raw_write(env, ri, value); |
| } |
| |
| /* IS variants of TLB operations must affect all cores */ |
| static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_all_cpus_synced(cs); |
| } |
| |
| static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_all_cpus_synced(cs); |
| } |
| |
| static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
| } |
| |
| static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); |
| } |
| |
| /* |
| * Non-IS variants of TLB operations are upgraded to |
| * IS versions if we are at NS EL1 and HCR_EL2.FB is set to |
| * force broadcast of these operations. |
| */ |
| static bool tlb_force_broadcast(CPUARMState *env) |
| { |
| return (env->cp15.hcr_el2 & HCR_FB) && |
| arm_current_el(env) == 1 && arm_is_secure_below_el3(env); |
| } |
| |
| static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate all (TLBIALL) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (tlb_force_broadcast(env)) { |
| tlbiall_is_write(env, NULL, value); |
| return; |
| } |
| |
| tlb_flush(CPU(cpu)); |
| } |
| |
| static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (tlb_force_broadcast(env)) { |
| tlbimva_is_write(env, NULL, value); |
| return; |
| } |
| |
| tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); |
| } |
| |
| static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by ASID (TLBIASID) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (tlb_force_broadcast(env)) { |
| tlbiasid_is_write(env, NULL, value); |
| return; |
| } |
| |
| tlb_flush(CPU(cpu)); |
| } |
| |
| static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (tlb_force_broadcast(env)) { |
| tlbimvaa_is_write(env, NULL, value); |
| return; |
| } |
| |
| tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); |
| } |
| |
| static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0 | |
| ARMMMUIdxBit_S2NS); |
| } |
| |
| static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0 | |
| ARMMMUIdxBit_S2NS); |
| } |
| |
| static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by IPA. This has to invalidate any structures that |
| * contain only stage 2 translation information, but does not need |
| * to apply to structures that contain combined stage 1 and stage 2 |
| * translation information. |
| * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. |
| */ |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 40); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
| } |
| |
| static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 40); |
| |
| tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| ARMMMUIdxBit_S2NS); |
| } |
| |
| static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
| } |
| |
| static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
| } |
| |
| static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
| } |
| |
| static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
| |
| tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| ARMMMUIdxBit_S1E2); |
| } |
| |
| static const ARMCPRegInfo cp_reginfo[] = { |
| /* Define the secure and non-secure FCSE identifier CP registers |
| * separately because there is no secure bank in V8 (no _EL3). This allows |
| * the secure register to be properly reset and migrated. There is also no |
| * v8 EL1 version of the register so the non-secure instance stands alone. |
| */ |
| { .name = "FCSEIDR", |
| .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
| .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), |
| .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| { .name = "FCSEIDR_S", |
| .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, |
| .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), |
| .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| /* Define the secure and non-secure context identifier CP registers |
| * separately because there is no secure bank in V8 (no _EL3). This allows |
| * the secure register to be properly reset and migrated. In the |
| * non-secure case, the 32-bit register will have reset and migration |
| * disabled during registration as it is handled by the 64-bit instance. |
| */ |
| { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
| .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), |
| .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, |
| .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), |
| .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v8_cp_reginfo[] = { |
| /* NB: Some of these registers exist in v8 but with more precise |
| * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). |
| */ |
| /* MMU Domain access control / MPU write buffer control */ |
| { .name = "DACR", |
| .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .resetvalue = 0, |
| .writefn = dacr_write, .raw_writefn = raw_write, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), |
| offsetoflow32(CPUARMState, cp15.dacr_ns) } }, |
| /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
| * For v6 and v5, these mappings are overly broad. |
| */ |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| /* Cache maintenance ops; some of this space may be overridden later. */ |
| { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
| /* Not all pre-v6 cores implemented this WFI, so this is slightly |
| * over-broad. |
| */ |
| { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v7_cp_reginfo[] = { |
| /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which |
| * is UNPREDICTABLE; we choose to NOP as most implementations do). |
| */ |
| { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
| * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and |
| * OMAPCP will override this space. |
| */ |
| { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), |
| .resetvalue = 0 }, |
| { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), |
| .resetvalue = 0 }, |
| /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
| { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = 0 }, |
| /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
| * implementing it as RAZ means the "debug architecture version" bits |
| * will read as a reserved value, which should cause Linux to not try |
| * to use the debug hardware. |
| */ |
| { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* MMU TLB control. Note that the wildcarding means we cover not just |
| * the unified TLB ops but also the dside/iside/inner-shareable variants. |
| */ |
| { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
| .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, |
| .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint32_t mask = 0; |
| |
| /* In ARMv8 most bits of CPACR_EL1 are RES0. */ |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. |
| * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. |
| * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. |
| */ |
| if (arm_feature(env, ARM_FEATURE_VFP)) { |
| /* VFP coprocessor: cp10 & cp11 [23:20] */ |
| mask |= (1 << 31) | (1 << 30) | (0xf << 20); |
| |
| if (!arm_feature(env, ARM_FEATURE_NEON)) { |
| /* ASEDIS [31] bit is RAO/WI */ |
| value |= (1 << 31); |
| } |
| |
| /* VFPv3 and upwards with NEON implement 32 double precision |
| * registers (D0-D31). |
| */ |
| if (!arm_feature(env, ARM_FEATURE_NEON) || |
| !arm_feature(env, ARM_FEATURE_VFP3)) { |
| /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ |
| value |= (1 << 30); |
| } |
| } |
| value &= mask; |
| } |
| env->cp15.cpacr_el1 = value; |
| } |
| |
| static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Call cpacr_write() so that we reset with the correct RAO bits set |
| * for our CPU features. |
| */ |
| cpacr_write(env, ri, 0); |
| } |
| |
| static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* Check if CPACR accesses are to be trapped to EL2 */ |
| if (arm_current_el(env) == 1 && |
| (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| /* Check if CPACR accesses are to be trapped to EL3 */ |
| } else if (arm_current_el(env) < 3 && |
| (env->cp15.cptr_el[3] & CPTR_TCPAC)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Check if CPTR accesses are set to trap to EL3 */ |
| if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| static const ARMCPRegInfo v6_cp_reginfo[] = { |
| /* prefetch by MVA in v6, NOP in v7 */ |
| { .name = "MVA_prefetch", |
| .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* We need to break the TB after ISB to execute self-modifying code |
| * correctly and also to take any pending interrupts immediately. |
| * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. |
| */ |
| { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
| { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
| offsetof(CPUARMState, cp15.ifar_ns) }, |
| .resetvalue = 0, }, |
| /* Watchpoint Fault Address Register : should actually only be present |
| * for 1136, 1176, 11MPCore. |
| */ |
| { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, |
| { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
| .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
| .resetfn = cpacr_reset, .writefn = cpacr_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| /* Definitions for the PMU registers */ |
| #define PMCRN_MASK 0xf800 |
| #define PMCRN_SHIFT 11 |
| #define PMCRLC 0x40 |
| #define PMCRDP 0x10 |
| #define PMCRD 0x8 |
| #define PMCRC 0x4 |
| #define PMCRP 0x2 |
| #define PMCRE 0x1 |
| |
| #define PMXEVTYPER_P 0x80000000 |
| #define PMXEVTYPER_U 0x40000000 |
| #define PMXEVTYPER_NSK 0x20000000 |
| #define PMXEVTYPER_NSU 0x10000000 |
| #define PMXEVTYPER_NSH 0x08000000 |
| #define PMXEVTYPER_M 0x04000000 |
| #define PMXEVTYPER_MT 0x02000000 |
| #define PMXEVTYPER_EVTCOUNT 0x0000ffff |
| #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ |
| PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ |
| PMXEVTYPER_M | PMXEVTYPER_MT | \ |
| PMXEVTYPER_EVTCOUNT) |
| |
| #define PMCCFILTR 0xf8000000 |
| #define PMCCFILTR_M PMXEVTYPER_M |
| #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) |
| |
| static inline uint32_t pmu_num_counters(CPUARMState *env) |
| { |
| return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; |
| } |
| |
| /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ |
| static inline uint64_t pmu_counter_mask(CPUARMState *env) |
| { |
| return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); |
| } |
| |
| typedef struct pm_event { |
| uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ |
| /* If the event is supported on this CPU (used to generate PMCEID[01]) */ |
| bool (*supported)(CPUARMState *); |
| /* |
| * Retrieve the current count of the underlying event. The programmed |
| * counters hold a difference from the return value from this function |
| */ |
| uint64_t (*get_count)(CPUARMState *); |
| /* |
| * Return how many nanoseconds it will take (at a minimum) for count events |
| * to occur. A negative value indicates the counter will never overflow, or |
| * that the counter has otherwise arranged for the overflow bit to be set |
| * and the PMU interrupt to be raised on overflow. |
| */ |
| int64_t (*ns_per_count)(uint64_t); |
| } pm_event; |
| |
| static bool event_always_supported(CPUARMState *env) |
| { |
| return true; |
| } |
| |
| static uint64_t swinc_get_count(CPUARMState *env) |
| { |
| /* |
| * SW_INCR events are written directly to the pmevcntr's by writes to |
| * PMSWINC, so there is no underlying count maintained by the PMU itself |
| */ |
| return 0; |
| } |
| |
| static int64_t swinc_ns_per(uint64_t ignored) |
| { |
| return -1; |
| } |
| |
| /* |
| * Return the underlying cycle count for the PMU cycle counters. If we're in |
| * usermode, simply return 0. |
| */ |
| static uint64_t cycles_get_count(CPUARMState *env) |
| { |
| #ifndef CONFIG_USER_ONLY |
| return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); |
| #else |
| return cpu_get_host_ticks(); |
| #endif |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static int64_t cycles_ns_per(uint64_t cycles) |
| { |
| return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; |
| } |
| |
| static bool instructions_supported(CPUARMState *env) |
| { |
| return use_icount == 1 /* Precise instruction counting */; |
| } |
| |
| static uint64_t instructions_get_count(CPUARMState *env) |
| { |
| return (uint64_t)cpu_get_icount_raw(); |
| } |
| |
| static int64_t instructions_ns_per(uint64_t icount) |
| { |
| return cpu_icount_to_ns((int64_t)icount); |
| } |
| #endif |
| |
| static const pm_event pm_events[] = { |
| { .number = 0x000, /* SW_INCR */ |
| .supported = event_always_supported, |
| .get_count = swinc_get_count, |
| .ns_per_count = swinc_ns_per, |
| }, |
| #ifndef CONFIG_USER_ONLY |
| { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ |
| .supported = instructions_supported, |
| .get_count = instructions_get_count, |
| .ns_per_count = instructions_ns_per, |
| }, |
| { .number = 0x011, /* CPU_CYCLES, Cycle */ |
| .supported = event_always_supported, |
| .get_count = cycles_get_count, |
| .ns_per_count = cycles_ns_per, |
| } |
| #endif |
| }; |
| |
| /* |
| * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of |
| * events (i.e. the statistical profiling extension), this implementation |
| * should first be updated to something sparse instead of the current |
| * supported_event_map[] array. |
| */ |
| #define MAX_EVENT_ID 0x11 |
| #define UNSUPPORTED_EVENT UINT16_MAX |
| static uint16_t supported_event_map[MAX_EVENT_ID + 1]; |
| |
| /* |
| * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map |
| * of ARM event numbers to indices in our pm_events array. |
| * |
| * Note: Events in the 0x40XX range are not currently supported. |
| */ |
| void pmu_init(ARMCPU *cpu) |
| { |
| unsigned int i; |
| |
| /* |
| * Empty supported_event_map and cpu->pmceid[01] before adding supported |
| * events to them |
| */ |
| for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { |
| supported_event_map[i] = UNSUPPORTED_EVENT; |
| } |
| cpu->pmceid0 = 0; |
| cpu->pmceid1 = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(pm_events); i++) { |
| const pm_event *cnt = &pm_events[i]; |
| assert(cnt->number <= MAX_EVENT_ID); |
| /* We do not currently support events in the 0x40xx range */ |
| assert(cnt->number <= 0x3f); |
| |
| if (cnt->supported(&cpu->env)) { |
| supported_event_map[cnt->number] = i; |
| uint64_t event_mask = 1ULL << (cnt->number & 0x1f); |
| if (cnt->number & 0x20) { |
| cpu->pmceid1 |= event_mask; |
| } else { |
| cpu->pmceid0 |= event_mask; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Check at runtime whether a PMU event is supported for the current machine |
| */ |
| static bool event_supported(uint16_t number) |
| { |
| if (number > MAX_EVENT_ID) { |
| return false; |
| } |
| return supported_event_map[number] != UNSUPPORTED_EVENT; |
| } |
| |
| static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Performance monitor registers user accessibility is controlled |
| * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
| * trapping to EL2 or EL3 for other accesses. |
| */ |
| int el = arm_current_el(env); |
| |
| if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
| && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* ER: event counter read trap control */ |
| if (arm_feature(env, ARM_FEATURE_V8) |
| && arm_current_el(env) == 0 |
| && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 |
| && isread) { |
| return CP_ACCESS_OK; |
| } |
| |
| return pmreg_access(env, ri, isread); |
| } |
| |
| static CPAccessResult pmreg_access_swinc(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* SW: software increment write trap control */ |
| if (arm_feature(env, ARM_FEATURE_V8) |
| && arm_current_el(env) == 0 |
| && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 |
| && !isread) { |
| return CP_ACCESS_OK; |
| } |
| |
| return pmreg_access(env, ri, isread); |
| } |
| |
| static CPAccessResult pmreg_access_selr(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* ER: event counter read trap control */ |
| if (arm_feature(env, ARM_FEATURE_V8) |
| && arm_current_el(env) == 0 |
| && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { |
| return CP_ACCESS_OK; |
| } |
| |
| return pmreg_access(env, ri, isread); |
| } |
| |
| static CPAccessResult pmreg_access_ccntr(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* CR: cycle counter read trap control */ |
| if (arm_feature(env, ARM_FEATURE_V8) |
| && arm_current_el(env) == 0 |
| && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 |
| && isread) { |
| return CP_ACCESS_OK; |
| } |
| |
| return pmreg_access(env, ri, isread); |
| } |
| |
| /* Returns true if the counter (pass 31 for PMCCNTR) should count events using |
| * the current EL, security state, and register configuration. |
| */ |
| static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) |
| { |
| uint64_t filter; |
| bool e, p, u, nsk, nsu, nsh, m; |
| bool enabled, prohibited, filtered; |
| bool secure = arm_is_secure(env); |
| int el = arm_current_el(env); |
| uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; |
| |
| if (!arm_feature(env, ARM_FEATURE_PMU)) { |
| return false; |
| } |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || |
| (counter < hpmn || counter == 31)) { |
| e = env->cp15.c9_pmcr & PMCRE; |
| } else { |
| e = env->cp15.mdcr_el2 & MDCR_HPME; |
| } |
| enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); |
| |
| if (!secure) { |
| if (el == 2 && (counter < hpmn || counter == 31)) { |
| prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; |
| } else { |
| prohibited = false; |
| } |
| } else { |
| prohibited = arm_feature(env, ARM_FEATURE_EL3) && |
| (env->cp15.mdcr_el3 & MDCR_SPME); |
| } |
| |
| if (prohibited && counter == 31) { |
| prohibited = env->cp15.c9_pmcr & PMCRDP; |
| } |
| |
| if (counter == 31) { |
| filter = env->cp15.pmccfiltr_el0; |
| } else { |
| filter = env->cp15.c14_pmevtyper[counter]; |
| } |
| |
| p = filter & PMXEVTYPER_P; |
| u = filter & PMXEVTYPER_U; |
| nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); |
| nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); |
| nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); |
| m = arm_el_is_aa64(env, 1) && |
| arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); |
| |
| if (el == 0) { |
| filtered = secure ? u : u != nsu; |
| } else if (el == 1) { |
| filtered = secure ? p : p != nsk; |
| } else if (el == 2) { |
| filtered = !nsh; |
| } else { /* EL3 */ |
| filtered = m != p; |
| } |
| |
| if (counter != 31) { |
| /* |
| * If not checking PMCCNTR, ensure the counter is setup to an event we |
| * support |
| */ |
| uint16_t event = filter & PMXEVTYPER_EVTCOUNT; |
| if (!event_supported(event)) { |
| return false; |
| } |
| } |
| |
| return enabled && !prohibited && !filtered; |
| } |
| |
| static void pmu_update_irq(CPUARMState *env) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && |
| (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); |
| } |
| |
| /* |
| * Ensure c15_ccnt is the guest-visible count so that operations such as |
| * enabling/disabling the counter or filtering, modifying the count itself, |
| * etc. can be done logically. This is essentially a no-op if the counter is |
| * not enabled at the time of the call. |
| */ |
| static void pmccntr_op_start(CPUARMState *env) |
| { |
| uint64_t cycles = cycles_get_count(env); |
| |
| if (pmu_counter_enabled(env, 31)) { |
| uint64_t eff_cycles = cycles; |
| if (env->cp15.c9_pmcr & PMCRD) { |
| /* Increment once every 64 processor clock cycles */ |
| eff_cycles /= 64; |
| } |
| |
| uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; |
| |
| uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ |
| 1ull << 63 : 1ull << 31; |
| if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { |
| env->cp15.c9_pmovsr |= (1 << 31); |
| pmu_update_irq(env); |
| } |
| |
| env->cp15.c15_ccnt = new_pmccntr; |
| } |
| env->cp15.c15_ccnt_delta = cycles; |
| } |
| |
| /* |
| * If PMCCNTR is enabled, recalculate the delta between the clock and the |
| * guest-visible count. A call to pmccntr_op_finish should follow every call to |
| * pmccntr_op_start. |
| */ |
| static void pmccntr_op_finish(CPUARMState *env) |
| { |
| if (pmu_counter_enabled(env, 31)) { |
| #ifndef CONFIG_USER_ONLY |
| /* Calculate when the counter will next overflow */ |
| uint64_t remaining_cycles = -env->cp15.c15_ccnt; |
| if (!(env->cp15.c9_pmcr & PMCRLC)) { |
| remaining_cycles = (uint32_t)remaining_cycles; |
| } |
| int64_t overflow_in = cycles_ns_per(remaining_cycles); |
| |
| if (overflow_in > 0) { |
| int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| overflow_in; |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
| } |
| #endif |
| |
| uint64_t prev_cycles = env->cp15.c15_ccnt_delta; |
| if (env->cp15.c9_pmcr & PMCRD) { |
| /* Increment once every 64 processor clock cycles */ |
| prev_cycles /= 64; |
| } |
| env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; |
| } |
| } |
| |
| static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) |
| { |
| |
| uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; |
| uint64_t count = 0; |
| if (event_supported(event)) { |
| uint16_t event_idx = supported_event_map[event]; |
| count = pm_events[event_idx].get_count(env); |
| } |
| |
| if (pmu_counter_enabled(env, counter)) { |
| uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; |
| |
| if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { |
| env->cp15.c9_pmovsr |= (1 << counter); |
| pmu_update_irq(env); |
| } |
| env->cp15.c14_pmevcntr[counter] = new_pmevcntr; |
| } |
| env->cp15.c14_pmevcntr_delta[counter] = count; |
| } |
| |
| static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) |
| { |
| if (pmu_counter_enabled(env, counter)) { |
| #ifndef CONFIG_USER_ONLY |
| uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; |
| uint16_t event_idx = supported_event_map[event]; |
| uint64_t delta = UINT32_MAX - |
| (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; |
| int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); |
| |
| if (overflow_in > 0) { |
| int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| overflow_in; |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
| } |
| #endif |
| |
| env->cp15.c14_pmevcntr_delta[counter] -= |
| env->cp15.c14_pmevcntr[counter]; |
| } |
| } |
| |
| void pmu_op_start(CPUARMState *env) |
| { |
| unsigned int i; |
| pmccntr_op_start(env); |
| for (i = 0; i < pmu_num_counters(env); i++) { |
| pmevcntr_op_start(env, i); |
| } |
| } |
| |
| void pmu_op_finish(CPUARMState *env) |
| { |
| unsigned int i; |
| pmccntr_op_finish(env); |
| for (i = 0; i < pmu_num_counters(env); i++) { |
| pmevcntr_op_finish(env, i); |
| } |
| } |
| |
| void pmu_pre_el_change(ARMCPU *cpu, void *ignored) |
| { |
| pmu_op_start(&cpu->env); |
| } |
| |
| void pmu_post_el_change(ARMCPU *cpu, void *ignored) |
| { |
| pmu_op_finish(&cpu->env); |
| } |
| |
| void arm_pmu_timer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| /* |
| * Update all the counter values based on the current underlying counts, |
| * triggering interrupts to be raised, if necessary. pmu_op_finish() also |
| * has the effect of setting the cpu->pmu_timer to the next earliest time a |
| * counter may expire. |
| */ |
| pmu_op_start(&cpu->env); |
| pmu_op_finish(&cpu->env); |
| } |
| |
| static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmu_op_start(env); |
| |
| if (value & PMCRC) { |
| /* The counter has been reset */ |
| env->cp15.c15_ccnt = 0; |
| } |
| |
| if (value & PMCRP) { |
| unsigned int i; |
| for (i = 0; i < pmu_num_counters(env); i++) { |
| env->cp15.c14_pmevcntr[i] = 0; |
| } |
| } |
| |
| /* only the DP, X, D and E bits are writable */ |
| env->cp15.c9_pmcr &= ~0x39; |
| env->cp15.c9_pmcr |= (value & 0x39); |
| |
| pmu_op_finish(env); |
| } |
| |
| static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| unsigned int i; |
| for (i = 0; i < pmu_num_counters(env); i++) { |
| /* Increment a counter's count iff: */ |
| if ((value & (1 << i)) && /* counter's bit is set */ |
| /* counter is enabled and not filtered */ |
| pmu_counter_enabled(env, i) && |
| /* counter is SW_INCR */ |
| (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { |
| pmevcntr_op_start(env, i); |
| |
| /* |
| * Detect if this write causes an overflow since we can't predict |
| * PMSWINC overflows like we can for other events |
| */ |
| uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; |
| |
| if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { |
| env->cp15.c9_pmovsr |= (1 << i); |
| pmu_update_irq(env); |
| } |
| |
| env->cp15.c14_pmevcntr[i] = new_pmswinc; |
| |
| pmevcntr_op_finish(env, i); |
| } |
| } |
| } |
| |
| static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| uint64_t ret; |
| pmccntr_op_start(env); |
| ret = env->cp15.c15_ccnt; |
| pmccntr_op_finish(env); |
| return ret; |
| } |
| |
| static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and |
| * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the |
| * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are |
| * accessed. |
| */ |
| env->cp15.c9_pmselr = value & 0x1f; |
| } |
| |
| static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmccntr_op_start(env); |
| env->cp15.c15_ccnt = value; |
| pmccntr_op_finish(env); |
| } |
| |
| static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint64_t cur_val = pmccntr_read(env, NULL); |
| |
| pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); |
| } |
| |
| static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmccntr_op_start(env); |
| env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; |
| pmccntr_op_finish(env); |
| } |
| |
| static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmccntr_op_start(env); |
| /* M is not accessible from AArch32 */ |
| env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | |
| (value & PMCCFILTR); |
| pmccntr_op_finish(env); |
| } |
| |
| static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* M is not visible in AArch32 */ |
| return env->cp15.pmccfiltr_el0 & PMCCFILTR; |
| } |
| |
| static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= pmu_counter_mask(env); |
| env->cp15.c9_pmcnten |= value; |
| } |
| |
| static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= pmu_counter_mask(env); |
| env->cp15.c9_pmcnten &= ~value; |
| } |
| |
| static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= pmu_counter_mask(env); |
| env->cp15.c9_pmovsr &= ~value; |
| pmu_update_irq(env); |
| } |
| |
| static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= pmu_counter_mask(env); |
| env->cp15.c9_pmovsr |= value; |
| pmu_update_irq(env); |
| } |
| |
| static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value, const uint8_t counter) |
| { |
| if (counter == 31) { |
| pmccfiltr_write(env, ri, value); |
| } else if (counter < pmu_num_counters(env)) { |
| pmevcntr_op_start(env, counter); |
| |
| /* |
| * If this counter's event type is changing, store the current |
| * underlying count for the new type in c14_pmevcntr_delta[counter] so |
| * pmevcntr_op_finish has the correct baseline when it converts back to |
| * a delta. |
| */ |
| uint16_t old_event = env->cp15.c14_pmevtyper[counter] & |
| PMXEVTYPER_EVTCOUNT; |
| uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; |
| if (old_event != new_event) { |
| uint64_t count = 0; |
| if (event_supported(new_event)) { |
| uint16_t event_idx = supported_event_map[new_event]; |
| count = pm_events[event_idx].get_count(env); |
| } |
| env->cp15.c14_pmevcntr_delta[counter] = count; |
| } |
| |
| env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; |
| pmevcntr_op_finish(env, counter); |
| } |
| /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when |
| * PMSELR value is equal to or greater than the number of implemented |
| * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. |
| */ |
| } |
| |
| static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| const uint8_t counter) |
| { |
| if (counter == 31) { |
| return env->cp15.pmccfiltr_el0; |
| } else if (counter < pmu_num_counters(env)) { |
| return env->cp15.c14_pmevtyper[counter]; |
| } else { |
| /* |
| * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER |
| * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). |
| */ |
| return 0; |
| } |
| } |
| |
| static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| pmevtyper_write(env, ri, value, counter); |
| } |
| |
| static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| env->cp15.c14_pmevtyper[counter] = value; |
| |
| /* |
| * pmevtyper_rawwrite is called between a pair of pmu_op_start and |
| * pmu_op_finish calls when loading saved state for a migration. Because |
| * we're potentially updating the type of event here, the value written to |
| * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a |
| * different counter type. Therefore, we need to set this value to the |
| * current count for the counter type we're writing so that pmu_op_finish |
| * has the correct count for its calculation. |
| */ |
| uint16_t event = value & PMXEVTYPER_EVTCOUNT; |
| if (event_supported(event)) { |
| uint16_t event_idx = supported_event_map[event]; |
| env->cp15.c14_pmevcntr_delta[counter] = |
| pm_events[event_idx].get_count(env); |
| } |
| } |
| |
| static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| return pmevtyper_read(env, ri, counter); |
| } |
| |
| static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); |
| } |
| |
| static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); |
| } |
| |
| static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value, uint8_t counter) |
| { |
| if (counter < pmu_num_counters(env)) { |
| pmevcntr_op_start(env, counter); |
| env->cp15.c14_pmevcntr[counter] = value; |
| pmevcntr_op_finish(env, counter); |
| } |
| /* |
| * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR |
| * are CONSTRAINED UNPREDICTABLE. |
| */ |
| } |
| |
| static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint8_t counter) |
| { |
| if (counter < pmu_num_counters(env)) { |
| uint64_t ret; |
| pmevcntr_op_start(env, counter); |
| ret = env->cp15.c14_pmevcntr[counter]; |
| pmevcntr_op_finish(env, counter); |
| return ret; |
| } else { |
| /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR |
| * are CONSTRAINED UNPREDICTABLE. */ |
| return 0; |
| } |
| } |
| |
| static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| pmevcntr_write(env, ri, value, counter); |
| } |
| |
| static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| return pmevcntr_read(env, ri, counter); |
| } |
| |
| static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| assert(counter < pmu_num_counters(env)); |
| env->cp15.c14_pmevcntr[counter] = value; |
| pmevcntr_write(env, ri, value, counter); |
| } |
| |
| static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); |
| assert(counter < pmu_num_counters(env)); |
| return env->cp15.c14_pmevcntr[counter]; |
| } |
| |
| static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); |
| } |
| |
| static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); |
| } |
| |
| static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| env->cp15.c9_pmuserenr = value & 0xf; |
| } else { |
| env->cp15.c9_pmuserenr = value & 1; |
| } |
| } |
| |
| static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* We have no event counters so only the C bit can be changed */ |
| value &= pmu_counter_mask(env); |
| env->cp15.c9_pminten |= value; |
| pmu_update_irq(env); |
| } |
| |
| static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= pmu_counter_mask(env); |
| env->cp15.c9_pminten &= ~value; |
| pmu_update_irq(env); |
| } |
| |
| static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Note that even though the AArch64 view of this register has bits |
| * [10:0] all RES0 we can only mask the bottom 5, to comply with the |
| * architectural requirements for bits which are RES0 only in some |
| * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 |
| * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) |
| */ |
| raw_write(env, ri, value & ~0x1FULL); |
| } |
| |
| static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| /* Begin with base v8.0 state. */ |
| uint32_t valid_mask = 0x3fff; |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (arm_el_is_aa64(env, 3)) { |
| value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ |
| valid_mask &= ~SCR_NET; |
| } else { |
| valid_mask &= ~(SCR_RW | SCR_ST); |
| } |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2)) { |
| valid_mask &= ~SCR_HCE; |
| |
| /* On ARMv7, SMD (or SCD as it is called in v7) is only |
| * supported if EL2 exists. The bit is UNK/SBZP when |
| * EL2 is unavailable. In QEMU ARMv7, we force it to always zero |
| * when EL2 is unavailable. |
| * On ARMv8, this bit is always available. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V7) && |
| !arm_feature(env, ARM_FEATURE_V8)) { |
| valid_mask &= ~SCR_SMD; |
| } |
| } |
| if (cpu_isar_feature(aa64_lor, cpu)) { |
| valid_mask |= SCR_TLOR; |
| } |
| if (cpu_isar_feature(aa64_pauth, cpu)) { |
| valid_mask |= SCR_API | SCR_APK; |
| } |
| |
| /* Clear all-context RES0 bits. */ |
| value &= valid_mask; |
| raw_write(env, ri, value); |
| } |
| |
| static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| /* Acquire the CSSELR index from the bank corresponding to the CCSIDR |
| * bank |
| */ |
| uint32_t index = A32_BANKED_REG_GET(env, csselr, |
| ri->secure & ARM_CP_SECSTATE_S); |
| |
| return cpu->ccsidr[index]; |
| } |
| |
| static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| raw_write(env, ri, value & 0xf); |
| } |
| |
| static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
| uint64_t ret = 0; |
| |
| if (hcr_el2 & HCR_IMO) { |
| if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { |
| ret |= CPSR_I; |
| } |
| } else { |
| if (cs->interrupt_request & CPU_INTERRUPT_HARD) { |
| ret |= CPSR_I; |
| } |
| } |
| |
| if (hcr_el2 & HCR_FMO) { |
| if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { |
| ret |= CPSR_F; |
| } |
| } else { |
| if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { |
| ret |= CPSR_F; |
| } |
| } |
| |
| /* External aborts are not possible in QEMU so A bit is always clear */ |
| return ret; |
| } |
| |
| static const ARMCPRegInfo v7_cp_reginfo[] = { |
| /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
| { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* Performance monitors are implementation defined in v7, |
| * but with an ARM recommended set of registers, which we |
| * follow. |
| * |
| * Performance registers fall into three categories: |
| * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) |
| * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) |
| * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) |
| * For the cases controlled by PMUSERENR we must set .access to PL0_RW |
| * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. |
| */ |
| { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
| .writefn = pmcntenset_write, |
| .accessfn = pmreg_access, |
| .raw_writefn = raw_write }, |
| { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, |
| .writefn = pmcntenset_write, .raw_writefn = raw_write }, |
| { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
| .accessfn = pmreg_access, |
| .writefn = pmcntenclr_write, |
| .type = ARM_CP_ALIAS }, |
| { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
| .writefn = pmcntenclr_write }, |
| { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
| .access = PL0_RW, .type = ARM_CP_IO, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
| .accessfn = pmreg_access, |
| .writefn = pmovsr_write, |
| .raw_writefn = raw_write }, |
| { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| .writefn = pmovsr_write, |
| .raw_writefn = raw_write }, |
| { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .accessfn = pmreg_access_swinc, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .writefn = pmswinc_write }, |
| { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, |
| .access = PL0_W, .accessfn = pmreg_access_swinc, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .writefn = pmswinc_write }, |
| { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
| .access = PL0_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), |
| .accessfn = pmreg_access_selr, .writefn = pmselr_write, |
| .raw_writefn = raw_write}, |
| { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, |
| .access = PL0_RW, .accessfn = pmreg_access_selr, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), |
| .writefn = pmselr_write, .raw_writefn = raw_write, }, |
| { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .readfn = pmccntr_read, .writefn = pmccntr_write32, |
| .accessfn = pmreg_access_ccntr }, |
| { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, |
| .access = PL0_RW, .accessfn = pmreg_access_ccntr, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), |
| .readfn = pmccntr_read, .writefn = pmccntr_write, |
| .raw_readfn = raw_read, .raw_writefn = raw_write, }, |
| { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, |
| .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .resetvalue = 0, }, |
| { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, |
| .writefn = pmccfiltr_write, .raw_writefn = raw_write, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), |
| .resetvalue = 0, }, |
| { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = pmreg_access, |
| .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
| { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, |
| .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = pmreg_access, |
| .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, |
| { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = pmreg_access_xevcntr, |
| .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, |
| { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, |
| .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = pmreg_access_xevcntr, |
| .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, |
| { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), |
| .resetvalue = 0, |
| .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, |
| .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
| .resetvalue = 0, |
| .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_tpm, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), |
| .resetvalue = 0, |
| .writefn = pmintenset_write, .raw_writefn = raw_write }, |
| { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_tpm, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .writefn = pmintenset_write, .raw_writefn = raw_write, |
| .resetvalue = 0x0 }, |
| { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_tpm, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .writefn = pmintenclr_write, }, |
| { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_tpm, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .writefn = pmintenclr_write }, |
| { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
| .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
| { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
| .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), |
| offsetof(CPUARMState, cp15.csselr_ns) } }, |
| /* Auxiliary ID register: this actually has an IMPDEF value but for now |
| * just RAZ for all cores: |
| */ |
| { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* Auxiliary fault status registers: these also are IMPDEF, and we |
| * choose to RAZ/WI for all cores. |
| */ |
| { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* MAIR can just read-as-written because we don't implement caches |
| * and so don't need to care about memory attributes. |
| */ |
| { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
| .resetvalue = 0 }, |
| { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), |
| .resetvalue = 0 }, |
| /* For non-long-descriptor page tables these are PRRR and NMRR; |
| * regardless they still act as reads-as-written for QEMU. |
| */ |
| /* MAIR0/1 are defined separately from their 64-bit counterpart which |
| * allows them to assign the correct fieldoffset based on the endianness |
| * handled in the field definitions. |
| */ |
| { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
| offsetof(CPUARMState, cp15.mair0_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
| offsetof(CPUARMState, cp15.mair1_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
| /* 32 bit ITLB invalidates */ |
| { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| /* 32 bit DTLB invalidates */ |
| { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| /* 32 bit TLB invalidates */ |
| { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo v7mp_cp_reginfo[] = { |
| /* 32 bit TLB invalidates, Inner Shareable */ |
| { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
| { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
| { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, |
| .writefn = tlbiasid_is_write }, |
| { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, |
| .writefn = tlbimvaa_is_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo pmovsset_cp_reginfo[] = { |
| /* PMOVSSET is not implemented in v7 before v7ve */ |
| { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), |
| .writefn = pmovsset_write, |
| .raw_writefn = raw_write }, |
| { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| .writefn = pmovsset_write, |
| .raw_writefn = raw_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= 1; |
| env->teecr = value; |
| } |
| |
| static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static const ARMCPRegInfo t2ee_cp_reginfo[] = { |
| { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), |
| .resetvalue = 0, |
| .writefn = teecr_write }, |
| { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), |
| .accessfn = teehbr_access, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo v6k_cp_reginfo[] = { |
| { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, |
| .access = PL0_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
| { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
| offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, |
| .access = PL0_R|PL1_W, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
| .resetvalue = 0}, |
| { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R|PL1_W, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
| offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
| { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, |
| .access = PL1_RW, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), |
| offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
| * Writable only at the highest implemented exception level. |
| */ |
| int el = arm_current_el(env); |
| |
| switch (el) { |
| case 0: |
| if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { |
| return CP_ACCESS_TRAP; |
| } |
| break; |
| case 1: |
| if (!isread && ri->state == ARM_CP_STATE_AA32 && |
| arm_is_secure_below_el3(env)) { |
| /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| break; |
| case 2: |
| case 3: |
| break; |
| } |
| |
| if (!isread && el < arm_highest_el(env)) { |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
| bool isread) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
| if (cur_el == 0 && |
| !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && |
| timeridx == GTIMER_PHYS && !secure && cur_el < 2 && |
| !extract32(env->cp15.cnthctl_el2, 0, 1)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
| bool isread) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
| * EL0[PV]TEN is zero. |
| */ |
| if (cur_el == 0 && |
| !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && |
| timeridx == GTIMER_PHYS && !secure && cur_el < 2 && |
| !extract32(env->cp15.cnthctl_el2, 1, 1)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_pct_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_counter_access(env, GTIMER_PHYS, isread); |
| } |
| |
| static CPAccessResult gt_vct_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_counter_access(env, GTIMER_VIRT, isread); |
| } |
| |
| static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_timer_access(env, GTIMER_PHYS, isread); |
| } |
| |
| static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_timer_access(env, GTIMER_VIRT, isread); |
| } |
| |
| static CPAccessResult gt_stimer_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* The AArch64 register view of the secure physical timer is |
| * always accessible from EL3, and configurably accessible from |
| * Secure EL1. |
| */ |
| switch (arm_current_el(env)) { |
| case 1: |
| if (!arm_is_secure(env)) { |
| return CP_ACCESS_TRAP; |
| } |
| if (!(env->cp15.scr_el3 & SCR_ST)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| case 0: |
| case 2: |
| return CP_ACCESS_TRAP; |
| case 3: |
| return CP_ACCESS_OK; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static uint64_t gt_get_countervalue(CPUARMState *env) |
| { |
| return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
| } |
| |
| static void gt_recalc_timer(ARMCPU *cpu, int timeridx) |
| { |
| ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; |
| |
| if (gt->ctl & 1) { |
| /* Timer enabled: calculate and set current ISTATUS, irq, and |
| * reset timer to when ISTATUS next has to change |
| */ |
| uint64_t offset = timeridx == GTIMER_VIRT ? |
| cpu->env.cp15.cntvoff_el2 : 0; |
| uint64_t count = gt_get_countervalue(&cpu->env); |
| /* Note that this must be unsigned 64 bit arithmetic: */ |
| int istatus = count - offset >= gt->cval; |
| uint64_t nexttick; |
| int irqstate; |
| |
| gt->ctl = deposit32(gt->ctl, 2, 1, istatus); |
| |
| irqstate = (istatus && !(gt->ctl & 2)); |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); |
| |
| if (istatus) { |
| /* Next transition is when count rolls back over to zero */ |
| nexttick = UINT64_MAX; |
| } else { |
| /* Next transition is when we hit cval */ |
| nexttick = gt->cval + offset; |
| } |
| /* Note that the desired next expiry time might be beyond the |
| * signed-64-bit range of a QEMUTimer -- in this case we just |
| * set the timer for as far in the future as possible. When the |
| * timer expires we will reset the timer for any remaining period. |
| */ |
| if (nexttick > INT64_MAX / GTIMER_SCALE) { |
| nexttick = INT64_MAX / GTIMER_SCALE; |
| } |
| timer_mod(cpu->gt_timer[timeridx], nexttick); |
| trace_arm_gt_recalc(timeridx, irqstate, nexttick); |
| } else { |
| /* Timer disabled: ISTATUS and timer output always clear */ |
| gt->ctl &= ~4; |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); |
| timer_del(cpu->gt_timer[timeridx]); |
| trace_arm_gt_recalc_disabled(timeridx); |
| } |
| } |
| |
| static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| timer_del(cpu->gt_timer[timeridx]); |
| } |
| |
| static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_get_countervalue(env); |
| } |
| |
| static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_get_countervalue(env) - env->cp15.cntvoff_el2; |
| } |
| |
| static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx, |
| uint64_t value) |
| { |
| trace_arm_gt_cval_write(timeridx, value); |
| env->cp15.c14_timer[timeridx].cval = value; |
| gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| } |
| |
| static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx) |
| { |
| uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
| |
| return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
| (gt_get_countervalue(env) - offset)); |
| } |
| |
| static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx, |
| uint64_t value) |
| { |
| uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
| |
| trace_arm_gt_tval_write(timeridx, value); |
| env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
| sextract64(value, 0, 32); |
| gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| } |
| |
| static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
| |
| trace_arm_gt_ctl_write(timeridx, value); |
| env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
| if ((oldval ^ value) & 1) { |
| /* Enable toggled */ |
| gt_recalc_timer(cpu, timeridx); |
| } else if ((oldval ^ value) & 2) { |
| /* IMASK toggled: don't need to recalculate, |
| * just set the interrupt line based on ISTATUS |
| */ |
| int irqstate = (oldval & 4) && !(value & 2); |
| |
| trace_arm_gt_imask_toggle(timeridx, irqstate); |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); |
| } |
| } |
| |
| static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_PHYS); |
| } |
| |
| static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_PHYS, value); |
| } |
| |
| static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_PHYS); |
| } |
| |
| static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_PHYS, value); |
| } |
| |
| static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_PHYS, value); |
| } |
| |
| static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_VIRT); |
| } |
| |
| static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_VIRT, value); |
| } |
| |
| static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_VIRT); |
| } |
| |
| static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_VIRT, value); |
| } |
| |
| static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_VIRT, value); |
| } |
| |
| static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| trace_arm_gt_cntvoff_write(value); |
| raw_write(env, ri, value); |
| gt_recalc_timer(cpu, GTIMER_VIRT); |
| } |
| |
| static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_HYP); |
| } |
| |
| static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_HYP, value); |
| } |
| |
| static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_HYP); |
| } |
| |
| static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_HYP, value); |
| } |
| |
| static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_HYP, value); |
| } |
| |
| static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_SEC); |
| } |
| |
| static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_SEC, value); |
| } |
| |
| static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_SEC); |
| } |
| |
| static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_SEC, value); |
| } |
| |
| static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_SEC, value); |
| } |
| |
| void arm_gt_ptimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_PHYS); |
| } |
| |
| void arm_gt_vtimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_VIRT); |
| } |
| |
| void arm_gt_htimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_HYP); |
| } |
| |
| void arm_gt_stimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_SEC); |
| } |
| |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| /* Note that CNTFRQ is purely reads-as-written for the benefit |
| * of software; writing it doesn't actually change the timer frequency. |
| * Our reset value matches the fixed frequency we implement the timer at. |
| */ |
| { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .type = ARM_CP_ALIAS, |
| .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), |
| }, |
| { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, |
| .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
| .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, |
| }, |
| /* overall control: mostly access permissions */ |
| { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), |
| .resetvalue = 0, |
| }, |
| /* per-timer control */ |
| { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| .secure = ARM_CP_SECSTATE_NS, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
| .accessfn = gt_ptimer_access, |
| .fieldoffset = offsetoflow32(CPUARMState, |
| cp15.c14_timer[GTIMER_PHYS].ctl), |
| .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CTL_S", |
| .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| .secure = ARM_CP_SECSTATE_S, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
| .accessfn = gt_ptimer_access, |
| .fieldoffset = offsetoflow32(CPUARMState, |
| cp15.c14_timer[GTIMER_SEC].ctl), |
| .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL0_RW, |
| .accessfn = gt_ptimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
| .resetvalue = 0, |
| .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, |
| .accessfn = gt_vtimer_access, |
| .fieldoffset = offsetoflow32(CPUARMState, |
| cp15.c14_timer[GTIMER_VIRT].ctl), |
| .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL0_RW, |
| .accessfn = gt_vtimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
| .resetvalue = 0, |
| .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
| }, |
| /* TimerValue views: a 32 bit downcounting view of the underlying state */ |
| { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .secure = ARM_CP_SECSTATE_NS, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| .accessfn = gt_ptimer_access, |
| .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
| }, |
| { .name = "CNTP_TVAL_S", |
| .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .secure = ARM_CP_SECSTATE_S, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| .accessfn = gt_ptimer_access, |
| .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, |
| }, |
| { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
| .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
| }, |
| { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| .accessfn = gt_vtimer_access, |
| .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
| }, |
| { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, |
| .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
| .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
| }, |
| /* The counter itself */ |
| { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_pct_access, |
| .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
| }, |
| { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, |
| .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
| }, |
| { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, |
| .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_vct_access, |
| .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
| }, |
| { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, |
| .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
| }, |
| /* Comparison value, indicating when the timer goes off */ |
| { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, |
| .secure = ARM_CP_SECSTATE_NS, |
| .access = PL0_RW, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
| .accessfn = gt_ptimer_access, |
| .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, |
| .secure = ARM_CP_SECSTATE_S, |
| .access = PL0_RW, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), |
| .accessfn = gt_ptimer_access, |
| .writefn = gt_sec_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, |
| .access = PL0_RW, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
| .resetvalue = 0, .accessfn = gt_ptimer_access, |
| .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, |
| .access = PL0_RW, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
| .accessfn = gt_vtimer_access, |
| .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, |
| .access = PL0_RW, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
| .resetvalue = 0, .accessfn = gt_vtimer_access, |
| .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
| }, |
| /* Secure timer -- this is actually restricted to only EL3 |
| * and configurably Secure-EL1 via the accessfn. |
| */ |
| { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, |
| .accessfn = gt_stimer_access, |
| .readfn = gt_sec_tval_read, |
| .writefn = gt_sec_tval_write, |
| .resetfn = gt_sec_timer_reset, |
| }, |
| { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL1_RW, |
| .accessfn = gt_stimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), |
| .resetvalue = 0, |
| .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, |
| .type = ARM_CP_IO, .access = PL1_RW, |
| .accessfn = gt_stimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), |
| .writefn = gt_sec_cval_write, .raw_writefn = raw_write, |
| }, |
| REGINFO_SENTINEL |
| }; |
| |
| #else |
| |
| /* In user-mode most of the generic timer registers are inaccessible |
| * however modern kernels (4.12+) allow access to cntvct_el0 |
| */ |
| |
| static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Currently we have no support for QEMUTimer in linux-user so we |
| * can't call gt_get_countervalue(env), instead we directly |
| * call the lower level functions. |
| */ |
| return cpu_get_clock() / GTIMER_SCALE; |
| } |
| |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, |
| .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
| .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, |
| }, |
| { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, |
| .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .readfn = gt_virt_cnt_read, |
| }, |
| REGINFO_SENTINEL |
| }; |
| |
| #endif |
| |
| static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| raw_write(env, ri, value); |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| raw_write(env, ri, value & 0xfffff6ff); |
| } else { |
| raw_write(env, ri, value & 0xfffff1ff); |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* get_phys_addr() isn't present for user-mode-only targets */ |
| |
| static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (ri->opc2 & 4) { |
| /* The ATS12NSO* operations must trap to EL3 if executed in |
| * Secure EL1 (which can only happen if EL3 is AArch64). |
| * They are simply UNDEF if executed from NS EL1. |
| * They function normally from EL2 or EL3. |
| */ |
| if (arm_current_el(env) == 1) { |
| if (arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; |
| } |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx) |
| { |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| bool ret; |
| uint64_t par64; |
| bool format64 = false; |
| MemTxAttrs attrs = {}; |
| ARMMMUFaultInfo fi = {}; |
| ARMCacheAttrs cacheattrs = {}; |
| |
| ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, |
| &prot, &page_size, &fi, &cacheattrs); |
| |
| if (is_a64(env)) { |
| format64 = true; |
| } else if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| /* |
| * ATS1Cxx: |
| * * TTBCR.EAE determines whether the result is returned using the |
| * 32-bit or the 64-bit PAR format |
| * * Instructions executed in Hyp mode always use the 64bit format |
| * |
| * ATS1S2NSOxx uses the 64bit format if any of the following is true: |
| * * The Non-secure TTBCR.EAE bit is set to 1 |
| * * The implementation includes EL2, and the value of HCR.VM is 1 |
| * |
| * (Note that HCR.DC makes HCR.VM behave as if it is 1.) |
| * |
| * ATS1Hx always uses the 64bit format. |
| */ |
| format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); |
| |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); |
| } else { |
| format64 |= arm_current_el(env) == 2; |
| } |
| } |
| } |
| |
| if (format64) { |
| /* Create a 64-bit PAR */ |
| par64 = (1 << 11); /* LPAE bit always set */ |
| if (!ret) { |
| par64 |= phys_addr & ~0xfffULL; |
| if (!attrs.secure) { |
| par64 |= (1 << 9); /* NS */ |
| } |
| par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ |
| par64 |= cacheattrs.shareability << 7; /* SH */ |
| } else { |
| uint32_t fsr = arm_fi_to_lfsc(&fi); |
| |
| par64 |= 1; /* F */ |
| par64 |= (fsr & 0x3f) << 1; /* FS */ |
| if (fi.stage2) { |
| par64 |= (1 << 9); /* S */ |
| } |
| if (fi.s1ptw) { |
| par64 |= (1 << 8); /* PTW */ |
| } |
| } |
| } else { |
| /* fsr is a DFSR/IFSR value for the short descriptor |
| * translation table format (with WnR always clear). |
| * Convert it to a 32-bit PAR. |
| */ |
| if (!ret) { |
| /* We do not set any attribute bits in the PAR */ |
| if (page_size == (1 << 24) |
| && arm_feature(env, ARM_FEATURE_V7)) { |
| par64 = (phys_addr & 0xff000000) | (1 << 1); |
| } else { |
| par64 = phys_addr & 0xfffff000; |
| } |
| if (!attrs.secure) { |
| par64 |= (1 << 9); /* NS */ |
| } |
| } else { |
| uint32_t fsr = arm_fi_to_sfsc(&fi); |
| |
| par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
| ((fsr & 0xf) << 1) | 1; |
| } |
| } |
| return par64; |
| } |
| |
| static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| uint64_t par64; |
| ARMMMUIdx mmu_idx; |
| int el = arm_current_el(env); |
| bool secure = arm_is_secure_below_el3(env); |
| |
| switch (ri->opc2 & 6) { |
| case 0: |
| /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ |
| switch (el) { |
| case 3: |
| mmu_idx = ARMMMUIdx_S1E3; |
| break; |
| case 2: |
| mmu_idx = ARMMMUIdx_S1NSE1; |
| break; |
| case 1: |
| mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| case 2: |
| /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ |
| switch (el) { |
| case 3: |
| mmu_idx = ARMMMUIdx_S1SE0; |
| break; |
| case 2: |
| mmu_idx = ARMMMUIdx_S1NSE0; |
| break; |
| case 1: |
| mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| case 4: |
| /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ |
| mmu_idx = ARMMMUIdx_S12NSE1; |
| break; |
| case 6: |
| /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ |
| mmu_idx = ARMMMUIdx_S12NSE0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| par64 = do_ats_write(env, value, access_type, mmu_idx); |
| |
| A32_BANKED_CURRENT_REG_SET(env, par, par64); |
| } |
| |
| static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| uint64_t par64; |
| |
| par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); |
| |
| A32_BANKED_CURRENT_REG_SET(env, par, par64); |
| } |
| |
| static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| ARMMMUIdx mmu_idx; |
| int secure = arm_is_secure_below_el3(env); |
| |
| switch (ri->opc2 & 6) { |
| case 0: |
| switch (ri->opc1) { |
| case 0: /* AT S1E1R, AT S1E1W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; |
| break; |
| case 4: /* AT S1E2R, AT S1E2W */ |
| mmu_idx = ARMMMUIdx_S1E2; |
| break; |
| case 6: /* AT S1E3R, AT S1E3W */ |
| mmu_idx = ARMMMUIdx_S1E3; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| case 2: /* AT S1E0R, AT S1E0W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; |
| break; |
| case 4: /* AT S12E1R, AT S12E1W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
| break; |
| case 6: /* AT S12E0R, AT S12E0W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
| } |
| #endif |
| |
| static const ARMCPRegInfo vapa_cp_reginfo[] = { |
| { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
| offsetoflow32(CPUARMState, cp15.par_ns) }, |
| .writefn = par_write }, |
| #ifndef CONFIG_USER_ONLY |
| /* This underdecoding is safe because the reginfo is NO_RAW. */ |
| { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_W, .accessfn = ats_access, |
| .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
| #endif |
| REGINFO_SENTINEL |
| }; |
| |
| /* Return basic MPU access permission bits. */ |
| static uint32_t simple_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val >> i) & mask; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| /* Pad basic MPU access permission bits to extended format. */ |
| static uint32_t extended_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val & mask) << i; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
| } |
| |
| static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
| } |
| |
| static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
| } |
| |
| static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
| } |
| |
| static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
| |
| if (!u32p) { |
| return 0; |
| } |
| |
| u32p += env->pmsav7.rnr[M_REG_NS]; |
| return *u32p; |
| } |
| |
| static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
| |
| if (!u32p) { |
| return; |
| } |
| |
| u32p += env->pmsav7.rnr[M_REG_NS]; |
| tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ |
| *u32p = value; |
| } |
| |
| static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t nrgs = cpu->pmsav7_dregion; |
| |
| if (value >= nrgs) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "PMSAv7 RGNR write >= # supported regions, %" PRIu32 |
| " > %" PRIu32 "\n", (uint32_t)value, nrgs); |
| return; |
| } |
| |
| raw_write(env, ri, value); |
| } |
| |
| static const ARMCPRegInfo pmsav7_cp_reginfo[] = { |
| /* Reset for all these registers is handled in arm_cpu_reset(), |
| * because the PMSAv7 is also used by M-profile CPUs, which do |
| * not register cpregs but still need the state to be reset. |
| */ |
| { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), |
| .readfn = pmsav7_read, .writefn = pmsav7_write, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
| .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), |
| .readfn = pmsav7_read, .writefn = pmsav7_write, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
| .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), |
| .readfn = pmsav7_read, .writefn = pmsav7_write, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), |
| .writefn = pmsav7_rgnr_write, |
| .resetfn = arm_cp_reset_ignore }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
| { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
| .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
| { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
| .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
| { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
| .resetvalue = 0, }, |
| { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
| .resetvalue = 0, }, |
| { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, |
| { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, |
| /* Protection region base and size registers */ |
| { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, |
| { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, |
| { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, |
| { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, |
| { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, |
| { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, |
| { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, |
| { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| TCR *tcr = raw_ptr(env, ri); |
| int maskshift = extract32(value, 0, 3); |
| |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { |
| /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when |
| * using Long-desciptor translation table format */ |
| value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
| } else if (arm_feature(env, ARM_FEATURE_EL3)) { |
| /* In an implementation that includes the Security Extensions |
| * TTBCR has additional fields PD0 [4] and PD1 [5] for |
| * Short-descriptor translation table format. |
| */ |
| value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; |
| } else { |
| value &= TTBCR_N; |
| } |
| } |
| |
| /* Update the masks corresponding to the TCR bank being written |
| * Note that we always calculate mask and base_mask, but |
| * they are only used for short-descriptor tables (ie if EAE is 0); |
| * for long-descriptor tables the TCR fields are used differently |
| * and the mask and base_mask values are meaningless. |
| */ |
| tcr->raw_tcr = value; |
| tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
| tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); |
| } |
| |
| static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| TCR *tcr = raw_ptr(env, ri); |
| |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| /* With LPAE the TTBCR could result in a change of ASID |
| * via the TTBCR.A1 bit, so do a TLB flush. |
| */ |
| tlb_flush(CPU(cpu)); |
| } |
| /* Preserve the high half of TCR_EL1, set via TTBCR2. */ |
| value = deposit64(tcr->raw_tcr, 0, 32, value); |
| vmsa_ttbcr_raw_write(env, ri, value); |
| } |
| |
| static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| TCR *tcr = raw_ptr(env, ri); |
| |
| /* Reset both the TCR as well as the masks corresponding to the bank of |
| * the TCR being reset. |
| */ |
| tcr->raw_tcr = 0; |
| tcr->mask = 0; |
| tcr->base_mask = 0xffffc000u; |
| } |
| |
| static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| TCR *tcr = raw_ptr(env, ri); |
| |
| /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
| tlb_flush(CPU(cpu)); |
| tcr->raw_tcr = value; |
| } |
| |
| static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ |
| if (cpreg_field_is_64bit(ri) && |
| extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| tlb_flush(CPU(cpu)); |
| } |
| raw_write(env, ri, value); |
| } |
| |
| static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ |
| if (raw_read(env, ri) != value) { |
| tlb_flush_by_mmuidx(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0 | |
| ARMMMUIdxBit_S2NS); |
| raw_write(env, ri, value); |
| } |
| } |
| |
| static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
| offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
| { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), |
| offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, |
| { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), |
| offsetof(CPUARMState, cp15.dfar_ns) } }, |
| { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), |
| .resetvalue = 0, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
| { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
| { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
| offsetof(CPUARMState, cp15.ttbr0_ns) } }, |
| { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
| offsetof(CPUARMState, cp15.ttbr1_ns) } }, |
| { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .writefn = vmsa_tcr_el1_write, |
| .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
| { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
| .raw_writefn = vmsa_ttbcr_raw_write, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
| offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, |
| REGINFO_SENTINEL |
| }; |
| |
| /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing |
| * qemu tlbs nor adjusting cached masks. |
| */ |
| static const ARMCPRegInfo ttbcr2_reginfo = { |
| .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, |
| .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), |
| offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, |
| }; |
| |
| static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_ticonfig = value & 0xe7; |
| /* The OS_TYPE bit in this register changes the reported CPUID! */ |
| env->cp15.c0_cpuid = (value & (1 << 5)) ? |
| ARM_CPUID_TI915T : ARM_CPUID_TI925T; |
| } |
| |
| static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_threadid = value & 0xffff; |
| } |
| |
| static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Wait-for-interrupt (deprecated) */ |
| cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
| } |
| |
| static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* On OMAP there are registers indicating the max/min index of dcache lines |
| * containing a dirty line; cache flush operations have to reset these. |
| */ |
| env->cp15.c15_i_max = 0x000; |
| env->cp15.c15_i_min = 0xff0; |
| } |
| |
| static const ARMCPRegInfo omap_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
| .resetvalue = 0, }, |
| { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, |
| .writefn = omap_ticonfig_write }, |
| { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, |
| { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0xff0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, |
| { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, |
| .writefn = omap_threadid_write }, |
| { .name = "TI925T_STATUS", .cp = 15, .crn = 15, |
| .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .type = ARM_CP_NO_RAW, |
| .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
| /* TODO: Peripheral port remap register: |
| * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller |
| * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), |
| * when MMU is off. |
| */ |
| { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
| .writefn = omap_cachemaint_write }, |
| { .name = "C9", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, |
| .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_cpar = value & 0x3fff; |
| } |
| |
| static const ARMCPRegInfo xscale_cp_reginfo[] = { |
| { .name = "XSCALE_CPAR", |
| .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, |
| .writefn = xscale_cpar_write, }, |
| { .name = "XSCALE_AUXCR", |
| .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), |
| .resetvalue = 0, }, |
| /* XScale specific cache-lockdown: since we have no cache we NOP these |
| * and hope the guest does not really rely on cache behaviour. |
| */ |
| { .name = "XSCALE_LOCK_ICACHE_LINE", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "XSCALE_UNLOCK_ICACHE", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "XSCALE_DCACHE_LOCK", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "XSCALE_UNLOCK_DCACHE", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { |
| /* RAZ/WI the whole crn=15 space, when we don't have a more specific |
| * implementation of this implementation-defined space. |
| * Ideally this should eventually disappear in favour of actually |
| * implementing the correct behaviour for all cores. |
| */ |
| { .name = "C15_IMPDEF", .cp = 15, .crn = 15, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, |
| .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
| /* Cache status: RAZ because we have no cache so it's always clean */ |
| { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { |
| /* We never have a a block transfer operation in progress */ |
| { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = 0 }, |
| /* The cache ops themselves: these all NOP for QEMU */ |
| { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { |
| /* The cache test-and-clean instructions always return (1 << 30) |
| * to indicate that there are no dirty cache lines. |
| */ |
| { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = (1 << 30) }, |
| { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = (1 << 30) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
| /* Ignore ReadBuffer accesses */ |
| { .name = "C9_READBUFFER", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .resetvalue = 0, |
| .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
| REGINFO_SENTINEL |
| }; |
| |
| static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { |
| return env->cp15.vpidr_el2; |
| } |
| return raw_read(env, ri); |
| } |
| |
| static uint64_t mpidr_read_val(CPUARMState *env) |
| { |
| ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
| uint64_t mpidr = cpu->mp_affinity; |
| |
| if (arm_feature(env, ARM_FEATURE_V7MP)) { |
| mpidr |= (1U << 31); |
| /* Cores which are uniprocessor (non-coherent) |
| * but still implement the MP extensions set |
| * bit 30. (For instance, Cortex-R5). |
| */ |
| if (cpu->mp_is_up) { |
| mpidr |= (1u << 30); |
| } |
| } |
| return mpidr; |
| } |
| |
| static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { |
| return env->cp15.vmpidr_el2; |
| } |
| return mpidr_read_val(env); |
| } |
| |
| static const ARMCPRegInfo lpae_cp_reginfo[] = { |
| /* NOP AMAIR0/1 */ |
| { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
| { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
| .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), |
| offsetof(CPUARMState, cp15.par_ns)} }, |
| { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
| .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
| offsetof(CPUARMState, cp15.ttbr0_ns) }, |
| .writefn = vmsa_ttbr_write, }, |
| { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
| .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
| offsetof(CPUARMState, cp15.ttbr1_ns) }, |
| .writefn = vmsa_ttbr_write, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return vfp_get_fpcr(env); |
| } |
| |
| static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| vfp_set_fpcr(env, value); |
| } |
| |
| static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return vfp_get_fpsr(env); |
| } |
| |
| static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| vfp_set_fpsr(env, value); |
| } |
| |
| static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->daif = value & PSTATE_DAIF; |
| } |
| |
| static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless |
| * SCTLR_EL1.UCI is set. |
| */ |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
| * Page D4-1736 (DDI0487A.b) |
| */ |
| |
| static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| bool sec = arm_is_secure_below_el3(env); |
| |
| if (sec) { |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| ARMMMUIdxBit_S1SE1 | |
| ARMMMUIdxBit_S1SE0); |
| } else { |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0); |
| } |
| } |
| |
| static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| if (tlb_force_broadcast(env)) { |
| tlbi_aa64_vmalle1is_write(env, NULL, value); |
| return; |
| } |
| |
| if (arm_is_secure_below_el3(env)) { |
| tlb_flush_by_mmuidx(cs, |
| ARMMMUIdxBit_S1SE1 | |
| ARMMMUIdxBit_S1SE0); |
| } else { |
| tlb_flush_by_mmuidx(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0); |
| } |
| } |
| |
| static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Note that the 'ALL' scope must invalidate both stage 1 and |
| * stage 2 translations, whereas most other scopes only invalidate |
| * stage 1 translations. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| if (arm_is_secure_below_el3(env)) { |
| tlb_flush_by_mmuidx(cs, |
| ARMMMUIdxBit_S1SE1 | |
| ARMMMUIdxBit_S1SE0); |
| } else { |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| tlb_flush_by_mmuidx(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0 | |
| ARMMMUIdxBit_S2NS); |
| } else { |
| tlb_flush_by_mmuidx(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0); |
| } |
| } |
| } |
| |
| static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); |
| } |
| |
| static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); |
| } |
| |
| static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Note that the 'ALL' scope must invalidate both stage 1 and |
| * stage 2 translations, whereas most other scopes only invalidate |
| * stage 1 translations. |
| */ |
| CPUState *cs = ENV_GET_CPU(env); |
| bool sec = arm_is_secure_below_el3(env); |
| bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); |
| |
| if (sec) { |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| ARMMMUIdxBit_S1SE1 | |
| ARMMMUIdxBit_S1SE0); |
| } else if (has_el2) { |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0 | |
| ARMMMUIdxBit_S2NS); |
| } else { |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0); |
| } |
| } |
| |
| static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); |
| } |
| |
| static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); |
| } |
| |
| static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by VA, EL2 |
| * Currently handles both VAE2 and VALE2, since we don't support |
| * flush-last-level-only. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); |
| } |
| |
| static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by VA, EL3 |
| * Currently handles both VAE3 and VALE3, since we don't support |
| * flush-last-level-only. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); |
| } |
| |
| static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| bool sec = arm_is_secure_below_el3(env); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| if (sec) { |
| tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| ARMMMUIdxBit_S1SE1 | |
| ARMMMUIdxBit_S1SE0); |
| } else { |
| tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0); |
| } |
| } |
| |
| static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by VA, EL1&0 (AArch64 version). |
| * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, |
| * since we don't support flush-for-specific-ASID-only or |
| * flush-last-level-only. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| if (tlb_force_broadcast(env)) { |
| tlbi_aa64_vae1is_write(env, NULL, value); |
| return; |
| } |
| |
| if (arm_is_secure_below_el3(env)) { |
| tlb_flush_page_by_mmuidx(cs, pageaddr, |
| ARMMMUIdxBit_S1SE1 | |
| ARMMMUIdxBit_S1SE0); |
| } else { |
| tlb_flush_page_by_mmuidx(cs, pageaddr, |
| ARMMMUIdxBit_S12NSE1 | |
| ARMMMUIdxBit_S12NSE0); |
| } |
| } |
| |
| static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| ARMMMUIdxBit_S1E2); |
| } |
| |
| static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| ARMMMUIdxBit_S1E3); |
| } |
| |
| static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by IPA. This has to invalidate any structures that |
| * contain only stage 2 translation information, but does not need |
| * to apply to structures that contain combined stage 1 and stage 2 |
| * translation information. |
| * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 48); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); |
| } |
| |
| static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 48); |
| |
| tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, |
| ARMMMUIdxBit_S2NS); |
| } |
| |
| static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* We don't implement EL2, so the only control on DC ZVA is the |
| * bit in the SCTLR which can prohibit access for EL0. |
| */ |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int dzp_bit = 1 << 4; |
| |
| /* DZP indicates whether DC ZVA access is allowed */ |
| if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
| dzp_bit = 0; |
| } |
| return cpu->dcz_blocksize | dzp_bit; |
| } |
| |
| static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (!(env->pstate & PSTATE_SP)) { |
| /* Access to SP_EL0 is undefined if it's being used as |
| * the stack pointer. |
| */ |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return env->pstate & PSTATE_SP; |
| } |
| |
| static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) |
| { |
| update_spsel(env, val); |
| } |
| |
| static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (raw_read(env, ri) == value) { |
| /* Skip the TLB flush if nothing actually changed; Linux likes |
| * to do a lot of pointless SCTLR writes. |
| */ |
| return; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { |
| /* M bit is RAZ/WI for PMSA with no MPU implemented */ |
| value &= ~SCTLR_M; |
| } |
| |
| raw_write(env, ri, value); |
| /* ??? Lots of these bits are not implemented. */ |
| /* This may enable/disable the MMU, so do a TLB flush. */ |
| tlb_flush(CPU(cpu)); |
| } |
| |
| static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { |
| return CP_ACCESS_TRAP_FP_EL2; |
| } |
| if (env->cp15.cptr_el[3] & CPTR_TFP) { |
| return CP_ACCESS_TRAP_FP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; |
| } |
| |
| static const ARMCPRegInfo v8_cp_reginfo[] = { |
| /* Minimal set of EL0-visible registers. This will need to be expanded |
| * significantly for system emulation of AArch64 CPUs. |
| */ |
| { .name = "NZCV", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, |
| .access = PL0_RW, .type = ARM_CP_NZCV }, |
| { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, |
| .type = ARM_CP_NO_RAW, |
| .access = PL0_RW, .accessfn = aa64_daif_access, |
| .fieldoffset = offsetof(CPUARMState, daif), |
| .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, |
| { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, |
| .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
| .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
| { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, |
| .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, |
| .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
| { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, |
| .access = PL0_R, .type = ARM_CP_NO_RAW, |
| .readfn = aa64_dczid_read }, |
| { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_DC_ZVA, |
| #ifndef CONFIG_USER_ONLY |
| /* Avoid overhead of an access check that always passes in user-mode */ |
| .accessfn = aa64_zva_access, |
| #endif |
| }, |
| { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, |
| .access = PL1_R, .type = ARM_CP_CURRENTEL }, |
| /* Cache ops: all NOPs since we don't emulate caches */ |
| { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* TLBI operations */ |
| { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1is_write }, |
| { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1is_write }, |
| { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1_write }, |
| { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1_write }, |
| { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1is_write }, |
| { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1is_write }, |
| { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1is_write }, |
| { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1is_write }, |
| { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1_write }, |
| { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1_write }, |
| { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1_write }, |
| { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1is_write }, |
| #ifndef CONFIG_USER_ONLY |
| /* 64 bit address translation operations */ |
| { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ |
| { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), |
| .writefn = par_write }, |
| #endif |
| /* TLB invalidate last level of translation table walk */ |
| { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
| { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, |
| .writefn = tlbimvaa_is_write }, |
| { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
| { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_write }, |
| { .name = "TLBIMVALHIS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_is_write }, |
| { .name = "TLBIIPAS2", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_write }, |
| { .name = "TLBIIPAS2IS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_is_write }, |
| { .name = "TLBIIPAS2L", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_write }, |
| { .name = "TLBIIPAS2LIS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_is_write }, |
| /* 32 bit cache operations */ |
| { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| /* MMU Domain access control / MPU write buffer control */ |
| { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .writefn = dacr_write, .raw_writefn = raw_write, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), |
| offsetoflow32(CPUARMState, cp15.dacr_ns) } }, |
| { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, |
| { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, |
| /* We rely on the access checks not allowing the guest to write to the |
| * state field when SPSel indicates that it's being used as the stack |
| * pointer. |
| */ |
| { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .accessfn = sp_el0_access, |
| .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
| { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
| { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, |
| .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
| { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), |
| .access = PL2_RW, .accessfn = fpexc32_access }, |
| { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .resetvalue = 0, |
| .writefn = dacr_write, .raw_writefn = raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, |
| { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, |
| { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, |
| { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, |
| { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, |
| { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, |
| { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, |
| .resetvalue = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, |
| { .name = "SDCR", .type = ARM_CP_ALIAS, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| .writefn = sdcr_write, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, |
| REGINFO_SENTINEL |
| }; |
| |
| /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
| static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
| { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, |
| .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, |
| { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .type = ARM_CP_NO_RAW, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 6, .crm = 2, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .accessfn = access_tda, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HIFAR", .state = ARM_CP_STATE_AA32, |
| .type = ARM_CP_CONST, |
| .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| /* Ditto, but for registers which exist in ARMv8 but not v7 */ |
| static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { |
| { .name = "HCR2", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, |
| .access = PL2_RW, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint64_t valid_mask = HCR_MASK; |
| |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| valid_mask &= ~HCR_HCD; |
| } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
| /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. |
| * However, if we're using the SMC PSCI conduit then QEMU is |
| * effectively acting like EL3 firmware and so the guest at |
| * EL2 should retain the ability to prevent EL1 from being |
| * able to make SMC calls into the ersatz firmware, so in |
| * that case HCR.TSC should be read/write. |
| */ |
| valid_mask &= ~HCR_TSC; |
| } |
| if (cpu_isar_feature(aa64_lor, cpu)) { |
| valid_mask |= HCR_TLOR; |
| } |
| if (cpu_isar_feature(aa64_pauth, cpu)) { |
| valid_mask |= HCR_API | HCR_APK; |
| } |
| |
| /* Clear RES0 bits. */ |
| value &= valid_mask; |
| |
| /* These bits change the MMU setup: |
| * HCR_VM enables stage 2 translation |
| * HCR_PTW forbids certain page-table setups |
| * HCR_DC Disables stage1 and enables stage2 translation |
| */ |
| if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { |
| tlb_flush(CPU(cpu)); |
| } |
| env->cp15.hcr_el2 = value; |
| |
| /* |
| * Updates to VI and VF require us to update the status of |
| * virtual interrupts, which are the logical OR of these bits |
| * and the state of the input lines from the GIC. (This requires |
| * that we have the iothread lock, which is done by marking the |
| * reginfo structs as ARM_CP_IO.) |
| * Note that if a write to HCR pends a VIRQ or VFIQ it is never |
| * possible for it to be taken immediately, because VIRQ and |
| * VFIQ are masked unless running at EL0 or EL1, and HCR |
| * can only be written at EL2. |
| */ |
| g_assert(qemu_mutex_iothread_locked()); |
| arm_cpu_update_virq(cpu); |
| arm_cpu_update_vfiq(cpu); |
| } |
| |
| static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ |
| value = deposit64(env->cp15.hcr_el2, 32, 32, value); |
| hcr_write(env, NULL, value); |
| } |
| |
| static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Handle HCR write, i.e. write to low half of HCR_EL2 */ |
| value = deposit64(env->cp15.hcr_el2, 0, 32, value); |
| hcr_write(env, NULL, value); |
| } |
| |
| /* |
| * Return the effective value of HCR_EL2. |
| * Bits that are not included here: |
| * RW (read from SCR_EL3.RW as needed) |
| */ |
| uint64_t arm_hcr_el2_eff(CPUARMState *env) |
| { |
| uint64_t ret = env->cp15.hcr_el2; |
| |
| if (arm_is_secure_below_el3(env)) { |
| /* |
| * "This register has no effect if EL2 is not enabled in the |
| * current Security state". This is ARMv8.4-SecEL2 speak for |
| * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). |
| * |
| * Prior to that, the language was "In an implementation that |
| * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves |
| * as if this field is 0 for all purposes other than a direct |
| * read or write access of HCR_EL2". With lots of enumeration |
| * on a per-field basis. In current QEMU, this is condition |
| * is arm_is_secure_below_el3. |
| * |
| * Since the v8.4 language applies to the entire register, and |
| * appears to be backward compatible, use that. |
| */ |
| ret = 0; |
| } else if (ret & HCR_TGE) { |
| /* These bits are up-to-date as of ARMv8.4. */ |
| if (ret & HCR_E2H) { |
| ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | |
| HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | |
| HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | |
| HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); |
| } else { |
| ret |= HCR_FMO | HCR_IMO | HCR_AMO; |
| } |
| ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | |
| HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | |
| HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | |
| HCR_TLOR); |
| } |
| |
| return ret; |
| } |
| |
| static const ARMCPRegInfo el2_cp_reginfo[] = { |
| { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_IO, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), |
| .writefn = hcr_write }, |
| { .name = "HCR", .state = ARM_CP_STATE_AA32, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), |
| .writefn = hcr_writelow }, |
| { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, |
| { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, |
| { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, |
| { .name = "HIFAR", .state = ARM_CP_STATE_AA32, |
| .type = ARM_CP_ALIAS, |
| .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, |
| .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, |
| { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, |
| { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .writefn = vbar_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), |
| .resetvalue = 0 }, |
| { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, |
| .access = PL3_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
| { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, |
| { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), |
| .resetvalue = 0 }, |
| { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, |
| { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ |
| { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, |
| /* no .writefn needed as this can't cause an ASID change; |
| * no .raw_writefn or .resetfn needed as we never use mask/base_mask |
| */ |
| .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
| { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| .type = ARM_CP_ALIAS, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
| { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, |
| /* no .writefn needed as this can't cause an ASID change; |
| * no .raw_writefn or .resetfn needed as we never use mask/base_mask |
| */ |
| .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
| { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 6, .crm = 2, |
| .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), |
| .writefn = vttbr_write }, |
| { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .writefn = vttbr_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, |
| { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, |
| { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, |
| { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
| { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
| { .name = "TLBIALLNSNH", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_nsnh_write }, |
| { .name = "TLBIALLNSNHIS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_nsnh_is_write }, |
| { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_hyp_write }, |
| { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_hyp_is_write }, |
| { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_write }, |
| { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_is_write }, |
| { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbi_aa64_alle2_write }, |
| { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbi_aa64_vae2_write }, |
| { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae2_write }, |
| { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle2is_write }, |
| { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbi_aa64_vae2is_write }, |
| { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae2is_write }, |
| #ifndef CONFIG_USER_ONLY |
| /* Unlike the other EL2-related AT operations, these must |
| * UNDEF from EL3 if EL2 is not implemented, which is why we |
| * define them here rather than with the rest of the AT ops. |
| */ |
| { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL2_W, .accessfn = at_s1e2_access, |
| .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL2_W, .accessfn = at_s1e2_access, |
| .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
| * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 |
| * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose |
| * to behave as if SCR.NS was 1. |
| */ |
| { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL2_W, |
| .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, |
| { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL2_W, |
| .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, |
| { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, |
| /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the |
| * reset values as IMPDEF. We choose to reset to 3 to comply with |
| * both ARMv7 and ARMv8. |
| */ |
| .access = PL2_RW, .resetvalue = 3, |
| .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, |
| { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, |
| .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, |
| .writefn = gt_cntvoff_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, |
| { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, |
| .writefn = gt_cntvoff_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, |
| { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), |
| .type = ARM_CP_IO, .access = PL2_RW, |
| .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, |
| { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, |
| .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, |
| { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
| .resetfn = gt_hyp_timer_reset, |
| .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, |
| { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .type = ARM_CP_IO, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), |
| .resetvalue = 0, |
| .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, |
| #endif |
| /* The only field of MDCR_EL2 that has a defined architectural reset value |
| * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we |
| * don't implement any PMU event counters, so using zero as a reset |
| * value for MDCR_EL2 is okay |
| */ |
| { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, |
| { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, |
| { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, |
| { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo el2_v8_cp_reginfo[] = { |
| { .name = "HCR2", .state = ARM_CP_STATE_AA32, |
| .type = ARM_CP_ALIAS | ARM_CP_IO, |
| .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, |
| .access = PL2_RW, |
| .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), |
| .writefn = hcr_writehigh }, |
| REGINFO_SENTINEL |
| }; |
| |
| static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. |
| * At Secure EL1 it traps to EL3. |
| */ |
| if (arm_current_el(env) == 3) { |
| return CP_ACCESS_OK; |
| } |
| if (arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ |
| if (isread) { |
| return CP_ACCESS_OK; |
| } |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| |
| static const ARMCPRegInfo el3_cp_reginfo[] = { |
| { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), |
| .resetvalue = 0, .writefn = scr_write }, |
| { .name = "SCR", .type = ARM_CP_ALIAS, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), |
| .writefn = scr_write }, |
| { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL3_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.sder) }, |
| { .name = "SDER", |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL3_RW, .resetvalue = 0, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, |
| { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| .writefn = vbar_write, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
| { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, |
| { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, |
| .access = PL3_RW, |
| /* no .writefn needed as this can't cause an ASID change; |
| * we must provide a .raw_writefn and .resetfn because we handle |
| * reset and migration for the AArch32 TTBCR(S), which might be |
| * using mask and base_mask. |
| */ |
| .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
| { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
| .access = PL3_RW, |
| .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, |
| { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, |
| { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, |
| { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, |
| { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, .writefn = vbar_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), |
| .resetvalue = 0 }, |
| { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, |
| { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, |
| .access = PL3_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, |
| { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle3is_write }, |
| { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3is_write }, |
| { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3is_write }, |
| { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle3_write }, |
| { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3_write }, |
| { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, |
| * but the AArch32 CTR has its own reginfo struct) |
| */ |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Writes to OSLAR_EL1 may update the OS lock status, which can be |
| * read via a bit in OSLSR_EL1. |
| */ |
| int oslock; |
| |
| if (ri->state == ARM_CP_STATE_AA32) { |
| oslock = (value == 0xC5ACCE55); |
| } else { |
| oslock = value & 1; |
| } |
| |
| env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); |
| } |
| |
| static const ARMCPRegInfo debug_cp_reginfo[] = { |
| /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
| * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
| * unlike DBGDRAR it is never accessible from EL0. |
| * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 |
| * accessor. |
| */ |
| { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .accessfn = access_tdra, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL1_R, .accessfn = access_tdra, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .accessfn = access_tdra, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
| { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
| .resetvalue = 0 }, |
| /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
| * We don't implement the configurable EL0 access. |
| */ |
| { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, |
| .type = ARM_CP_ALIAS, |
| .access = PL1_R, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
| { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .accessfn = access_tdosa, |
| .writefn = oslar_write }, |
| { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, |
| .access = PL1_R, .resetvalue = 10, |
| .accessfn = access_tdosa, |
| .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
| /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
| { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, |
| .access = PL1_RW, .accessfn = access_tdosa, |
| .type = ARM_CP_NOP }, |
| /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
| * implement vector catch debug events yet. |
| */ |
| { .name = "DBGVCR", |
| .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_tda, |
| .type = ARM_CP_NOP }, |
| /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor |
| * to save and restore a 32-bit guest's DBGVCR) |
| */ |
| { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, |
| .access = PL2_RW, .accessfn = access_tda, |
| .type = ARM_CP_NOP }, |
| /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications |
| * Channel but Linux may try to access this register. The 32-bit |
| * alias is DBGDCCINT. |
| */ |
| { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_tda, |
| .type = ARM_CP_NOP }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { |
| /* 64 bit access versions of the (dummy) debug registers */ |
| { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| /* Return the exception level to which exceptions should be taken |
| * via SVEAccessTrap. If an exception should be routed through |
| * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should |
| * take care of raising that exception. |
| * C.f. the ARM pseudocode function CheckSVEEnabled. |
| */ |
| int sve_exception_el(CPUARMState *env, int el) |
| { |
| #ifndef CONFIG_USER_ONLY |
| if (el <= 1) { |
| bool disabled = false; |
| |
| /* The CPACR.ZEN controls traps to EL1: |
| * 0, 2 : trap EL0 and EL1 accesses |
| * 1 : trap only EL0 accesses |
| * 3 : trap no accesses |
| */ |
| if (!extract32(env->cp15.cpacr_el1, 16, 1)) { |
| disabled = true; |
| } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { |
| disabled = el == 0; |
| } |
| if (disabled) { |
| /* route_to_el2 */ |
| return (arm_feature(env, ARM_FEATURE_EL2) |
| && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); |
| } |
| |
| /* Check CPACR.FPEN. */ |
| if (!extract32(env->cp15.cpacr_el1, 20, 1)) { |
| disabled = true; |
| } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { |
| disabled = el == 0; |
| } |
| if (disabled) { |
| return 0; |
| } |
| } |
| |
| /* CPTR_EL2. Since TZ and TFP are positive, |
| * they will be zero when EL2 is not present. |
| */ |
| if (el <= 2 && !arm_is_secure_below_el3(env)) { |
| if (env->cp15.cptr_el[2] & CPTR_TZ) { |
| return 2; |
| } |
| if (env->cp15.cptr_el[2] & CPTR_TFP) { |
| return 0; |
| } |
| } |
| |
| /* CPTR_EL3. Since EZ is negative we must check for EL3. */ |
| if (arm_feature(env, ARM_FEATURE_EL3) |
| && !(env->cp15.cptr_el[3] & CPTR_EZ)) { |
| return 3; |
| } |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Given that SVE is enabled, return the vector length for EL. |
| */ |
| uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t zcr_len = cpu->sve_max_vq - 1; |
| |
| if (el <= 1) { |
| zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); |
| } |
| if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { |
| zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); |
| } |
| if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { |
| zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); |
| } |
| return zcr_len; |
| } |
| |
| static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| int cur_el = arm_current_el(env); |
| int old_len = sve_zcr_len_for_el(env, cur_el); |
| int new_len; |
| |
| /* Bits other than [3:0] are RAZ/WI. */ |
| raw_write(env, ri, value & 0xf); |
| |
| /* |
| * Because we arrived here, we know both FP and SVE are enabled; |
| * otherwise we would have trapped access to the ZCR_ELn register. |
| */ |
| new_len = sve_zcr_len_for_el(env, cur_el); |
| if (new_len < old_len) { |
| aarch64_sve_narrow_vq(env, new_len + 1); |
| } |
| } |
| |
| static const ARMCPRegInfo zcr_el1_reginfo = { |
| .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_SVE, |
| .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), |
| .writefn = zcr_write, .raw_writefn = raw_write |
| }; |
| |
| static const ARMCPRegInfo zcr_el2_reginfo = { |
| .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_SVE, |
| .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), |
| .writefn = zcr_write, .raw_writefn = raw_write |
| }; |
| |
| static const ARMCPRegInfo zcr_no_el2_reginfo = { |
| .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_SVE, |
| .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore |
| }; |
| |
| static const ARMCPRegInfo zcr_el3_reginfo = { |
| .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, |
| .access = PL3_RW, .type = ARM_CP_SVE, |
| .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), |
| .writefn = zcr_write, .raw_writefn = raw_write |
| }; |
| |
| void hw_watchpoint_update(ARMCPU *cpu, int n) |
| { |
| CPUARMState *env = &cpu->env; |
| vaddr len = 0; |
| vaddr wvr = env->cp15.dbgwvr[n]; |
| uint64_t wcr = env->cp15.dbgwcr[n]; |
| int mask; |
| int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; |
| |
| if (env->cpu_watchpoint[n]) { |
| cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); |
| env->cpu_watchpoint[n] = NULL; |
| } |
| |
| if (!extract64(wcr, 0, 1)) { |
| /* E bit clear : watchpoint disabled */ |
| return; |
| } |
| |
| switch (extract64(wcr, 3, 2)) { |
| case 0: |
| /* LSC 00 is reserved and must behave as if the wp is disabled */ |
| return; |
| case 1: |
| flags |= BP_MEM_READ; |
| break; |
| case 2: |
| flags |= BP_MEM_WRITE; |
| break; |
| case 3: |
| flags |= BP_MEM_ACCESS; |
| break; |
| } |
| |
| /* Attempts to use both MASK and BAS fields simultaneously are |
| * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, |
| * thus generating a watchpoint for every byte in the masked region. |
| */ |
| mask = extract64(wcr, 24, 4); |
| if (mask == 1 || mask == 2) { |
| /* Reserved values of MASK; we must act as if the mask value was |
| * some non-reserved value, or as if the watchpoint were disabled. |
| * We choose the latter. |
| */ |
| return; |
| } else if (mask) { |
| /* Watchpoint covers an aligned area up to 2GB in size */ |
| len = 1ULL << mask; |
| /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE |
| * whether the watchpoint fires when the unmasked bits match; we opt |
| * to generate the exceptions. |
| */ |
| wvr &= ~(len - 1); |
| } else { |
| /* Watchpoint covers bytes defined by the byte address select bits */ |
| int bas = extract64(wcr, 5, 8); |
| int basstart; |
| |
| if (bas == 0) { |
| /* This must act as if the watchpoint is disabled */ |
| return; |
| } |
| |
| if (extract64(wvr, 2, 1)) { |
| /* Deprecated case of an only 4-aligned address. BAS[7:4] are |
| * ignored, and BAS[3:0] define which bytes to watch. |
| */ |
| bas &= 0xf; |
| } |
| /* The BAS bits are supposed to be programmed to indicate a contiguous |
| * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether |
| * we fire for each byte in the word/doubleword addressed by the WVR. |
| * We choose to ignore any non-zero bits after the first range of 1s. |
| */ |
| basstart = ctz32(bas); |
| len = cto32(bas >> basstart); |
| wvr += basstart; |
| } |
| |
| cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, |
| &env->cpu_watchpoint[n]); |
| } |
| |
| void hw_watchpoint_update_all(ARMCPU *cpu) |
| { |
| int i; |
| CPUARMState *env = &cpu->env; |
| |
| /* Completely clear out existing QEMU watchpoints and our array, to |
| * avoid possible stale entries following migration load. |
| */ |
| cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); |
| memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); |
| |
| for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { |
| hw_watchpoint_update(cpu, i); |
| } |
| } |
| |
| static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| /* Bits [63:49] are hardwired to the value of bit [48]; that is, the |
| * register reads and behaves as if values written are sign extended. |
| * Bits [1:0] are RES0. |
| */ |
| value = sextract64(value, 0, 49) & ~3ULL; |
| |
| raw_write(env, ri, value); |
| hw_watchpoint_update(cpu, i); |
| } |
| |
| static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| raw_write(env, ri, value); |
| hw_watchpoint_update(cpu, i); |
| } |
| |
| void hw_breakpoint_update(ARMCPU *cpu, int n) |
| { |
| CPUARMState *env = &cpu->env; |
| uint64_t bvr = env->cp15.dbgbvr[n]; |
| uint64_t bcr = env->cp15.dbgbcr[n]; |
| vaddr addr; |
| int bt; |
| int flags = BP_CPU; |
| |
| if (env->cpu_breakpoint[n]) { |
| cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); |
| env->cpu_breakpoint[n] = NULL; |
| } |
| |
| if (!extract64(bcr, 0, 1)) { |
| /* E bit clear : watchpoint disabled */ |
| return; |
| } |
| |
| bt = extract64(bcr, 20, 4); |
| |
| switch (bt) { |
| case 4: /* unlinked address mismatch (reserved if AArch64) */ |
| case 5: /* linked address mismatch (reserved if AArch64) */ |
| qemu_log_mask(LOG_UNIMP, |
| "arm: address mismatch breakpoint types not implemented\n"); |
| return; |
| case 0: /* unlinked address match */ |
| case 1: /* linked address match */ |
| { |
| /* Bits [63:49] are hardwired to the value of bit [48]; that is, |
| * we behave as if the register was sign extended. Bits [1:0] are |
| * RES0. The BAS field is used to allow setting breakpoints on 16 |
| * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether |
| * a bp will fire if the addresses covered by the bp and the addresses |
| * covered by the insn overlap but the insn doesn't start at the |
| * start of the bp address range. We choose to require the insn and |
| * the bp to have the same address. The constraints on writing to |
| * BAS enforced in dbgbcr_write mean we have only four cases: |
| * 0b0000 => no breakpoint |
| * 0b0011 => breakpoint on addr |
| * 0b1100 => breakpoint on addr + 2 |
| * 0b1111 => breakpoint on addr |
| * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). |
| */ |
| int bas = extract64(bcr, 5, 4); |
| addr = sextract64(bvr, 0, 49) & ~3ULL; |
| if (bas == 0) { |
| return; |
| } |
| if (bas == 0xc) { |
| addr += 2; |
| } |
| break; |
| } |
| case 2: /* unlinked context ID match */ |
| case 8: /* unlinked VMID match (reserved if no EL2) */ |
| case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ |
| qemu_log_mask(LOG_UNIMP, |
| "arm: unlinked context breakpoint types not implemented\n"); |
| return; |
| case 9: /* linked VMID match (reserved if no EL2) */ |
| case 11: /* linked context ID and VMID match (reserved if no EL2) */ |
| case 3: /* linked context ID match */ |
| default: |
| /* We must generate no events for Linked context matches (unless |
| * they are linked to by some other bp/wp, which is handled in |
| * updates for the linking bp/wp). We choose to also generate no events |
| * for reserved values. |
| */ |
| return; |
| } |
| |
| cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); |
| } |
| |
| void hw_breakpoint_update_all(ARMCPU *cpu) |
| { |
| int i; |
| CPUARMState *env = &cpu->env; |
| |
| /* Completely clear out existing QEMU breakpoints and our array, to |
| * avoid possible stale entries following migration load. |
| */ |
| cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); |
| memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); |
| |
| for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { |
| hw_breakpoint_update(cpu, i); |
| } |
| } |
| |
| static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| raw_write(env, ri, value); |
| hw_breakpoint_update(cpu, i); |
| } |
| |
| static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only |
| * copy of BAS[0]. |
| */ |
| value = deposit64(value, 6, 1, extract64(value, 5, 1)); |
| value = deposit64(value, 8, 1, extract64(value, 7, 1)); |
| |
| raw_write(env, ri, value); |
| hw_breakpoint_update(cpu, i); |
| } |
| |
| static void define_debug_regs(ARMCPU *cpu) |
| { |
| /* Define v7 and v8 architectural debug registers. |
| * These are just dummy implementations for now. |
| */ |
| int i; |
| int wrps, brps, ctx_cmps; |
| ARMCPRegInfo dbgdidr = { |
| .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .accessfn = access_tda, |
| .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, |
| }; |
| |
| /* Note that all these register fields hold "number of Xs minus 1". */ |
| brps = extract32(cpu->dbgdidr, 24, 4); |
| wrps = extract32(cpu->dbgdidr, 28, 4); |
| ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
| |
| assert(ctx_cmps <= brps); |
| |
| /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties |
| * of the debug registers such as number of breakpoints; |
| * check that if they both exist then they agree. |
| */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); |
| assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); |
| assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
| } |
| |
| define_one_arm_cp_reg(cpu, &dbgdidr); |
| define_arm_cp_regs(cpu, debug_cp_reginfo); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { |
| define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); |
| } |
| |
| for (i = 0; i < brps + 1; i++) { |
| ARMCPRegInfo dbgregs[] = { |
| { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
| .writefn = dbgbvr_write, .raw_writefn = raw_write |
| }, |
| { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
| .writefn = dbgbcr_write, .raw_writefn = raw_write |
| }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, dbgregs); |
| } |
| |
| for (i = 0; i < wrps + 1; i++) { |
| ARMCPRegInfo dbgregs[] = { |
| { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
| .writefn = dbgwvr_write, .raw_writefn = raw_write |
| }, |
| { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
| .writefn = dbgwcr_write, .raw_writefn = raw_write |
| }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, dbgregs); |
| } |
| } |
| |
| /* We don't know until after realize whether there's a GICv3 |
| * attached, and that is what registers the gicv3 sysregs. |
| * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 |
| * at runtime. |
| */ |
| static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint64_t pfr1 = cpu->id_pfr1; |
| |
| if (env->gicv3state) { |
| pfr1 |= 1 << 28; |
| } |
| return pfr1; |
| } |
| |
| static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint64_t pfr0 = cpu->isar.id_aa64pfr0; |
| |
| if (env->gicv3state) { |
| pfr0 |= 1 << 24; |
| } |
| return pfr0; |
| } |
| |
| /* Shared logic between LORID and the rest of the LOR* registers. |
| * Secure state has already been delt with. |
| */ |
| static CPAccessResult access_lor_ns(CPUARMState *env) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_is_secure_below_el3(env)) { |
| /* Access ok in secure mode. */ |
| return CP_ACCESS_OK; |
| } |
| return access_lor_ns(env); |
| } |
| |
| static CPAccessResult access_lor_other(CPUARMState *env, |
| const ARMCPRegInfo *ri, bool isread) |
| { |
| if (arm_is_secure_below_el3(env)) { |
| /* Access denied in secure mode. */ |
| return CP_ACCESS_TRAP; |
| } |
| return access_lor_ns(env); |
| } |
| |
| #ifdef TARGET_AARCH64 |
| static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && |
| arm_feature(env, ARM_FEATURE_EL2) && |
| !(arm_hcr_el2_eff(env) & HCR_APK)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && |
| arm_feature(env, ARM_FEATURE_EL3) && |
| !(env->cp15.scr_el3 & SCR_APK)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static const ARMCPRegInfo pauth_reginfo[] = { |
| { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apda_key.lo) }, |
| { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apda_key.hi) }, |
| { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apdb_key.lo) }, |
| { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apdb_key.hi) }, |
| { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apga_key.lo) }, |
| { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apga_key.hi) }, |
| { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apia_key.lo) }, |
| { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apia_key.hi) }, |
| { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apib_key.lo) }, |
| { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, |
| .access = PL1_RW, .accessfn = access_pauth, |
| .fieldoffset = offsetof(CPUARMState, apib_key.hi) }, |
| REGINFO_SENTINEL |
| }; |
| #endif |
| |
| static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| |
| if (el == 0) { |
| uint64_t sctlr = arm_sctlr(env, el); |
| if (!(sctlr & SCTLR_EnRCTX)) { |
| return CP_ACCESS_TRAP; |
| } |
| } else if (el == 1) { |
| uint64_t hcr = arm_hcr_el2_eff(env); |
| if (hcr & HCR_NV) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static const ARMCPRegInfo predinv_reginfo[] = { |
| { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, |
| .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, |
| .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, |
| .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| /* |
| * Note the AArch32 opcodes have a different OPC1. |
| */ |
| { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, |
| .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, |
| .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, |
| .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, |
| REGINFO_SENTINEL |
| }; |
| |
| void register_cp_regs_for_features(ARMCPU *cpu) |
| { |
| /* Register all the coprocessor registers based on feature bits */ |
| CPUARMState *env = &cpu->env; |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| /* M profile has no coprocessor registers */ |
| return; |
| } |
| |
| define_arm_cp_regs(cpu, cp_reginfo); |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| /* Must go early as it is full of wildcards that may be |
| * overridden by later definitions. |
| */ |
| define_arm_cp_regs(cpu, not_v8_cp_reginfo); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* The ID registers all have impdef reset values */ |
| ARMCPRegInfo v6_idregs[] = { |
| { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_pfr0 }, |
| /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know |
| * the value of the GIC field until after we define these regs. |
| */ |
| { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_NO_RAW, |
| .readfn = id_pfr1_read, |
| .writefn = arm_cp_write_ignore }, |
| { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_dfr0 }, |
| { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_afr0 }, |
| { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr0 }, |
| { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr1 }, |
| { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr2 }, |
| { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr3 }, |
| { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_isar0 }, |
| { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_isar1 }, |
| { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_isar2 }, |
| { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_isar3 }, |
| { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_isar4 }, |
| { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_isar5 }, |
| { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr4 }, |
| { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_isar6 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, v6_idregs); |
| define_arm_cp_regs(cpu, v6_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, not_v6_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V6K)) { |
| define_arm_cp_regs(cpu, v6k_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7MP) && |
| !arm_feature(env, ARM_FEATURE_PMSA)) { |
| define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7VE)) { |
| define_arm_cp_regs(cpu, pmovsset_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| /* v7 performance monitor control register: same implementor |
| * field as main ID register, and we implement four counters in |
| * addition to the cycle count register. |
| */ |
| unsigned int i, pmcrn = 4; |
| ARMCPRegInfo pmcr = { |
| .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
| .accessfn = pmreg_access, .writefn = pmcr_write, |
| .raw_writefn = raw_write, |
| }; |
| ARMCPRegInfo pmcr64 = { |
| .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), |
| .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), |
| .writefn = pmcr_write, .raw_writefn = raw_write, |
| }; |
| define_one_arm_cp_reg(cpu, &pmcr); |
| define_one_arm_cp_reg(cpu, &pmcr64); |
| for (i = 0; i < pmcrn; i++) { |
| char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); |
| char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); |
| char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); |
| char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); |
| ARMCPRegInfo pmev_regs[] = { |
| { .name = pmevcntr_name, .cp = 15, .crn = 14, |
| .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, |
| .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, |
| .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, |
| .accessfn = pmreg_access }, |
| { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), |
| .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_IO, |
| .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, |
| .raw_readfn = pmevcntr_rawread, |
| .raw_writefn = pmevcntr_rawwrite }, |
| { .name = pmevtyper_name, .cp = 15, .crn = 14, |
| .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, |
| .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, |
| .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, |
| .accessfn = pmreg_access }, |
| { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), |
| .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_IO, |
| .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, |
| .raw_writefn = pmevtyper_rawwrite }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, pmev_regs); |
| g_free(pmevcntr_name); |
| g_free(pmevcntr_el0_name); |
| g_free(pmevtyper_name); |
| g_free(pmevtyper_el0_name); |
| } |
| ARMCPRegInfo clidr = { |
| .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
| }; |
| define_one_arm_cp_reg(cpu, &clidr); |
| define_arm_cp_regs(cpu, v7_cp_reginfo); |
| define_debug_regs(cpu); |
| } else { |
| define_arm_cp_regs(cpu, not_v7_cp_reginfo); |
| } |
| if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && |
| FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { |
| ARMCPRegInfo v81_pmu_regs[] = { |
| { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = extract64(cpu->pmceid0, 32, 32) }, |
| { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = extract64(cpu->pmceid1, 32, 32) }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, v81_pmu_regs); |
| } |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* AArch64 ID registers, which all have impdef reset values. |
| * Note that within the ID register ranges the unused slots |
| * must all RAZ, not UNDEF; future architecture versions may |
| * define new registers here. |
| */ |
| ARMCPRegInfo v8_idregs[] = { |
| /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't |
| * know the right value for the GIC field until after we |
| * define these regs. |
| */ |
| { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_NO_RAW, |
| .readfn = id_aa64pfr0_read, |
| .writefn = arm_cp_write_ignore }, |
| { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_aa64pfr1}, |
| { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| /* At present, only SVEver == 0 is defined anyway. */ |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64dfr0 }, |
| { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64dfr1 }, |
| { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64afr0 }, |
| { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64afr1 }, |
| { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_aa64isar0 }, |
| { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_aa64isar1 }, |
| { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_aa64mmfr0 }, |
| { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.id_aa64mmfr1 }, |
| { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.mvfr0 }, |
| { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.mvfr1 }, |
| { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->isar.mvfr2 }, |
| { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = extract64(cpu->pmceid0, 0, 32) }, |
| { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmceid0 }, |
| { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = extract64(cpu->pmceid1, 0, 32) }, |
| { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmceid1 }, |
| REGINFO_SENTINEL |
| }; |
| #ifdef CONFIG_USER_ONLY |
| ARMCPRegUserSpaceInfo v8_user_idregs[] = { |
| { .name = "ID_AA64PFR0_EL1", |
| .exported_bits = 0x000f000f00ff0000, |
| .fixed_bits = 0x0000000000000011 }, |
| { .name = "ID_AA64PFR1_EL1", |
| .exported_bits = 0x00000000000000f0 }, |
| { .name = "ID_AA64PFR*_EL1_RESERVED", |
| .is_glob = true }, |
| { .name = "ID_AA64ZFR0_EL1" }, |
| { .name = "ID_AA64MMFR0_EL1", |
| .fixed_bits = 0x00000000ff000000 }, |
| { .name = "ID_AA64MMFR1_EL1" }, |
| { .name = "ID_AA64MMFR*_EL1_RESERVED", |
| .is_glob = true }, |
| { .name = "ID_AA64DFR0_EL1", |
| .fixed_bits = 0x0000000000000006 }, |
| { .name = "ID_AA64DFR1_EL1" }, |
| { .name = "ID_AA64DFR*_EL1_RESERVED", |
| .is_glob = true }, |
| { .name = "ID_AA64AFR*", |
| .is_glob = true }, |
| { .name = "ID_AA64ISAR0_EL1", |
| .exported_bits = 0x00fffffff0fffff0 }, |
| { .name = "ID_AA64ISAR1_EL1", |
| .exported_bits = 0x000000f0ffffffff }, |
| { .name = "ID_AA64ISAR*_EL1_RESERVED", |
| .is_glob = true }, |
| REGUSERINFO_SENTINEL |
| }; |
| modify_arm_cp_regs(v8_idregs, v8_user_idregs); |
| #endif |
| /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
| if (!arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_feature(env, ARM_FEATURE_EL2)) { |
| ARMCPRegInfo rvbar = { |
| .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar |
| }; |
| define_one_arm_cp_reg(cpu, &rvbar); |
| } |
| define_arm_cp_regs(cpu, v8_idregs); |
| define_arm_cp_regs(cpu, v8_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| uint64_t vmpidr_def = mpidr_read_val(env); |
| ARMCPRegInfo vpidr_regs[] = { |
| { .name = "VPIDR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, |
| { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .resetvalue = cpu->midr, |
| .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
| { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, |
| { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| .access = PL2_RW, |
| .resetvalue = vmpidr_def, |
| .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, vpidr_regs); |
| define_arm_cp_regs(cpu, el2_cp_reginfo); |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| define_arm_cp_regs(cpu, el2_v8_cp_reginfo); |
| } |
| /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
| if (!arm_feature(env, ARM_FEATURE_EL3)) { |
| ARMCPRegInfo rvbar = { |
| .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar |
| }; |
| define_one_arm_cp_reg(cpu, &rvbar); |
| } |
| } else { |
| /* If EL2 is missing but higher ELs are enabled, we need to |
| * register the no_el2 reginfos. |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
| * of MIDR_EL1 and MPIDR_EL1. |
| */ |
| ARMCPRegInfo vpidr_regs[] = { |
| { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_CONST, .resetvalue = cpu->midr, |
| .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
| { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_NO_RAW, |
| .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, vpidr_regs); |
| define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); |
| } |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| define_arm_cp_regs(cpu, el3_cp_reginfo); |
| ARMCPRegInfo el3_regs[] = { |
| { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, |
| { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, |
| .raw_writefn = raw_write, .writefn = sctlr_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), |
| .resetvalue = cpu->reset_sctlr }, |
| REGINFO_SENTINEL |
| }; |
| |
| define_arm_cp_regs(cpu, el3_regs); |
| } |
| /* The behaviour of NSACR is sufficiently various that we don't |
| * try to describe it in a single reginfo: |
| * if EL3 is 64 bit, then trap to EL3 from S EL1, |
| * reads as constant 0xc00 from NS EL1 and NS EL2 |
| * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 |
| * if v7 without EL3, register doesn't exist |
| * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| ARMCPRegInfo nsacr = { |
| .name = "NSACR", .type = ARM_CP_CONST, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL1_RW, .accessfn = nsacr_access, |
| .resetvalue = 0xc00 |
| }; |
| define_one_arm_cp_reg(cpu, &nsacr); |
| } else { |
| ARMCPRegInfo nsacr = { |
| .name = "NSACR", |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL3_RW | PL1_R, |
| .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.nsacr) |
| }; |
| define_one_arm_cp_reg(cpu, &nsacr); |
| } |
| } else { |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| ARMCPRegInfo nsacr = { |
| .name = "NSACR", .type = ARM_CP_CONST, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL1_R, |
| .resetvalue = 0xc00 |
| }; |
| define_one_arm_cp_reg(cpu, &nsacr); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_PMSA)) { |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* PMSAv6 not implemented */ |
| assert(arm_feature(env, ARM_FEATURE_V7)); |
| define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
| define_arm_cp_regs(cpu, pmsav7_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, pmsav5_cp_reginfo); |
| } |
| } else { |
| define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
| define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
| /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ |
| if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { |
| define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
| define_arm_cp_regs(cpu, t2ee_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| define_arm_cp_regs(cpu, generic_timer_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_VAPA)) { |
| define_arm_cp_regs(cpu, vapa_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
| define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { |
| define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { |
| define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| define_arm_cp_regs(cpu, omap_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| define_arm_cp_regs(cpu, strongarm_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| define_arm_cp_regs(cpu, xscale_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { |
| define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| define_arm_cp_regs(cpu, lpae_cp_reginfo); |
| } |
| /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
| * cp15 crn=0 to be writes-ignored, whereas for other cores they should |
| * be read-only (ie write causes UNDEF exception). |
| */ |
| { |
| ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
| /* Pre-v8 MIDR space. |
| * Note that the MIDR isn't a simple constant register because |
| * of the TI925 behaviour where writes to another register can |
| * cause the MIDR value to change. |
| * |
| * Unimplemented registers in the c15 0 0 0 space default to |
| * MIDR. Define MIDR first as this entire space, then CTR, TCMTR |
| * and friends override accordingly. |
| */ |
| { .name = "MIDR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .resetvalue = cpu->midr, |
| .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
| .readfn = midr_read, |
| .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
| .type = ARM_CP_OVERRIDE }, |
| /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
| { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
| .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
| .readfn = midr_read }, |
| /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
| { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_R, .resetvalue = cpu->midr }, |
| { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, |
| .access = PL1_R, .resetvalue = cpu->midr }, |
| { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
| REGINFO_SENTINEL |
| }; |
| ARMCPRegInfo id_cp_reginfo[] = { |
| /* These are common to v8 and pre-v8 */ |
| { .name = "CTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, |
| .access = PL0_R, .accessfn = ctr_el0_access, |
| .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ |
| { .name = "TCMTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| /* TLBTR is specific to VMSA */ |
| ARMCPRegInfo id_tlbtr_reginfo = { |
| .name = "TLBTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, |
| }; |
| /* MPUIR is specific to PMSA V6+ */ |
| ARMCPRegInfo id_mpuir_reginfo = { |
| .name = "MPUIR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmsav7_dregion << 8 |
| }; |
| ARMCPRegInfo crn0_wi_reginfo = { |
| .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE |
| }; |
| #ifdef CONFIG_USER_ONLY |
| ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { |
| { .name = "MIDR_EL1", |
| .exported_bits = 0x00000000ffffffff }, |
| { .name = "REVIDR_EL1" }, |
| REGUSERINFO_SENTINEL |
| }; |
| modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); |
| #endif |
| if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
| arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| ARMCPRegInfo *r; |
| /* Register the blanket "writes ignored" value first to cover the |
| * whole space. Then update the specific ID registers to allow write |
| * access, so that they ignore writes rather than causing them to |
| * UNDEF. |
| */ |
| define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); |
| for (r = id_pre_v8_midr_cp_reginfo; |
| r->type != ARM_CP_SENTINEL; r++) { |
| r->access = PL1_RW; |
| } |
| for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
| r->access = PL1_RW; |
| } |
| id_mpuir_reginfo.access = PL1_RW; |
| id_tlbtr_reginfo.access = PL1_RW; |
| } |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); |
| } |
| define_arm_cp_regs(cpu, id_cp_reginfo); |
| if (!arm_feature(env, ARM_FEATURE_PMSA)) { |
| define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
| ARMCPRegInfo mpidr_cp_reginfo[] = { |
| { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, |
| .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
| REGINFO_SENTINEL |
| }; |
| #ifdef CONFIG_USER_ONLY |
| ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { |
| { .name = "MPIDR_EL1", |
| .fixed_bits = 0x0000000080000000 }, |
| REGUSERINFO_SENTINEL |
| }; |
| modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); |
| #endif |
| define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
| ARMCPRegInfo auxcr_reginfo[] = { |
| { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = cpu->reset_auxcr }, |
| { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, auxcr_reginfo); |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ |
| ARMCPRegInfo hactlr2_reginfo = { |
| .name = "HACTLR2", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 |
| }; |
| define_one_arm_cp_reg(cpu, &hactlr2_reginfo); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_CBAR)) { |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| /* 32 bit view is [31:18] 0...0 [43:32]. */ |
| uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) |
| | extract64(cpu->reset_cbar, 32, 12); |
| ARMCPRegInfo cbar_reginfo[] = { |
| { .name = "CBAR", |
| .type = ARM_CP_CONST, |
| .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| .access = PL1_R, .resetvalue = cpu->reset_cbar }, |
| { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_CONST, |
| .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, |
| .access = PL1_R, .resetvalue = cbar32 }, |
| REGINFO_SENTINEL |
| }; |
| /* We don't implement a r/w 64 bit CBAR currently */ |
| assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); |
| define_arm_cp_regs(cpu, cbar_reginfo); |
| } else { |
| ARMCPRegInfo cbar = { |
| .name = "CBAR", |
| .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, |
| .fieldoffset = offsetof(CPUARMState, |
| cp15.c15_config_base_address) |
| }; |
| if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { |
| cbar.access = PL1_R; |
| cbar.fieldoffset = 0; |
| cbar.type = ARM_CP_CONST; |
| } |
| define_one_arm_cp_reg(cpu, &cbar); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_VBAR)) { |
| ARMCPRegInfo vbar_cp_reginfo[] = { |
| { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .writefn = vbar_write, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
| offsetof(CPUARMState, cp15.vbar_ns) }, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, vbar_cp_reginfo); |
| } |
| |
| /* Generic registers whose values depend on the implementation */ |
| { |
| ARMCPRegInfo sctlr = { |
| .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), |
| offsetof(CPUARMState, cp15.sctlr_ns) }, |
| .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
| .raw_writefn = raw_write, |
| }; |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| /* Normally we would always end the TB on an SCTLR write, but Linux |
| * arch/arm/mach-pxa/sleep.S expects two instructions following |
| * an MMU enable to execute from cache. Imitate this behaviour. |
| */ |
| sctlr.type |= ARM_CP_SUPPRESS_TB_END; |
| } |
| define_one_arm_cp_reg(cpu, &sctlr); |
| } |
| |
| if (cpu_isar_feature(aa64_lor, cpu)) { |
| /* |
| * A trivial implementation of ARMv8.1-LOR leaves all of these |
| * registers fixed at 0, which indicates that there are zero |
| * supported Limited Ordering regions. |
| */ |
| static const ARMCPRegInfo lor_reginfo[] = { |
| { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_lor_other, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_lor_other, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_lor_other, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, |
| .access = PL1_RW, .accessfn = access_lor_other, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, |
| .access = PL1_R, .accessfn = access_lorid, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, lor_reginfo); |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); |
| } else { |
| define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); |
| } |
| } |
| |
| #ifdef TARGET_AARCH64 |
| if (cpu_isar_feature(aa64_pauth, cpu)) { |
| define_arm_cp_regs(cpu, pauth_reginfo); |
| } |
| #endif |
| |
| /* |
| * While all v8.0 cpus support aarch64, QEMU does have configurations |
| * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, |
| * which will set ID_ISAR6. |
| */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) |
| ? cpu_isar_feature(aa64_predinv, cpu) |
| : cpu_isar_feature(aa32_predinv, cpu)) { |
| define_arm_cp_regs(cpu, predinv_reginfo); |
| } |
| } |
| |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, |
| aarch64_fpu_gdb_set_reg, |
| 34, "aarch64-fpu.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 51, "arm-neon.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 35, "arm-vfp3.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 19, "arm-vfp.xml", 0); |
| } |
| gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, |
| arm_gen_dynamic_xml(cs), |
| "system-registers.xml", 0); |
| } |
| |
| /* Sort alphabetically by type name, except for "any". */ |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
| { |
| ObjectClass *class_a = (ObjectClass *)a; |
| ObjectClass *class_b = (ObjectClass *)b; |
| const char *name_a, *name_b; |
| |
| name_a = object_class_get_name(class_a); |
| name_b = object_class_get_name(class_b); |
| if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
| return 1; |
| } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
| return -1; |
| } else { |
| return strcmp(name_a, name_b); |
| } |
| } |
| |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| const char *typename; |
| char *name; |
| |
| typename = object_class_get_name(oc); |
| name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| qemu_printf(" %s\n", name); |
| g_free(name); |
| } |
| |
| void arm_cpu_list(void) |
| { |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| list = g_slist_sort(list, arm_cpu_list_compare); |
| qemu_printf("Available CPUs:\n"); |
| g_slist_foreach(list, arm_cpu_list_entry, NULL); |
| g_slist_free(list); |
| } |
| |
| static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| CpuDefinitionInfoList **cpu_list = user_data; |
| CpuDefinitionInfoList *entry; |
| CpuDefinitionInfo *info; |
| const char *typename; |
| |
| typename = object_class_get_name(oc); |
| info = g_malloc0(sizeof(*info)); |
| info->name = g_strndup(typename, |
| strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| info->q_typename = g_strdup(typename); |
| |
| entry = g_malloc0(sizeof(*entry)); |
| entry->value = info; |
| entry->next = *cpu_list; |
| *cpu_list = entry; |
| } |
| |
| CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) |
| { |
| CpuDefinitionInfoList *cpu_list = NULL; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); |
| g_slist_free(list); |
| |
| return cpu_list; |
| } |
| |
| static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
| void *opaque, int state, int secstate, |
| int crm, int opc1, int opc2, |
| const char *name) |
| { |
| /* Private utility function for define_one_arm_cp_reg_with_opaque(): |
| * add a single reginfo struct to the hash table. |
| */ |
| uint32_t *key = g_new(uint32_t, 1); |
| ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); |
| int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; |
| int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
| |
| r2->name = g_strdup(name); |
| /* Reset the secure state to the specific incoming state. This is |
| * necessary as the register may have been defined with both states. |
| */ |
| r2->secure = secstate; |
| |
| if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { |
| /* Register is banked (using both entries in array). |
| * Overwriting fieldoffset as the array is only used to define |
| * banked registers but later only fieldoffset is used. |
| */ |
| r2->fieldoffset = r->bank_fieldoffsets[ns]; |
| } |
| |
| if (state == ARM_CP_STATE_AA32) { |
| if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { |
| /* If the register is banked then we don't need to migrate or |
| * reset the 32-bit instance in certain cases: |
| * |
| * 1) If the register has both 32-bit and 64-bit instances then we |
| * can count on the 64-bit instance taking care of the |
| * non-secure bank. |
| * 2) If ARMv8 is enabled then we can count on a 64-bit version |
| * taking care of the secure bank. This requires that separate |
| * 32 and 64-bit definitions are provided. |
| */ |
| if ((r->state == ARM_CP_STATE_BOTH && ns) || |
| (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { |
| r2->type |= ARM_CP_ALIAS; |
| } |
| } else if ((secstate != r->secure) && !ns) { |
| /* The register is not banked so we only want to allow migration of |
| * the non-secure instance. |
| */ |
| r2->type |= ARM_CP_ALIAS; |
| } |
| |
| if (r->state == ARM_CP_STATE_BOTH) { |
| /* We assume it is a cp15 register if the .cp field is left unset. |
| */ |
| if (r2->cp == 0) { |
| r2->cp = 15; |
| } |
| |
| #ifdef HOST_WORDS_BIGENDIAN |
| if (r2->fieldoffset) { |
| r2->fieldoffset += sizeof(uint32_t); |
| } |
| #endif |
| } |
| } |
| if (state == ARM_CP_STATE_AA64) { |
| /* To allow abbreviation of ARMCPRegInfo |
| * definitions, we treat cp == 0 as equivalent to |
| * the value for "standard guest-visible sysreg". |
| * STATE_BOTH definitions are also always "standard |
| * sysreg" in their AArch64 view (the .cp value may |
| * be non-zero for the benefit of the AArch32 view). |
| */ |
| if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
| r2->cp = CP_REG_ARM64_SYSREG_CP; |
| } |
| *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, |
| r2->opc0, opc1, opc2); |
| } else { |
| *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
| } |
| if (opaque) { |
| r2->opaque = opaque; |
| } |
| /* reginfo passed to helpers is correct for the actual access, |
| * and is never ARM_CP_STATE_BOTH: |
| */ |
| r2->state = state; |
| /* Make sure reginfo passed to helpers for wildcarded regs |
| * has the correct crm/opc1/opc2 for this reg, not CP_ANY: |
| */ |
| r2->crm = crm; |
| r2->opc1 = opc1; |
| r2->opc2 = opc2; |
| /* By convention, for wildcarded registers only the first |
| * entry is used for migration; the others are marked as |
| * ALIAS so we don't try to transfer the register |
| * multiple times. Special registers (ie NOP/WFI) are |
| * never migratable and not even raw-accessible. |
| */ |
| if ((r->type & ARM_CP_SPECIAL)) { |
| r2->type |= ARM_CP_NO_RAW; |
| } |
| if (((r->crm == CP_ANY) && crm != 0) || |
| ((r->opc1 == CP_ANY) && opc1 != 0) || |
| ((r->opc2 == CP_ANY) && opc2 != 0)) { |
| r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; |
| } |
| |
| /* Check that raw accesses are either forbidden or handled. Note that |
| * we can't assert this earlier because the setup of fieldoffset for |
| * banked registers has to be done first. |
| */ |
| if (!(r2->type & ARM_CP_NO_RAW)) { |
| assert(!raw_accessors_invalid(r2)); |
| } |
| |
| /* Overriding of an existing definition must be explicitly |
| * requested. |
| */ |
| if (!(r->type & ARM_CP_OVERRIDE)) { |
| ARMCPRegInfo *oldreg; |
| oldreg = g_hash_table_lookup(cpu->cp_regs, key); |
| if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { |
| fprintf(stderr, "Register redefined: cp=%d %d bit " |
| "crn=%d crm=%d opc1=%d opc2=%d, " |
| "was %s, now %s\n", r2->cp, 32 + 32 * is64, |
| r2->crn, r2->crm, r2->opc1, r2->opc2, |
| oldreg->name, r2->name); |
| g_assert_not_reached(); |
| } |
| } |
| g_hash_table_insert(cpu->cp_regs, key, r2); |
| } |
| |
| |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *r, void *opaque) |
| { |
| /* Define implementations of coprocessor registers. |
| * We store these in a hashtable because typically |
| * there are less than 150 registers in a space which |
| * is 16*16*16*8*8 = 262144 in size. |
| * Wildcarding is supported for the crm, opc1 and opc2 fields. |
| * If a register is defined twice then the second definition is |
| * used, so this can be used to define some generic registers and |
| * then override them with implementation specific variations. |
| * At least one of the original and the second definition should |
| * include ARM_CP_OVERRIDE in its type bits -- this is just a guard |
| * against accidental use. |
| * |
| * The state field defines whether the register is to be |
| * visible in the AArch32 or AArch64 execution state. If the |
| * state is set to ARM_CP_STATE_BOTH then we synthesise a |
| * reginfo structure for the AArch32 view, which sees the lower |
| * 32 bits of the 64 bit register. |
| * |
| * Only registers visible in AArch64 may set r->opc0; opc0 cannot |
| * be wildcarded. AArch64 registers are always considered to be 64 |
| * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of |
| * the register, if any. |
| */ |
| int crm, opc1, opc2, state; |
| int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
| int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; |
| int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; |
| int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; |
| int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; |
| int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; |
| /* 64 bit registers have only CRm and Opc1 fields */ |
| assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); |
| /* op0 only exists in the AArch64 encodings */ |
| assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); |
| /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ |
| assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); |
| /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
| * encodes a minimum access level for the register. We roll this |
| * runtime check into our general permission check code, so check |
| * here that the reginfo's specified permissions are strict enough |
| * to encompass the generic architectural permission check. |
| */ |
| if (r->state != ARM_CP_STATE_AA32) { |
| int mask = 0; |
| switch (r->opc1) { |
| case 0: |
| /* min_EL EL1, but some accessible to EL0 via kernel ABI */ |
| mask = PL0U_R | PL1_RW; |
| break; |
| case 1: case 2: |
| /* min_EL EL1 */ |
| mask = PL1_RW; |
| break; |
| case 3: |
| /* min_EL EL0 */ |
| mask = PL0_RW; |
| break; |
| case 4: |
| /* min_EL EL2 */ |
| mask = PL2_RW; |
| break; |
| case 5: |
| /* unallocated encoding, so not possible */ |
| assert(false); |
| break; |
| case 6: |
| /* min_EL EL3 */ |
| mask = PL3_RW; |
| break; |
| case 7: |
| /* min_EL EL1, secure mode only (we don't check the latter) */ |
| mask = PL1_RW; |
| break; |
| default: |
| /* broken reginfo with out-of-range opc1 */ |
| assert(false); |
| break; |
| } |
| /* assert our permissions are not too lax (stricter is fine) */ |
| assert((r->access & ~mask) == 0); |
| } |
| |
| /* Check that the register definition has enough info to handle |
| * reads and writes if they are permitted. |
| */ |
| if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { |
| if (r->access & PL3_R) { |
| assert((r->fieldoffset || |
| (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || |
| r->readfn); |
| } |
| if (r->access & PL3_W) { |
| assert((r->fieldoffset || |
| (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || |
| r->writefn); |
| } |
| } |
| /* Bad type field probably means missing sentinel at end of reg list */ |
| assert(cptype_valid(r->type)); |
| for (crm = crmmin; crm <= crmmax; crm++) { |
| for (opc1 = opc1min; opc1 <= opc1max; opc1++) { |
| for (opc2 = opc2min; opc2 <= opc2max; opc2++) { |
| for (state = ARM_CP_STATE_AA32; |
| state <= ARM_CP_STATE_AA64; state++) { |
| if (r->state != state && r->state != ARM_CP_STATE_BOTH) { |
| continue; |
| } |
| if (state == ARM_CP_STATE_AA32) { |
| /* Under AArch32 CP registers can be common |
| * (same for secure and non-secure world) or banked. |
| */ |
| char *name; |
| |
| switch (r->secure) { |
| case ARM_CP_SECSTATE_S: |
| case ARM_CP_SECSTATE_NS: |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| r->secure, crm, opc1, opc2, |
| r->name); |
| break; |
| default: |
| name = g_strdup_printf("%s_S", r->name); |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| ARM_CP_SECSTATE_S, |
| crm, opc1, opc2, name); |
| g_free(name); |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| ARM_CP_SECSTATE_NS, |
| crm, opc1, opc2, r->name); |
| break; |
| } |
| } else { |
| /* AArch64 registers get mapped to non-secure instance |
| * of AArch32 */ |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| ARM_CP_SECSTATE_NS, |
| crm, opc1, opc2, r->name); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *regs, void *opaque) |
| { |
| /* Define a whole list of registers */ |
| const ARMCPRegInfo *r; |
| for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
| define_one_arm_cp_reg_with_opaque(cpu, r, opaque); |
| } |
| } |
| |
| /* |
| * Modify ARMCPRegInfo for access from userspace. |
| * |
| * This is a data driven modification directed by |
| * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as |
| * user-space cannot alter any values and dynamic values pertaining to |
| * execution state are hidden from user space view anyway. |
| */ |
| void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) |
| { |
| const ARMCPRegUserSpaceInfo *m; |
| ARMCPRegInfo *r; |
| |
| for (m = mods; m->name; m++) { |
| GPatternSpec *pat = NULL; |
| if (m->is_glob) { |
| pat = g_pattern_spec_new(m->name); |
| } |
| for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
| if (pat && g_pattern_match_string(pat, r->name)) { |
| r->type = ARM_CP_CONST; |
| r->access = PL0U_R; |
| r->resetvalue = 0; |
| /* continue */ |
| } else if (strcmp(r->name, m->name) == 0) { |
| r->type = ARM_CP_CONST; |
| r->access = PL0U_R; |
| r->resetvalue &= m->exported_bits; |
| r->resetvalue |= m->fixed_bits; |
| break; |
| } |
| } |
| if (pat) { |
| g_pattern_spec_free(pat); |
| } |
| } |
| } |
| |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
| { |
| return g_hash_table_lookup(cpregs, &encoded_cp); |
| } |
| |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Helper coprocessor write function for write-ignore registers */ |
| } |
| |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Helper coprocessor write function for read-as-zero registers */ |
| return 0; |
| } |
| |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
| { |
| /* Helper coprocessor reset function for do-nothing-on-reset registers */ |
| } |
| |
| static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
| { |
| /* Return true if it is not valid for us to switch to |
| * this CPU mode (ie all the UNPREDICTABLE cases in |
| * the ARM ARM CPSRWriteByInstr pseudocode). |
| */ |
| |
| /* Changes to or from Hyp via MSR and CPS are illegal. */ |
| if (write_type == CPSRWriteByInstr && |
| ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || |
| mode == ARM_CPU_MODE_HYP)) { |
| return 1; |
| } |
| |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| return 0; |
| case ARM_CPU_MODE_SYS: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_FIQ: |
| /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
| * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) |
| */ |
| /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
| * and CPS are treated as illegal mode changes. |
| */ |
| if (write_type == CPSRWriteByInstr && |
| (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && |
| (arm_hcr_el2_eff(env) & HCR_TGE)) { |
| return 1; |
| } |
| return 0; |
| case ARM_CPU_MODE_HYP: |
| return !arm_feature(env, ARM_FEATURE_EL2) |
| || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); |
| case ARM_CPU_MODE_MON: |
| return arm_current_el(env) < 3; |
| default: |
| return 1; |
| } |
| } |
| |
| uint32_t cpsr_read(CPUARMState *env) |
| { |
| int ZF; |
| ZF = (env->ZF == 0); |
| return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
| | ((env->condexec_bits & 0xfc) << 8) |
| | (env->GE << 16) | (env->daif & CPSR_AIF); |
| } |
| |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
| CPSRWriteType write_type) |
| { |
| uint32_t changed_daif; |
| |
| if (mask & CPSR_NZCV) { |
| env->ZF = (~val) & CPSR_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| } |
| if (mask & CPSR_Q) |
| env->QF = ((val & CPSR_Q) != 0); |
| if (mask & CPSR_T) |
| env->thumb = ((val & CPSR_T) != 0); |
| if (mask & CPSR_IT_0_1) { |
| env->condexec_bits &= ~3; |
| env->condexec_bits |= (val >> 25) & 3; |
| } |
| if (mask & CPSR_IT_2_7) { |
| env->condexec_bits &= 3; |
| env->condexec_bits |= (val >> 8) & 0xfc; |
| } |
| if (mask & CPSR_GE) { |
| env->GE = (val >> 16) & 0xf; |
| } |
| |
| /* In a V7 implementation that includes the security extensions but does |
| * not include Virtualization Extensions the SCR.FW and SCR.AW bits control |
| * whether non-secure software is allowed to change the CPSR_F and CPSR_A |
| * bits respectively. |
| * |
| * In a V8 implementation, it is permitted for privileged software to |
| * change the CPSR A/F bits regardless of the SCR.AW/FW bits. |
| */ |
| if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
| arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_feature(env, ARM_FEATURE_EL2) && |
| !arm_is_secure(env)) { |
| |
| changed_daif = (env->daif ^ val) & mask; |
| |
| if (changed_daif & CPSR_A) { |
| /* Check to see if we are allowed to change the masking of async |
| * abort exceptions from a non-secure state. |
| */ |
| if (!(env->cp15.scr_el3 & SCR_AW)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Ignoring attempt to switch CPSR_A flag from " |
| "non-secure world with SCR.AW bit clear\n"); |
| mask &= ~CPSR_A; |
| } |
| } |
| |
| if (changed_daif & CPSR_F) { |
| /* Check to see if we are allowed to change the masking of FIQ |
| * exceptions from a non-secure state. |
| */ |
| if (!(env->cp15.scr_el3 & SCR_FW)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Ignoring attempt to switch CPSR_F flag from " |
| "non-secure world with SCR.FW bit clear\n"); |
| mask &= ~CPSR_F; |
| } |
| |
| /* Check whether non-maskable FIQ (NMFI) support is enabled. |
| * If this bit is set software is not allowed to mask |
| * FIQs, but is allowed to set CPSR_F to 0. |
| */ |
| if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && |
| (val & CPSR_F)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Ignoring attempt to enable CPSR_F flag " |
| "(non-maskable FIQ [NMFI] support enabled)\n"); |
| mask &= ~CPSR_F; |
| } |
| } |
| } |
| |
| env->daif &= ~(CPSR_AIF & mask); |
| env->daif |= val & CPSR_AIF & mask; |
| |
| if (write_type != CPSRWriteRaw && |
| ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { |
| if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
| /* Note that we can only get here in USR mode if this is a |
| * gdb stub write; for this case we follow the architectural |
| * behaviour for guest writes in USR mode of ignoring an attempt |
| * to switch mode. (Those are caught by translate.c for writes |
| * triggered by guest instructions.) |
| */ |
| mask &= ~CPSR_M; |
| } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { |
| /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
| * v7, and has defined behaviour in v8: |
| * + leave CPSR.M untouched |
| * + allow changes to the other CPSR fields |
| * + set PSTATE.IL |
| * For user changes via the GDB stub, we don't set PSTATE.IL, |
| * as this would be unnecessarily harsh for a user error. |
| */ |
| mask &= ~CPSR_M; |
| if (write_type != CPSRWriteByGDBStub && |
| arm_feature(env, ARM_FEATURE_V8)) { |
| mask |= CPSR_IL; |
| val |= CPSR_IL; |
| } |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Illegal AArch32 mode switch attempt from %s to %s\n", |
| aarch32_mode_name(env->uncached_cpsr), |
| aarch32_mode_name(val)); |
| } else { |
| qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", |
| write_type == CPSRWriteExceptionReturn ? |
| "Exception return from AArch32" : |
| "AArch32 mode switch from", |
| aarch32_mode_name(env->uncached_cpsr), |
| aarch32_mode_name(val), env->regs[15]); |
| switch_mode(env, val & CPSR_M); |
| } |
| } |
| mask &= ~CACHED_CPSR_BITS; |
| env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
| } |
| |
| /* Sign/zero extend */ |
| uint32_t HELPER(sxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(int8_t)x; |
| res |= (uint32_t)(int8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(uxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(uint8_t)x; |
| res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| int32_t HELPER(sdiv)(int32_t num, int32_t den) |
| { |
| if (den == 0) |
| return 0; |
| if (num == INT_MIN && den == -1) |
| return INT_MIN; |
| return num / den; |
| } |
| |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den) |
| { |
| if (den == 0) |
| return 0; |
| return num / den; |
| } |
| |
| uint32_t HELPER(rbit)(uint32_t x) |
| { |
| return revbit32(x); |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| |
| /* These should probably raise undefined insn exceptions. */ |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); |
| return 0; |
| } |
| |
| void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) |
| { |
| /* translate.c should never generate calls here in user-only mode */ |
| g_assert_not_reached(); |
| } |
| |
| void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
| { |
| /* translate.c should never generate calls here in user-only mode */ |
| g_assert_not_reached(); |
| } |
| |
| void HELPER(v7m_preserve_fp_state)(CPUARMState *env) |
| { |
| /* translate.c should never generate calls here in user-only mode */ |
| g_assert_not_reached(); |
| } |
| |
| void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr) |
| { |
| /* translate.c should never generate calls here in user-only mode */ |
| g_assert_not_reached(); |
| } |
| |
| void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) |
| { |
| /* translate.c should never generate calls here in user-only mode */ |
| g_assert_not_reached(); |
| } |
| |
| uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) |
| { |
| /* The TT instructions can be used by unprivileged code, but in |
| * user-only emulation we don't have the MPU. |
| * Luckily since we know we are NonSecure unprivileged (and that in |
| * turn means that the A flag wasn't specified), all the bits in the |
| * register must be zero: |
| * IREGION: 0 because IRVALID is 0 |
| * IRVALID: 0 because NS |
| * S: 0 because NS |
| * NSRW: 0 because NS |
| * NSR: 0 because NS |
| * RW: 0 because unpriv and A flag not set |
| * R: 0 because unpriv and A flag not set |
| * SRVALID: 0 because NS |
| * MRVALID: 0 because unpriv and A flag not set |
| * SREGION: 0 becaus SRVALID is 0 |
| * MREGION: 0 because MRVALID is 0 |
| */ |
| return 0; |
| } |
| |
| static void switch_mode(CPUARMState *env, int mode) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (mode != ARM_CPU_MODE_USR) { |
| cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); |
| } |
| } |
| |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| uint32_t cur_el, bool secure) |
| { |
| return 1; |
| } |
| |
| void aarch64_sync_64_to_32(CPUARMState *env) |
| { |
| g_assert_not_reached(); |
| } |
| |
| #else |
| |
| static void switch_mode(CPUARMState *env, int mode) |
| { |
| int old_mode; |
| int i; |
| |
| old_mode = env->uncached_cpsr & CPSR_M; |
| if (mode == old_mode) |
| return; |
| |
| if (old_mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| } else if (mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| } |
| |
| i = bank_number(old_mode); |
| env->banked_r13[i] = env->regs[13]; |
| env->banked_spsr[i] = env->spsr; |
| |
| i = bank_number(mode); |
| env->regs[13] = env->banked_r13[i]; |
| env->spsr = env->banked_spsr[i]; |
| |
| env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; |
| env->regs[14] = env->banked_r14[r14_bank_number(mode)]; |
| } |
| |
| /* Physical Interrupt Target EL Lookup Table |
| * |
| * [ From ARM ARM section G1.13.4 (Table G1-15) ] |
| * |
| * The below multi-dimensional table is used for looking up the target |
| * exception level given numerous condition criteria. Specifically, the |
| * target EL is based on SCR and HCR routing controls as well as the |
| * currently executing EL and secure state. |
| * |
| * Dimensions: |
| * target_el_table[2][2][2][2][2][4] |
| * | | | | | +--- Current EL |
| * | | | | +------ Non-secure(0)/Secure(1) |
| * | | | +--------- HCR mask override |
| * | | +------------ SCR exec state control |
| * | +--------------- SCR mask override |
| * +------------------ 32-bit(0)/64-bit(1) EL3 |
| * |
| * The table values are as such: |
| * 0-3 = EL0-EL3 |
| * -1 = Cannot occur |
| * |
| * The ARM ARM target EL table includes entries indicating that an "exception |
| * is not taken". The two cases where this is applicable are: |
| * 1) An exception is taken from EL3 but the SCR does not have the exception |
| * routed to EL3. |
| * 2) An exception is taken from EL2 but the HCR does not have the exception |
| * routed to EL2. |
| * In these two cases, the below table contain a target of EL1. This value is |
| * returned as it is expected that the consumer of the table data will check |
| * for "target EL >= current EL" to ensure the exception is not taken. |
| * |
| * SCR HCR |
| * 64 EA AMO From |
| * BIT IRQ IMO Non-secure Secure |
| * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 |
| */ |
| static const int8_t target_el_table[2][2][2][2][2][4] = { |
| {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, |
| {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, |
| {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, |
| {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, |
| {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, |
| {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, |
| {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, |
| {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, |
| {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
| {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, |
| {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
| {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, |
| }; |
| |
| /* |
| * Determine the target EL for physical exceptions |
| */ |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| uint32_t cur_el, bool secure) |
| { |
| CPUARMState *env = cs->env_ptr; |
| bool rw; |
| bool scr; |
| bool hcr; |
| int target_el; |
| /* Is the highest EL AArch64? */ |
| bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); |
| uint64_t hcr_el2; |
| |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); |
| } else { |
| /* Either EL2 is the highest EL (and so the EL2 register width |
| * is given by is64); or there is no EL2 or EL3, in which case |
| * the value of 'rw' does not affect the table lookup anyway. |
| */ |
| rw = is64; |
| } |
| |
| hcr_el2 = arm_hcr_el2_eff(env); |
| switch (excp_idx) { |
| case EXCP_IRQ: |
| scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); |
| hcr = hcr_el2 & HCR_IMO; |
| break; |
| case EXCP_FIQ: |
| scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); |
| hcr = hcr_el2 & HCR_FMO; |
| break; |
| default: |
| scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); |
| hcr = hcr_el2 & HCR_AMO; |
| break; |
| }; |
| |
| /* Perform a table-lookup for the target EL given the current state */ |
| target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; |
| |
| assert(target_el > 0); |
| |
| return target_el; |
| } |
| |
| /* |
| * Return true if the v7M CPACR permits access to the FPU for the specified |
| * security state and privilege level. |
| */ |
| static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv) |
| { |
| switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { |
| case 0: |
| case 2: /* UNPREDICTABLE: we treat like 0 */ |
| return false; |
| case 1: |
| return is_priv; |
| case 3: |
| return true; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* |
| * What kind of stack write are we doing? This affects how exceptions |
| * generated during the stacking are treated. |
| */ |
| typedef enum StackingMode { |
| STACK_NORMAL, |
| STACK_IGNFAULTS, |
| STACK_LAZYFP, |
| } StackingMode; |
| |
| static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, |
| ARMMMUIdx mmu_idx, StackingMode mode) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| MemTxAttrs attrs = {}; |
| MemTxResult txres; |
| target_ulong page_size; |
| hwaddr physaddr; |
| int prot; |
| ARMMMUFaultInfo fi = {}; |
| bool secure = mmu_idx & ARM_MMU_IDX_M_S; |
| int exc; |
| bool exc_secure; |
| |
| if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, |
| &attrs, &prot, &page_size, &fi, NULL)) { |
| /* MPU/SAU lookup failed */ |
| if (fi.type == ARMFault_QEMU_SFault) { |
| if (mode == STACK_LAZYFP) { |
| qemu_log_mask(CPU_LOG_INT, |
| "...SecureFault with SFSR.LSPERR " |
| "during lazy stacking\n"); |
| env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK; |
| } else { |
| qemu_log_mask(CPU_LOG_INT, |
| "...SecureFault with SFSR.AUVIOL " |
| "during stacking\n"); |
| env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; |
| } |
| env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK; |
| env->v7m.sfar = addr; |
| exc = ARMV7M_EXCP_SECURE; |
| exc_secure = false; |
| } else { |
| if (mode == STACK_LAZYFP) { |
| qemu_log_mask(CPU_LOG_INT, |
| "...MemManageFault with CFSR.MLSPERR\n"); |
| env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK; |
| } else { |
| qemu_log_mask(CPU_LOG_INT, |
| "...MemManageFault with CFSR.MSTKERR\n"); |
| env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; |
| } |
| exc = ARMV7M_EXCP_MEM; |
| exc_secure = secure; |
| } |
| goto pend_fault; |
| } |
| address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, |
| attrs, &txres); |
| if (txres != MEMTX_OK) { |
| /* BusFault trying to write the data */ |
| if (mode == STACK_LAZYFP) { |
| qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n"); |
| env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK; |
| } else { |
| qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); |
| env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; |
| } |
| exc = ARMV7M_EXCP_BUS; |
| exc_secure = false; |
| goto pend_fault; |
| } |
| return true; |
| |
| pend_fault: |
| /* By pending the exception at this point we are making |
| * the IMPDEF choice "overridden exceptions pended" (see the |
| * MergeExcInfo() pseudocode). The other choice would be to not |
| * pend them now and then make a choice about which to throw away |
| * later if we have two derived exceptions. |
| * The only case when we must not pend the exception but instead |
| * throw it away is if we are doing the push of the callee registers |
| * and we've already generated a derived exception (this is indicated |
| * by the caller passing STACK_IGNFAULTS). Even in this case we will |
| * still update the fault status registers. |
| */ |
| switch (mode) { |
| case STACK_NORMAL: |
| armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); |
| break; |
| case STACK_LAZYFP: |
| armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure); |
| break; |
| case STACK_IGNFAULTS: |
| break; |
| } |
| return false; |
| } |
| |
| static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, |
| ARMMMUIdx mmu_idx) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| MemTxAttrs attrs = {}; |
| MemTxResult txres; |
| target_ulong page_size; |
| hwaddr physaddr; |
| int prot; |
| ARMMMUFaultInfo fi = {}; |
| bool secure = mmu_idx & ARM_MMU_IDX_M_S; |
| int exc; |
| bool exc_secure; |
| uint32_t value; |
| |
| if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, |
| &attrs, &prot, &page_size, &fi, NULL)) { |
| /* MPU/SAU lookup failed */ |
| if (fi.type == ARMFault_QEMU_SFault) { |
| qemu_log_mask(CPU_LOG_INT, |
| "...SecureFault with SFSR.AUVIOL during unstack\n"); |
| env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; |
| env->v7m.sfar = addr; |
| exc = ARMV7M_EXCP_SECURE; |
| exc_secure = false; |
| } else { |
| qemu_log_mask(CPU_LOG_INT, |
| "...MemManageFault with CFSR.MUNSTKERR\n"); |
| env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; |
| exc = ARMV7M_EXCP_MEM; |
| exc_secure = secure; |
| } |
| goto pend_fault; |
| } |
| |
| value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, |
| attrs, &txres); |
| if (txres != MEMTX_OK) { |
| /* BusFault trying to read the data */ |
| qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); |
| env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; |
| exc = ARMV7M_EXCP_BUS; |
| exc_secure = false; |
| goto pend_fault; |
| } |
| |
| *dest = value; |
| return true; |
| |
| pend_fault: |
| /* By pending the exception at this point we are making |
| * the IMPDEF choice "overridden exceptions pended" (see the |
| * MergeExcInfo() pseudocode). The other choice would be to not |
| * pend them now and then make a choice about which to throw away |
| * later if we have two derived exceptions. |
| */ |
| armv7m_nvic_set_pending(env->nvic, exc, exc_secure); |
| return false; |
| } |
| |
| void HELPER(v7m_preserve_fp_state)(CPUARMState *env) |
| { |
| /* |
| * Preserve FP state (because LSPACT was set and we are about |
| * to execute an FP instruction). This corresponds to the |
| * PreserveFPState() pseudocode. |
| * We may throw an exception if the stacking fails. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; |
| bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK); |
| bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK); |
| bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK; |
| uint32_t fpcar = env->v7m.fpcar[is_secure]; |
| bool stacked_ok = true; |
| bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK); |
| bool take_exception; |
| |
| /* Take the iothread lock as we are going to touch the NVIC */ |
| qemu_mutex_lock_iothread(); |
| |
| /* Check the background context had access to the FPU */ |
| if (!v7m_cpacr_pass(env, is_secure, is_priv)) { |
| armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure); |
| env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK; |
| stacked_ok = false; |
| } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) { |
| armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S); |
| env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK; |
| stacked_ok = false; |
| } |
| |
| if (!splimviol && stacked_ok) { |
| /* We only stack if the stack limit wasn't violated */ |
| int i; |
| ARMMMUIdx mmu_idx; |
| |
| mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri); |
| for (i = 0; i < (ts ? 32 : 16); i += 2) { |
| uint64_t dn = *aa32_vfp_dreg(env, i / 2); |
| uint32_t faddr = fpcar + 4 * i; |
| uint32_t slo = extract64(dn, 0, 32); |
| uint32_t shi = extract64(dn, 32, 32); |
| |
| if (i >= 16) { |
| faddr += 8; /* skip the slot for the FPSCR */ |
| } |
| stacked_ok = stacked_ok && |
| v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) && |
| v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP); |
| } |
| |
| stacked_ok = stacked_ok && |
| v7m_stack_write(cpu, fpcar + 0x40, |
| vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP); |
| } |
| |
| /* |
| * We definitely pended an exception, but it's possible that it |
| * might not be able to be taken now. If its priority permits us |
| * to take it now, then we must not update the LSPACT or FP regs, |
| * but instead jump out to take the exception immediately. |
| * If it's just pending and won't be taken until the current |
| * handler exits, then we do update LSPACT and the FP regs. |
| */ |
| take_exception = !stacked_ok && |
| armv7m_nvic_can_take_pending_exception(env->nvic); |
| |
| qemu_mutex_unlock_iothread(); |
| |
| if (take_exception) { |
| raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC()); |
| } |
| |
| env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK; |
| |
| if (ts) { |
| /* Clear s0 to s31 and the FPSCR */ |
| int i; |
| |
| for (i = 0; i < 32; i += 2) { |
| *aa32_vfp_dreg(env, i / 2) = 0; |
| } |
| vfp_set_fpscr(env, 0); |
| } |
| /* |
| * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them |
| * unchanged. |
| */ |
| } |
| |
| /* Write to v7M CONTROL.SPSEL bit for the specified security bank. |
| * This may change the current stack pointer between Main and Process |
| * stack pointers if it is done for the CONTROL register for the current |
| * security state. |
| */ |
| static void write_v7m_control_spsel_for_secstate(CPUARMState *env, |
| bool new_spsel, |
| bool secstate) |
| { |
| bool old_is_psp = v7m_using_psp(env); |
| |
| env->v7m.control[secstate] = |
| deposit32(env->v7m.control[secstate], |
| R_V7M_CONTROL_SPSEL_SHIFT, |
| R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); |
| |
| if (secstate == env->v7m.secure) { |
| bool new_is_psp = v7m_using_psp(env); |
| uint32_t tmp; |
| |
| if (old_is_psp != new_is_psp) { |
| tmp = env->v7m.other_sp; |
| env->v7m.other_sp = env->regs[13]; |
| env->regs[13] = tmp; |
| } |
| } |
| } |
| |
| /* Write to v7M CONTROL.SPSEL bit. This may change the current |
| * stack pointer between Main and Process stack pointers. |
| */ |
| static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) |
| { |
| write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); |
| } |
| |
| void write_v7m_exception(CPUARMState *env, uint32_t new_exc) |
| { |
| /* Write a new value to v7m.exception, thus transitioning into or out |
| * of Handler mode; this may result in a change of active stack pointer. |
| */ |
| bool new_is_psp, old_is_psp = v7m_using_psp(env); |
| uint32_t tmp; |
| |
| env->v7m.exception = new_exc; |
| |
| new_is_psp = v7m_using_psp(env); |
| |
| if (old_is_psp != new_is_psp) { |
| tmp = env->v7m.other_sp; |
| env->v7m.other_sp = env->regs[13]; |
| env->regs[13] = tmp; |
| } |
| } |
| |
| /* Switch M profile security state between NS and S */ |
| static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) |
| { |
| uint32_t new_ss_msp, new_ss_psp; |
| |
| if (env->v7m.secure == new_secstate) { |
| return; |
| } |
| |
| /* All the banked state is accessed by looking at env->v7m.secure |
| * except for the stack pointer; rearrange the SP appropriately. |
| */ |
| new_ss_msp = env->v7m.other_ss_msp; |
| new_ss_psp = env->v7m.other_ss_psp; |
| |
| if (v7m_using_psp(env)) { |
| env->v7m.other_ss_psp = env->regs[13]; |
| env->v7m.other_ss_msp = env->v7m.other_sp; |
| } else { |
| env->v7m.other_ss_msp = env->regs[13]; |
| env->v7m.other_ss_psp = env->v7m.other_sp; |
| } |
| |
| env->v7m.secure = new_secstate; |
| |
| if (v7m_using_psp(env)) { |
| env->regs[13] = new_ss_psp; |
| env->v7m.other_sp = new_ss_msp; |
| } else { |
| env->regs[13] = new_ss_msp; |
| env->v7m.other_sp = new_ss_psp; |
| } |
| } |
| |
| void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) |
| { |
| /* Handle v7M BXNS: |
| * - if the return value is a magic value, do exception return (like BX) |
| * - otherwise bit 0 of the return value is the target security state |
| */ |
| uint32_t min_magic; |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| /* Covers FNC_RETURN and EXC_RETURN magic */ |
| min_magic = FNC_RETURN_MIN_MAGIC; |
| } else { |
| /* EXC_RETURN magic only */ |
| min_magic = EXC_RETURN_MIN_MAGIC; |
| } |
| |
| if (dest >= min_magic) { |
| /* This is an exception return magic value; put it where |
| * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. |
| * Note that if we ever add gen_ss_advance() singlestep support to |
| * M profile this should count as an "instruction execution complete" |
| * event (compare gen_bx_excret_final_code()). |
| */ |
| env->regs[15] = dest & ~1; |
| env->thumb = dest & 1; |
| HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); |
| /* notreached */ |
| } |
| |
| /* translate.c should have made BXNS UNDEF unless we're secure */ |
| assert(env->v7m.secure); |
| |
| if (!(dest & 1)) { |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; |
| } |
| switch_v7m_security_state(env, dest & 1); |
| env->thumb = 1; |
| env->regs[15] = dest & ~1; |
| } |
| |
| void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) |
| { |
| /* Handle v7M BLXNS: |
| * - bit 0 of the destination address is the target security state |
| */ |
| |
| /* At this point regs[15] is the address just after the BLXNS */ |
| uint32_t nextinst = env->regs[15] | 1; |
| uint32_t sp = env->regs[13] - 8; |
| uint32_t saved_psr; |
| |
| /* translate.c will have made BLXNS UNDEF unless we're secure */ |
| assert(env->v7m.secure); |
| |
| if (dest & 1) { |
| /* target is Secure, so this is just a normal BLX, |
| * except that the low bit doesn't indicate Thumb/not. |
| */ |
| env->regs[14] = nextinst; |
| env->thumb = 1; |
| env->regs[15] = dest & ~1; |
| return; |
| } |
| |
| /* Target is non-secure: first push a stack frame */ |
| if (!QEMU_IS_ALIGNED(sp, 8)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "BLXNS with misaligned SP is UNPREDICTABLE\n"); |
| } |
| |
| if (sp < v7m_sp_limit(env)) { |
| raise_exception(env, EXCP_STKOF, 0, 1); |
| } |
| |
| saved_psr = env->v7m.exception; |
| if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { |
| saved_psr |= XPSR_SFPA; |
| } |
| |
| /* Note that these stores can throw exceptions on MPU faults */ |
| cpu_stl_data(env, sp, nextinst); |
| cpu_stl_data(env, sp + 4, saved_psr); |
| |
| env->regs[13] = sp; |
| env->regs[14] = 0xfeffffff; |
| if (arm_v7m_is_handler_mode(env)) { |
| /* Write a dummy value to IPSR, to avoid leaking the current secure |
| * exception number to non-secure code. This is guaranteed not |
| * to cause write_v7m_exception() to actually change stacks. |
| */ |
| write_v7m_exception(env, 1); |
| } |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; |
| switch_v7m_security_state(env, 0); |
| env->thumb = 1; |
| env->regs[15] = dest; |
| } |
| |
| static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, |
| bool spsel) |
| { |
| /* Return a pointer to the location where we currently store the |
| * stack pointer for the requested security state and thread mode. |
| * This pointer will become invalid if the CPU state is updated |
| * such that the stack pointers are switched around (eg changing |
| * the SPSEL control bit). |
| * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). |
| * Unlike that pseudocode, we require the caller to pass us in the |
| * SPSEL control bit value; this is because we also use this |
| * function in handling of pushing of the callee-saves registers |
| * part of the v8M stack frame (pseudocode PushCalleeStack()), |
| * and in the tailchain codepath the SPSEL bit comes from the exception |
| * return magic LR value from the previous exception. The pseudocode |
| * opencodes the stack-selection in PushCalleeStack(), but we prefer |
| * to make this utility function generic enough to do the job. |
| */ |
| bool want_psp = threadmode && spsel; |
| |
| if (secure == env->v7m.secure) { |
| if (want_psp == v7m_using_psp(env)) { |
| return &env->regs[13]; |
| } else { |
| return &env->v7m.other_sp; |
| } |
| } else { |
| if (want_psp) { |
| return &env->v7m.other_ss_psp; |
| } else { |
| return &env->v7m.other_ss_msp; |
| } |
| } |
| } |
| |
| static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, |
| uint32_t *pvec) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| MemTxResult result; |
| uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; |
| uint32_t vector_entry; |
| MemTxAttrs attrs = {}; |
| ARMMMUIdx mmu_idx; |
| bool exc_secure; |
| |
| mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); |
| |
| /* We don't do a get_phys_addr() here because the rules for vector |
| * loads are special: they always use the default memory map, and |
| * the default memory map permits reads from all addresses. |
| * Since there's no easy way to pass through to pmsav8_mpu_lookup() |
| * that we want this special case which would always say "yes", |
| * we just do the SAU lookup here followed by a direct physical load. |
| */ |
| attrs.secure = targets_secure; |
| attrs.user = false; |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| V8M_SAttributes sattrs = {}; |
| |
| v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); |
| if (sattrs.ns) { |
| attrs.secure = false; |
| } else if (!targets_secure) { |
| /* NS access to S memory */ |
| goto load_fail; |
| } |
| } |
| |
| vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, |
| attrs, &result); |
| if (result != MEMTX_OK) { |
| goto load_fail; |
| } |
| *pvec = vector_entry; |
| return true; |
| |
| load_fail: |
| /* All vector table fetch fails are reported as HardFault, with |
| * HFSR.VECTTBL and .FORCED set. (FORCED is set because |
| * technically the underlying exception is a MemManage or BusFault |
| * that is escalated to HardFault.) This is a terminal exception, |
| * so we will either take the HardFault immediately or else enter |
| * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). |
| */ |
| exc_secure = targets_secure || |
| !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); |
| env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; |
| armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); |
| return false; |
| } |
| |
| static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr) |
| { |
| /* |
| * Return the integrity signature value for the callee-saves |
| * stack frame section. @lr is the exception return payload/LR value |
| * whose FType bit forms bit 0 of the signature if FP is present. |
| */ |
| uint32_t sig = 0xfefa125a; |
| |
| if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) { |
| sig |= 1; |
| } |
| return sig; |
| } |
| |
| static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, |
| bool ignore_faults) |
| { |
| /* For v8M, push the callee-saves register part of the stack frame. |
| * Compare the v8M pseudocode PushCalleeStack(). |
| * In the tailchaining case this may not be the current stack. |
| */ |
| CPUARMState *env = &cpu->env; |
| uint32_t *frame_sp_p; |
| uint32_t frameptr; |
| ARMMMUIdx mmu_idx; |
| bool stacked_ok; |
| uint32_t limit; |
| bool want_psp; |
| uint32_t sig; |
| StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL; |
| |
| if (dotailchain) { |
| bool mode = lr & R_V7M_EXCRET_MODE_MASK; |
| bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || |
| !mode; |
| |
| mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); |
| frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, |
| lr & R_V7M_EXCRET_SPSEL_MASK); |
| want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); |
| if (want_psp) { |
| limit = env->v7m.psplim[M_REG_S]; |
| } else { |
| limit = env->v7m.msplim[M_REG_S]; |
| } |
| } else { |
| mmu_idx = arm_mmu_idx(env); |
| frame_sp_p = &env->regs[13]; |
| limit = v7m_sp_limit(env); |
| } |
| |
| frameptr = *frame_sp_p - 0x28; |
| if (frameptr < limit) { |
| /* |
| * Stack limit failure: set SP to the limit value, and generate |
| * STKOF UsageFault. Stack pushes below the limit must not be |
| * performed. It is IMPDEF whether pushes above the limit are |
| * performed; we choose not to. |
| */ |
| qemu_log_mask(CPU_LOG_INT, |
| "...STKOF during callee-saves register stacking\n"); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, |
| env->v7m.secure); |
| *frame_sp_p = limit; |
| return true; |
| } |
| |
| /* Write as much of the stack frame as we can. A write failure may |
| * cause us to pend a derived exception. |
| */ |
| sig = v7m_integrity_sig(env, lr); |
| stacked_ok = |
| v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) && |
| v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode); |
| |
| /* Update SP regardless of whether any of the stack accesses failed. */ |
| *frame_sp_p = frameptr; |
| |
| return !stacked_ok; |
| } |
| |
| static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, |
| bool ignore_stackfaults) |
| { |
| /* Do the "take the exception" parts of exception entry, |
| * but not the pushing of state to the stack. This is |
| * similar to the pseudocode ExceptionTaken() function. |
| */ |
| CPUARMState *env = &cpu->env; |
| uint32_t addr; |
| bool targets_secure; |
| int exc; |
| bool push_failed = false; |
| |
| armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); |
| qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", |
| targets_secure ? "secure" : "nonsecure", exc); |
| |
| if (dotailchain) { |
| /* Sanitize LR FType and PREFIX bits */ |
| if (!arm_feature(env, ARM_FEATURE_VFP)) { |
| lr |= R_V7M_EXCRET_FTYPE_MASK; |
| } |
| lr = deposit32(lr, 24, 8, 0xff); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY) && |
| (lr & R_V7M_EXCRET_S_MASK)) { |
| /* The background code (the owner of the registers in the |
| * exception frame) is Secure. This means it may either already |
| * have or now needs to push callee-saves registers. |
| */ |
| if (targets_secure) { |
| if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { |
| /* We took an exception from Secure to NonSecure |
| * (which means the callee-saved registers got stacked) |
| * and are now tailchaining to a Secure exception. |
| * Clear DCRS so eventual return from this Secure |
| * exception unstacks the callee-saved registers. |
| */ |
| lr &= ~R_V7M_EXCRET_DCRS_MASK; |
| } |
| } else { |
| /* We're going to a non-secure exception; push the |
| * callee-saves registers to the stack now, if they're |
| * not already saved. |
| */ |
| if (lr & R_V7M_EXCRET_DCRS_MASK && |
| !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { |
| push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, |
| ignore_stackfaults); |
| } |
| lr |= R_V7M_EXCRET_DCRS_MASK; |
| } |
| } |
| |
| lr &= ~R_V7M_EXCRET_ES_MASK; |
| if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| lr |= R_V7M_EXCRET_ES_MASK; |
| } |
| lr &= ~R_V7M_EXCRET_SPSEL_MASK; |
| if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { |
| lr |= R_V7M_EXCRET_SPSEL_MASK; |
| } |
| |
| /* Clear registers if necessary to prevent non-secure exception |
| * code being able to see register values from secure code. |
| * Where register values become architecturally UNKNOWN we leave |
| * them with their previous values. |
| */ |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| if (!targets_secure) { |
| /* Always clear the caller-saved registers (they have been |
| * pushed to the stack earlier in v7m_push_stack()). |
| * Clear callee-saved registers if the background code is |
| * Secure (in which case these regs were saved in |
| * v7m_push_callee_stack()). |
| */ |
| int i; |
| |
| for (i = 0; i < 13; i++) { |
| /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ |
| if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { |
| env->regs[i] = 0; |
| } |
| } |
| /* Clear EAPSR */ |
| xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); |
| } |
| } |
| } |
| |
| if (push_failed && !ignore_stackfaults) { |
| /* Derived exception on callee-saves register stacking: |
| * we might now want to take a different exception which |
| * targets a different security state, so try again from the top. |
| */ |
| qemu_log_mask(CPU_LOG_INT, |
| "...derived exception on callee-saves register stacking"); |
| v7m_exception_taken(cpu, lr, true, true); |
| return; |
| } |
| |
| if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { |
| /* Vector load failed: derived exception */ |
| qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); |
| v7m_exception_taken(cpu, lr, true, true); |
| return; |
| } |
| |
| /* Now we've done everything that might cause a derived exception |
| * we can go ahead and activate whichever exception we're going to |
| * take (which might now be the derived exception). |
| */ |
| armv7m_nvic_acknowledge_irq(env->nvic); |
| |
| /* Switch to target security state -- must do this before writing SPSEL */ |
| switch_v7m_security_state(env, targets_secure); |
| write_v7m_control_spsel(env, 0); |
| arm_clear_exclusive(env); |
| /* Clear SFPA and FPCA (has no effect if no FPU) */ |
| env->v7m.control[M_REG_S] &= |
| ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK); |
| /* Clear IT bits */ |
| env->condexec_bits = 0; |
| env->regs[14] = lr; |
| env->regs[15] = addr & 0xfffffffe; |
| env->thumb = addr & 1; |
| } |
| |
| static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr, |
| bool apply_splim) |
| { |
| /* |
| * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR |
| * that we will need later in order to do lazy FP reg stacking. |
| */ |
| bool is_secure = env->v7m.secure; |
| void *nvic = env->nvic; |
| /* |
| * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits |
| * are banked and we want to update the bit in the bank for the |
| * current security state; and in one case we want to specifically |
| * update the NS banked version of a bit even if we are secure. |
| */ |
| uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S]; |
| uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS]; |
| uint32_t *fpccr = &env->v7m.fpccr[is_secure]; |
| bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy; |
| |
| env->v7m.fpcar[is_secure] = frameptr & ~0x7; |
| |
| if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) { |
| bool splimviol; |
| uint32_t splim = v7m_sp_limit(env); |
| bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) && |
| (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK); |
| |
| splimviol = !ign && frameptr < splim; |
| *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol); |
| } |
| |
| *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1); |
| |
| *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure); |
| |
| *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0); |
| |
| *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD, |
| !arm_v7m_is_handler_mode(env)); |
| |
| hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false); |
| *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy); |
| |
| bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false); |
| *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy); |
| |
| mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure); |
| *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy); |
| |
| ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false); |
| *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy); |
| |
| monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false); |
| *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy); |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true); |
| *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy); |
| |
| sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false); |
| *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy); |
| } |
| } |
| |
| void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr) |
| { |
| /* fptr is the value of Rn, the frame pointer we store the FP regs to */ |
| bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; |
| bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK; |
| |
| assert(env->v7m.secure); |
| |
| if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { |
| return; |
| } |
| |
| /* Check access to the coprocessor is permitted */ |
| if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) { |
| raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC()); |
| } |
| |
| if (lspact) { |
| /* LSPACT should not be active when there is active FP state */ |
| raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC()); |
| } |
| |
| if (fptr & 7) { |
| raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC()); |
| } |
| |
| /* |
| * Note that we do not use v7m_stack_write() here, because the |
| * accesses should not set the FSR bits for stacking errors if they |
| * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK |
| * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions |
| * and longjmp out. |
| */ |
| if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) { |
| bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK; |
| int i; |
| |
| for (i = 0; i < (ts ? 32 : 16); i += 2) { |
| uint64_t dn = *aa32_vfp_dreg(env, i / 2); |
| uint32_t faddr = fptr + 4 * i; |
| uint32_t slo = extract64(dn, 0, 32); |
| uint32_t shi = extract64(dn, 32, 32); |
| |
| if (i >= 16) { |
| faddr += 8; /* skip the slot for the FPSCR */ |
| } |
| cpu_stl_data(env, faddr, slo); |
| cpu_stl_data(env, faddr + 4, shi); |
| } |
| cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env)); |
| |
| /* |
| * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to |
| * leave them unchanged, matching our choice in v7m_preserve_fp_state. |
| */ |
| if (ts) { |
| for (i = 0; i < 32; i += 2) { |
| *aa32_vfp_dreg(env, i / 2) = 0; |
| } |
| vfp_set_fpscr(env, 0); |
| } |
| } else { |
| v7m_update_fpccr(env, fptr, false); |
| } |
| |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; |
| } |
| |
| void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) |
| { |
| /* fptr is the value of Rn, the frame pointer we load the FP regs from */ |
| assert(env->v7m.secure); |
| |
| if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { |
| return; |
| } |
| |
| /* Check access to the coprocessor is permitted */ |
| if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) { |
| raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC()); |
| } |
| |
| if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) { |
| /* State in FP is still valid */ |
| env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK; |
| } else { |
| bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK; |
| int i; |
| uint32_t fpscr; |
| |
| if (fptr & 7) { |
| raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC()); |
| } |
| |
| for (i = 0; i < (ts ? 32 : 16); i += 2) { |
| uint32_t slo, shi; |
| uint64_t dn; |
| uint32_t faddr = fptr + 4 * i; |
| |
| if (i >= 16) { |
| faddr += 8; /* skip the slot for the FPSCR */ |
| } |
| |
| slo = cpu_ldl_data(env, faddr); |
| shi = cpu_ldl_data(env, faddr + 4); |
| |
| dn = (uint64_t) shi << 32 | slo; |
| *aa32_vfp_dreg(env, i / 2) = dn; |
| } |
| fpscr = cpu_ldl_data(env, fptr + 0x40); |
| vfp_set_fpscr(env, fpscr); |
| } |
| |
| env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; |
| } |
| |
| static bool v7m_push_stack(ARMCPU *cpu) |
| { |
| /* Do the "set up stack frame" part of exception entry, |
| * similar to pseudocode PushStack(). |
| * Return true if we generate a derived exception (and so |
| * should ignore further stack faults trying to process |
| * that derived exception.) |
| */ |
| bool stacked_ok = true, limitviol = false; |
| CPUARMState *env = &cpu->env; |
| uint32_t xpsr = xpsr_read(env); |
| uint32_t frameptr = env->regs[13]; |
| ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
| uint32_t framesize; |
| bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1); |
| |
| if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) && |
| (env->v7m.secure || nsacr_cp10)) { |
| if (env->v7m.secure && |
| env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) { |
| framesize = 0xa8; |
| } else { |
| framesize = 0x68; |
| } |
| } else { |
| framesize = 0x20; |
| } |
| |
| /* Align stack pointer if the guest wants that */ |
| if ((frameptr & 4) && |
| (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { |
| frameptr -= 4; |
| xpsr |= XPSR_SPREALIGN; |
| } |
| |
| xpsr &= ~XPSR_SFPA; |
| if (env->v7m.secure && |
| (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { |
| xpsr |= XPSR_SFPA; |
| } |
| |
| frameptr -= framesize; |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| uint32_t limit = v7m_sp_limit(env); |
| |
| if (frameptr < limit) { |
| /* |
| * Stack limit failure: set SP to the limit value, and generate |
| * STKOF UsageFault. Stack pushes below the limit must not be |
| * performed. It is IMPDEF whether pushes above the limit are |
| * performed; we choose not to. |
| */ |
| qemu_log_mask(CPU_LOG_INT, |
| "...STKOF during stacking\n"); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, |
| env->v7m.secure); |
| env->regs[13] = limit; |
| /* |
| * We won't try to perform any further memory accesses but |
| * we must continue through the following code to check for |
| * permission faults during FPU state preservation, and we |
| * must update FPCCR if lazy stacking is enabled. |
| */ |
| limitviol = true; |
| stacked_ok = false; |
| } |
| } |
| |
| /* Write as much of the stack frame as we can. If we fail a stack |
| * write this will result in a derived exception being pended |
| * (which may be taken in preference to the one we started with |
| * if it has higher priority). |
| */ |
| stacked_ok = stacked_ok && |
| v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, frameptr + 4, env->regs[1], |
| mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, frameptr + 8, env->regs[2], |
| mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, frameptr + 12, env->regs[3], |
| mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, frameptr + 16, env->regs[12], |
| mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, frameptr + 20, env->regs[14], |
| mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, frameptr + 24, env->regs[15], |
| mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL); |
| |
| if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) { |
| /* FPU is active, try to save its registers */ |
| bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; |
| bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK; |
| |
| if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| qemu_log_mask(CPU_LOG_INT, |
| "...SecureFault because LSPACT and FPCA both set\n"); |
| env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| } else if (!env->v7m.secure && !nsacr_cp10) { |
| qemu_log_mask(CPU_LOG_INT, |
| "...Secure UsageFault with CFSR.NOCP because " |
| "NSACR.CP10 prevents stacking FP regs\n"); |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S); |
| env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK; |
| } else { |
| if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) { |
| /* Lazy stacking disabled, save registers now */ |
| int i; |
| bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure, |
| arm_current_el(env) != 0); |
| |
| if (stacked_ok && !cpacr_pass) { |
| /* |
| * Take UsageFault if CPACR forbids access. The pseudocode |
| * here does a full CheckCPEnabled() but we know the NSACR |
| * check can never fail as we have already handled that. |
| */ |
| qemu_log_mask(CPU_LOG_INT, |
| "...UsageFault with CFSR.NOCP because " |
| "CPACR.CP10 prevents stacking FP regs\n"); |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, |
| env->v7m.secure); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; |
| stacked_ok = false; |
| } |
| |
| for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) { |
| uint64_t dn = *aa32_vfp_dreg(env, i / 2); |
| uint32_t faddr = frameptr + 0x20 + 4 * i; |
| uint32_t slo = extract64(dn, 0, 32); |
| uint32_t shi = extract64(dn, 32, 32); |
| |
| if (i >= 16) { |
| faddr += 8; /* skip the slot for the FPSCR */ |
| } |
| stacked_ok = stacked_ok && |
| v7m_stack_write(cpu, faddr, slo, |
| mmu_idx, STACK_NORMAL) && |
| v7m_stack_write(cpu, faddr + 4, shi, |
| mmu_idx, STACK_NORMAL); |
| } |
| stacked_ok = stacked_ok && |
| v7m_stack_write(cpu, frameptr + 0x60, |
| vfp_get_fpscr(env), mmu_idx, STACK_NORMAL); |
| if (cpacr_pass) { |
| for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) { |
| *aa32_vfp_dreg(env, i / 2) = 0; |
| } |
| vfp_set_fpscr(env, 0); |
| } |
| } else { |
| /* Lazy stacking enabled, save necessary info to stack later */ |
| v7m_update_fpccr(env, frameptr + 0x20, true); |
| } |
| } |
| } |
| |
| /* |
| * If we broke a stack limit then SP was already updated earlier; |
| * otherwise we update SP regardless of whether any of the stack |
| * accesses failed or we took some other kind of fault. |
| */ |
| if (!limitviol) { |
| env->regs[13] = frameptr; |
| } |
| |
| return !stacked_ok; |
| } |
| |
| static void do_v7m_exception_exit(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| uint32_t excret; |
| uint32_t xpsr, xpsr_mask; |
| bool ufault = false; |
| bool sfault = false; |
| bool return_to_sp_process; |
| bool return_to_handler; |
| bool rettobase = false; |
| bool exc_secure = false; |
| bool return_to_secure; |
| bool ftype; |
| bool restore_s16_s31; |
| |
| /* If we're not in Handler mode then jumps to magic exception-exit |
| * addresses don't have magic behaviour. However for the v8M |
| * security extensions the magic secure-function-return has to |
| * work in thread mode too, so to avoid doing an extra check in |
| * the generated code we allow exception-exit magic to also cause the |
| * internal exception and bring us here in thread mode. Correct code |
| * will never try to do this (the following insn fetch will always |
| * fault) so we the overhead of having taken an unnecessary exception |
| * doesn't matter. |
| */ |
| if (!arm_v7m_is_handler_mode(env)) { |
| return; |
| } |
| |
| /* In the spec pseudocode ExceptionReturn() is called directly |
| * from BXWritePC() and gets the full target PC value including |
| * bit zero. In QEMU's implementation we treat it as a normal |
| * jump-to-register (which is then caught later on), and so split |
| * the target value up between env->regs[15] and env->thumb in |
| * gen_bx(). Reconstitute it. |
| */ |
| excret = env->regs[15]; |
| if (env->thumb) { |
| excret |= 1; |
| } |
| |
| qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 |
| " previous exception %d\n", |
| excret, env->v7m.exception); |
| |
| if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { |
| qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " |
| "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", |
| excret); |
| } |
| |
| ftype = excret & R_V7M_EXCRET_FTYPE_MASK; |
| |
| if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) { |
| qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception " |
| "exit PC value 0x%" PRIx32 " is UNPREDICTABLE " |
| "if FPU not present\n", |
| excret); |
| ftype = true; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| /* EXC_RETURN.ES validation check (R_SMFL). We must do this before |
| * we pick which FAULTMASK to clear. |
| */ |
| if (!env->v7m.secure && |
| ((excret & R_V7M_EXCRET_ES_MASK) || |
| !(excret & R_V7M_EXCRET_DCRS_MASK))) { |
| sfault = 1; |
| /* For all other purposes, treat ES as 0 (R_HXSR) */ |
| excret &= ~R_V7M_EXCRET_ES_MASK; |
| } |
| exc_secure = excret & R_V7M_EXCRET_ES_MASK; |
| } |
| |
| if (env->v7m.exception != ARMV7M_EXCP_NMI) { |
| /* Auto-clear FAULTMASK on return from other than NMI. |
| * If the security extension is implemented then this only |
| * happens if the raw execution priority is >= 0; the |
| * value of the ES bit in the exception return value indicates |
| * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) |
| */ |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { |
| env->v7m.faultmask[exc_secure] = 0; |
| } |
| } else { |
| env->v7m.faultmask[M_REG_NS] = 0; |
| } |
| } |
| |
| switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, |
| exc_secure)) { |
| case -1: |
| /* attempt to exit an exception that isn't active */ |
| ufault = true; |
| break; |
| case 0: |
| /* still an irq active now */ |
| break; |
| case 1: |
| /* we returned to base exception level, no nesting. |
| * (In the pseudocode this is written using "NestedActivation != 1" |
| * where we have 'rettobase == false'.) |
| */ |
| rettobase = true; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); |
| return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; |
| return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && |
| (excret & R_V7M_EXCRET_S_MASK); |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); |
| * we choose to take the UsageFault. |
| */ |
| if ((excret & R_V7M_EXCRET_S_MASK) || |
| (excret & R_V7M_EXCRET_ES_MASK) || |
| !(excret & R_V7M_EXCRET_DCRS_MASK)) { |
| ufault = true; |
| } |
| } |
| if (excret & R_V7M_EXCRET_RES0_MASK) { |
| ufault = true; |
| } |
| } else { |
| /* For v7M we only recognize certain combinations of the low bits */ |
| switch (excret & 0xf) { |
| case 1: /* Return to Handler */ |
| break; |
| case 13: /* Return to Thread using Process stack */ |
| case 9: /* Return to Thread using Main stack */ |
| /* We only need to check NONBASETHRDENA for v7M, because in |
| * v8M this bit does not exist (it is RES1). |
| */ |
| if (!rettobase && |
| !(env->v7m.ccr[env->v7m.secure] & |
| R_V7M_CCR_NONBASETHRDENA_MASK)) { |
| ufault = true; |
| } |
| break; |
| default: |
| ufault = true; |
| } |
| } |
| |
| /* |
| * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in |
| * Handler mode (and will be until we write the new XPSR.Interrupt |
| * field) this does not switch around the current stack pointer. |
| * We must do this before we do any kind of tailchaining, including |
| * for the derived exceptions on integrity check failures, or we will |
| * give the guest an incorrect EXCRET.SPSEL value on exception entry. |
| */ |
| write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); |
| |
| /* |
| * Clear scratch FP values left in caller saved registers; this |
| * must happen before any kind of tail chaining. |
| */ |
| if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) && |
| (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) { |
| if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) { |
| env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
| "stackframe: error during lazy state deactivation\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } else { |
| /* Clear s0..s15 and FPSCR */ |
| int i; |
| |
| for (i = 0; i < 16; i += 2) { |
| *aa32_vfp_dreg(env, i / 2) = 0; |
| } |
| vfp_set_fpscr(env, 0); |
| } |
| } |
| |
| if (sfault) { |
| env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
| "stackframe: failed EXC_RETURN.ES validity check\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| |
| if (ufault) { |
| /* Bad exception return: instead of popping the exception |
| * stack, directly take a usage fault on the current stack. |
| */ |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
| qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
| "stackframe: failed exception return integrity check\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| |
| /* |
| * Tailchaining: if there is currently a pending exception that |
| * is high enough priority to preempt execution at the level we're |
| * about to return to, then just directly take that exception now, |
| * avoiding an unstack-and-then-stack. Note that now we have |
| * deactivated the previous exception by calling armv7m_nvic_complete_irq() |
| * our current execution priority is already the execution priority we are |
| * returning to -- none of the state we would unstack or set based on |
| * the EXCRET value affects it. |
| */ |
| if (armv7m_nvic_can_take_pending_exception(env->nvic)) { |
| qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| |
| switch_v7m_security_state(env, return_to_secure); |
| |
| { |
| /* The stack pointer we should be reading the exception frame from |
| * depends on bits in the magic exception return type value (and |
| * for v8M isn't necessarily the stack pointer we will eventually |
| * end up resuming execution with). Get a pointer to the location |
| * in the CPU state struct where the SP we need is currently being |
| * stored; we will use and modify it in place. |
| * We use this limited C variable scope so we don't accidentally |
| * use 'frame_sp_p' after we do something that makes it invalid. |
| */ |
| uint32_t *frame_sp_p = get_v7m_sp_ptr(env, |
| return_to_secure, |
| !return_to_handler, |
| return_to_sp_process); |
| uint32_t frameptr = *frame_sp_p; |
| bool pop_ok = true; |
| ARMMMUIdx mmu_idx; |
| bool return_to_priv = return_to_handler || |
| !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); |
| |
| mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, |
| return_to_priv); |
| |
| if (!QEMU_IS_ALIGNED(frameptr, 8) && |
| arm_feature(env, ARM_FEATURE_V8)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "M profile exception return with non-8-aligned SP " |
| "for destination state is UNPREDICTABLE\n"); |
| } |
| |
| /* Do we need to pop callee-saved registers? */ |
| if (return_to_secure && |
| ((excret & R_V7M_EXCRET_ES_MASK) == 0 || |
| (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { |
| uint32_t actual_sig; |
| |
| pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); |
| |
| if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) { |
| /* Take a SecureFault on the current stack */ |
| env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " |
| "stackframe: failed exception return integrity " |
| "signature check\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| |
| pop_ok = pop_ok && |
| v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); |
| |
| frameptr += 0x28; |
| } |
| |
| /* Pop registers */ |
| pop_ok = pop_ok && |
| v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && |
| v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && |
| v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); |
| |
| if (!pop_ok) { |
| /* v7m_stack_read() pended a fault, so take it (as a tail |
| * chained exception on the same stack frame) |
| */ |
| qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| |
| /* Returning from an exception with a PC with bit 0 set is defined |
| * behaviour on v8M (bit 0 is ignored), but for v7M it was specified |
| * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore |
| * the lsbit, and there are several RTOSes out there which incorrectly |
| * assume the r15 in the stack frame should be a Thumb-style "lsbit |
| * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but |
| * complain about the badly behaved guest. |
| */ |
| if (env->regs[15] & 1) { |
| env->regs[15] &= ~1U; |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "M profile return from interrupt with misaligned " |
| "PC is UNPREDICTABLE on v7M\n"); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* For v8M we have to check whether the xPSR exception field |
| * matches the EXCRET value for return to handler/thread |
| * before we commit to changing the SP and xPSR. |
| */ |
| bool will_be_handler = (xpsr & XPSR_EXCP) != 0; |
| if (return_to_handler != will_be_handler) { |
| /* Take an INVPC UsageFault on the current stack. |
| * By this point we will have switched to the security state |
| * for the background state, so this UsageFault will target |
| * that state. |
| */ |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, |
| env->v7m.secure); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
| qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " |
| "stackframe: failed exception return integrity " |
| "check\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| } |
| |
| if (!ftype) { |
| /* FP present and we need to handle it */ |
| if (!return_to_secure && |
| (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) { |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; |
| qemu_log_mask(CPU_LOG_INT, |
| "...taking SecureFault on existing stackframe: " |
| "Secure LSPACT set but exception return is " |
| "not to secure state\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| |
| restore_s16_s31 = return_to_secure && |
| (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK); |
| |
| if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) { |
| /* State in FPU is still valid, just clear LSPACT */ |
| env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK; |
| } else { |
| int i; |
| uint32_t fpscr; |
| bool cpacr_pass, nsacr_pass; |
| |
| cpacr_pass = v7m_cpacr_pass(env, return_to_secure, |
| return_to_priv); |
| nsacr_pass = return_to_secure || |
| extract32(env->v7m.nsacr, 10, 1); |
| |
| if (!cpacr_pass) { |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, |
| return_to_secure); |
| env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK; |
| qemu_log_mask(CPU_LOG_INT, |
| "...taking UsageFault on existing " |
| "stackframe: CPACR.CP10 prevents unstacking " |
| "FP regs\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } else if (!nsacr_pass) { |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true); |
| env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK; |
| qemu_log_mask(CPU_LOG_INT, |
| "...taking Secure UsageFault on existing " |
| "stackframe: NSACR.CP10 prevents unstacking " |
| "FP regs\n"); |
| v7m_exception_taken(cpu, excret, true, false); |
| return; |
| } |
| |
| for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) { |
| uint32_t slo, shi; |
| uint64_t dn; |
| uint32_t faddr = frameptr + 0x20 + 4 * i; |
| |
| if (i >= 16) { |
| faddr += 8; /* Skip the slot for the FPSCR */ |
| } |
| |
| pop_ok = pop_ok && |
| v7m_stack_read(cpu, &slo, faddr, mmu_idx) && |
| v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx); |
| |
| if (!pop_ok) { |
| break; |
| } |
| |
| dn = (uint64_t)shi << 32 | slo; |
| *aa32_vfp_dreg(env, i / 2) = dn; |
| } |
| pop_ok = pop_ok && |
| v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx); |
| if (pop_ok) { |
| vfp_set_fpscr(env, fpscr); |
| } |
| if (!pop_ok) { |
| /* |
| * These regs are 0 if security extension present; |
| * otherwise merely UNKNOWN. We zero always. |
| */ |
| for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) { |
| *aa32_vfp_dreg(env, i / 2) = 0; |
| } |
| vfp_set_fpscr(env, 0); |
| } |
| } |
| } |
| env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S], |
| V7M_CONTROL, FPCA, !ftype); |
| |
| /* Commit to consuming the stack frame */ |
| frameptr += 0x20; |
| if (!ftype) { |
| frameptr += 0x48; |
| if (restore_s16_s31) { |
| frameptr += 0x40; |
| } |
| } |
| /* Undo stack alignment (the SPREALIGN bit indicates that the original |
| * pre-exception SP was not 8-aligned and we added a padding word to |
| * align it, so we undo this by ORing in the bit that increases it |
| * from the current 8-aligned value to the 8-unaligned value. (Adding 4 |
| * would work too but a logical OR is how the pseudocode specifies it.) |
| */ |
| if (xpsr & XPSR_SPREALIGN) { |
| frameptr |= 4; |
| } |
| *frame_sp_p = frameptr; |
| } |
| |
| xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA); |
| if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) { |
| xpsr_mask &= ~XPSR_GE; |
| } |
| /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ |
| xpsr_write(env, xpsr, xpsr_mask); |
| |
| if (env->v7m.secure) { |
| bool sfpa = xpsr & XPSR_SFPA; |
| |
| env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S], |
| V7M_CONTROL, SFPA, sfpa); |
| } |
| |
| /* The restored xPSR exception field will be zero if we're |
| * resuming in Thread mode. If that doesn't match what the |
| * exception return excret specified then this is a UsageFault. |
| * v7M requires we make this check here; v8M did it earlier. |
| */ |
| if (return_to_handler != arm_v7m_is_handler_mode(env)) { |
| /* Take an INVPC UsageFault by pushing the stack again; |
| * we know we're v7M so this is never a Secure UsageFault. |
| */ |
| bool ignore_stackfaults; |
| |
| assert(!arm_feature(env, ARM_FEATURE_V8)); |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
| ignore_stackfaults = v7m_push_stack(cpu); |
| qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " |
| "failed exception return integrity check\n"); |
| v7m_exception_taken(cpu, excret, false, ignore_stackfaults); |
| return; |
| } |
| |
| /* Otherwise, we have a successful exception exit. */ |
| arm_clear_exclusive(env); |
| qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); |
| } |
| |
| static bool do_v7m_function_return(ARMCPU *cpu) |
| { |
| /* v8M security extensions magic function return. |
| * We may either: |
| * (1) throw an exception (longjump) |
| * (2) return true if we successfully handled the function return |
| * (3) return false if we failed a consistency check and have |
| * pended a UsageFault that needs to be taken now |
| * |
| * At this point the magic return value is split between env->regs[15] |
| * and env->thumb. We don't bother to reconstitute it because we don't |
| * need it (all values are handled the same way). |
| */ |
| CPUARMState *env = &cpu->env; |
| uint32_t newpc, newpsr, newpsr_exc; |
| |
| qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); |
| |
| { |
| bool threadmode, spsel; |
| TCGMemOpIdx oi; |
| ARMMMUIdx mmu_idx; |
| uint32_t *frame_sp_p; |
| uint32_t frameptr; |
| |
| /* Pull the return address and IPSR from the Secure stack */ |
| threadmode = !arm_v7m_is_handler_mode(env); |
| spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; |
| |
| frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); |
| frameptr = *frame_sp_p; |
| |
| /* These loads may throw an exception (for MPU faults). We want to |
| * do them as secure, so work out what MMU index that is. |
| */ |
| mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); |
| oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); |
| newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); |
| newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); |
| |
| /* Consistency checks on new IPSR */ |
| newpsr_exc = newpsr & XPSR_EXCP; |
| if (!((env->v7m.exception == 0 && newpsr_exc == 0) || |
| (env->v7m.exception == 1 && newpsr_exc != 0))) { |
| /* Pend the fault and tell our caller to take it */ |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, |
| env->v7m.secure); |
| qemu_log_mask(CPU_LOG_INT, |
| "...taking INVPC UsageFault: " |
| "IPSR consistency check failed\n"); |
| return false; |
| } |
| |
| *frame_sp_p = frameptr + 8; |
| } |
| |
| /* This invalidates frame_sp_p */ |
| switch_v7m_security_state(env, true); |
| env->v7m.exception = newpsr_exc; |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; |
| if (newpsr & XPSR_SFPA) { |
| env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; |
| } |
| xpsr_write(env, 0, XPSR_IT); |
| env->thumb = newpc & 1; |
| env->regs[15] = newpc & ~1; |
| |
| qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); |
| return true; |
| } |
| |
| static void arm_log_exception(int idx) |
| { |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| const char *exc = NULL; |
| static const char * const excnames[] = { |
| [EXCP_UDEF] = "Undefined Instruction", |
| [EXCP_SWI] = "SVC", |
| [EXCP_PREFETCH_ABORT] = "Prefetch Abort", |
| [EXCP_DATA_ABORT] = "Data Abort", |
| [EXCP_IRQ] = "IRQ", |
| [EXCP_FIQ] = "FIQ", |
| [EXCP_BKPT] = "Breakpoint", |
| [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", |
| [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", |
| [EXCP_HVC] = "Hypervisor Call", |
| [EXCP_HYP_TRAP] = "Hypervisor Trap", |
| [EXCP_SMC] = "Secure Monitor Call", |
| [EXCP_VIRQ] = "Virtual IRQ", |
| [EXCP_VFIQ] = "Virtual FIQ", |
| [EXCP_SEMIHOST] = "Semihosting call", |
| [EXCP_NOCP] = "v7M NOCP UsageFault", |
| [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", |
| [EXCP_STKOF] = "v8M STKOF UsageFault", |
| [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", |
| [EXCP_LSERR] = "v8M LSERR UsageFault", |
| [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", |
| }; |
| |
| if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { |
| exc = excnames[idx]; |
| } |
| if (!exc) { |
| exc = "unknown"; |
| } |
| qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); |
| } |
| } |
| |
| static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, |
| uint32_t addr, uint16_t *insn) |
| { |
| /* Load a 16-bit portion of a v7M instruction, returning true on success, |
| * or false on failure (in which case we will have pended the appropriate |
| * exception). |
| * We need to do the instruction fetch's MPU and SAU checks |
| * like this because there is no MMU index that would allow |
| * doing the load with a single function call. Instead we must |
| * first check that the security attributes permit the load |
| * and that they don't mismatch on the two halves of the instruction, |
| * and then we do the load as a secure load (ie using the security |
| * attributes of the address, not the CPU, as architecturally required). |
| */ |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| V8M_SAttributes sattrs = {}; |
| MemTxAttrs attrs = {}; |
| ARMMMUFaultInfo fi = {}; |
| MemTxResult txres; |
| target_ulong page_size; |
| hwaddr physaddr; |
| int prot; |
| |
| v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); |
| if (!sattrs.nsc || sattrs.ns) { |
| /* This must be the second half of the insn, and it straddles a |
| * region boundary with the second half not being S&NSC. |
| */ |
| env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| qemu_log_mask(CPU_LOG_INT, |
| "...really SecureFault with SFSR.INVEP\n"); |
| return false; |
| } |
| if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, |
| &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { |
| /* the MPU lookup failed */ |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); |
| qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); |
| return false; |
| } |
| *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, |
| attrs, &txres); |
| if (txres != MEMTX_OK) { |
| env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); |
| qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool v7m_handle_execute_nsc(ARMCPU *cpu) |
| { |
| /* Check whether this attempt to execute code in a Secure & NS-Callable |
| * memory region is for an SG instruction; if so, then emulate the |
| * effect of the SG instruction and return true. Otherwise pend |
| * the correct kind of exception and return false. |
| */ |
| CPUARMState *env = &cpu->env; |
| ARMMMUIdx mmu_idx; |
| uint16_t insn; |
| |
| /* We should never get here unless get_phys_addr_pmsav8() caused |
| * an exception for NS executing in S&NSC memory. |
| */ |
| assert(!env->v7m.secure); |
| assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); |
| |
| /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ |
| mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); |
| |
| if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { |
| return false; |
| } |
| |
| if (!env->thumb) { |
| goto gen_invep; |
| } |
| |
| if (insn != 0xe97f) { |
| /* Not an SG instruction first half (we choose the IMPDEF |
| * early-SG-check option). |
| */ |
| goto gen_invep; |
| } |
| |
| if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { |
| return false; |
| } |
| |
| if (insn != 0xe97f) { |
| /* Not an SG instruction second half (yes, both halves of the SG |
| * insn have the same hex value) |
| */ |
| goto gen_invep; |
| } |
| |
| /* OK, we have confirmed that we really have an SG instruction. |
| * We know we're NS in S memory so don't need to repeat those checks. |
| */ |
| qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 |
| ", executing it\n", env->regs[15]); |
| env->regs[14] &= ~1; |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; |
| switch_v7m_security_state(env, true); |
| xpsr_write(env, 0, XPSR_IT); |
| env->regs[15] += 4; |
| return true; |
| |
| gen_invep: |
| env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| qemu_log_mask(CPU_LOG_INT, |
| "...really SecureFault with SFSR.INVEP\n"); |
| return false; |
| } |
| |
| void arm_v7m_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t lr; |
| bool ignore_stackfaults; |
| |
| arm_log_exception(cs->exception_index); |
| |
| /* For exceptions we just mark as pending on the NVIC, and let that |
| handle it. */ |
| switch (cs->exception_index) { |
| case EXCP_UDEF: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; |
| break; |
| case EXCP_NOCP: |
| { |
| /* |
| * NOCP might be directed to something other than the current |
| * security state if this fault is because of NSACR; we indicate |
| * the target security state using exception.target_el. |
| */ |
| int target_secstate; |
| |
| if (env->exception.target_el == 3) { |
| target_secstate = M_REG_S; |
| } else { |
| target_secstate = env->v7m.secure; |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate); |
| env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK; |
| break; |
| } |
| case EXCP_INVSTATE: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; |
| break; |
| case EXCP_STKOF: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; |
| break; |
| case EXCP_LSERR: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; |
| break; |
| case EXCP_UNALIGNED: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK; |
| break; |
| case EXCP_SWI: |
| /* The PC already points to the next instruction. */ |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); |
| break; |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| /* Note that for M profile we don't have a guest facing FSR, but |
| * the env->exception.fsr will be populated by the code that |
| * raises the fault, in the A profile short-descriptor format. |
| */ |
| switch (env->exception.fsr & 0xf) { |
| case M_FAKE_FSR_NSC_EXEC: |
| /* Exception generated when we try to execute code at an address |
| * which is marked as Secure & Non-Secure Callable and the CPU |
| * is in the Non-Secure state. The only instruction which can |
| * be executed like this is SG (and that only if both halves of |
| * the SG instruction have the same security attributes.) |
| * Everything else must generate an INVEP SecureFault, so we |
| * emulate the SG instruction here. |
| */ |
| if (v7m_handle_execute_nsc(cpu)) { |
| return; |
| } |
| break; |
| case M_FAKE_FSR_SFAULT: |
| /* Various flavours of SecureFault for attempts to execute or |
| * access data in the wrong security state. |
| */ |
| switch (cs->exception_index) { |
| case EXCP_PREFETCH_ABORT: |
| if (env->v7m.secure) { |
| env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; |
| qemu_log_mask(CPU_LOG_INT, |
| "...really SecureFault with SFSR.INVTRAN\n"); |
| } else { |
| env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; |
| qemu_log_mask(CPU_LOG_INT, |
| "...really SecureFault with SFSR.INVEP\n"); |
| } |
| break; |
| case EXCP_DATA_ABORT: |
| /* This must be an NS access to S memory */ |
| env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; |
| qemu_log_mask(CPU_LOG_INT, |
| "...really SecureFault with SFSR.AUVIOL\n"); |
| break; |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); |
| break; |
| case 0x8: /* External Abort */ |
| switch (cs->exception_index) { |
| case EXCP_PREFETCH_ABORT: |
| env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; |
| qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); |
| break; |
| case EXCP_DATA_ABORT: |
| env->v7m.cfsr[M_REG_NS] |= |
| (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); |
| env->v7m.bfar = env->exception.vaddress; |
| qemu_log_mask(CPU_LOG_INT, |
| "...with CFSR.PRECISERR and BFAR 0x%x\n", |
| env->v7m.bfar); |
| break; |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); |
| break; |
| default: |
| /* All other FSR values are either MPU faults or "can't happen |
| * for M profile" cases. |
| */ |
| switch (cs->exception_index) { |
| case EXCP_PREFETCH_ABORT: |
| env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; |
| qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); |
| break; |
| case EXCP_DATA_ABORT: |
| env->v7m.cfsr[env->v7m.secure] |= |
| (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); |
| env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; |
| qemu_log_mask(CPU_LOG_INT, |
| "...with CFSR.DACCVIOL and MMFAR 0x%x\n", |
| env->v7m.mmfar[env->v7m.secure]); |
| break; |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, |
| env->v7m.secure); |
| break; |
| } |
| break; |
| case EXCP_BKPT: |
| if (semihosting_enabled()) { |
| int nr; |
| nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; |
| if (nr == 0xab) { |
| env->regs[15] += 2; |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%x\n", |
| env->regs[0]); |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); |
| break; |
| case EXCP_IRQ: |
| break; |
| case EXCP_EXCEPTION_EXIT: |
| if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { |
| /* Must be v8M security extension function return */ |
| assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); |
| assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); |
| if (do_v7m_function_return(cpu)) { |
| return; |
| } |
| } else { |
| do_v7m_exception_exit(cpu); |
| return; |
| } |
| break; |
| case EXCP_LAZYFP: |
| /* |
| * We already pended the specific exception in the NVIC in the |
| * v7m_preserve_fp_state() helper function. |
| */ |
| break; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| lr = R_V7M_EXCRET_RES1_MASK | |
| R_V7M_EXCRET_DCRS_MASK; |
| /* The S bit indicates whether we should return to Secure |
| * or NonSecure (ie our current state). |
| * The ES bit indicates whether we're taking this exception |
| * to Secure or NonSecure (ie our target state). We set it |
| * later, in v7m_exception_taken(). |
| * The SPSEL bit is also set in v7m_exception_taken() for v8M. |
| * This corresponds to the ARM ARM pseudocode for v8M setting |
| * some LR bits in PushStack() and some in ExceptionTaken(); |
| * the distinction matters for the tailchain cases where we |
| * can take an exception without pushing the stack. |
| */ |
| if (env->v7m.secure) { |
| lr |= R_V7M_EXCRET_S_MASK; |
| } |
| if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) { |
| lr |= R_V7M_EXCRET_FTYPE_MASK; |
| } |
| } else { |
| lr = R_V7M_EXCRET_RES1_MASK | |
| R_V7M_EXCRET_S_MASK | |
| R_V7M_EXCRET_DCRS_MASK | |
| R_V7M_EXCRET_FTYPE_MASK | |
| R_V7M_EXCRET_ES_MASK; |
| if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { |
| lr |= R_V7M_EXCRET_SPSEL_MASK; |
| } |
| } |
| if (!arm_v7m_is_handler_mode(env)) { |
| lr |= R_V7M_EXCRET_MODE_MASK; |
| } |
| |
| ignore_stackfaults = v7m_push_stack(cpu); |
| v7m_exception_taken(cpu, lr, false, ignore_stackfaults); |
| } |
| |
| /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
| * register set. This is necessary when switching between AArch32 and AArch64 |
| * execution state. |
| */ |
| void aarch64_sync_32_to_64(CPUARMState *env) |
| { |
| int i; |
| uint32_t mode = env->uncached_cpsr & CPSR_M; |
| |
| /* We can blanket copy R[0:7] to X[0:7] */ |
| for (i = 0; i < 8; i++) { |
| env->xregs[i] = env->regs[i]; |
| } |
| |
| /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. |
| * Otherwise, they come from the banked user regs. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 8; i < 13; i++) { |
| env->xregs[i] = env->usr_regs[i - 8]; |
| } |
| } else { |
| for (i = 8; i < 13; i++) { |
| env->xregs[i] = env->regs[i]; |
| } |
| } |
| |
| /* Registers x13-x23 are the various mode SP and FP registers. Registers |
| * r13 and r14 are only copied if we are in that mode, otherwise we copy |
| * from the mode banked register. |
| */ |
| if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
| env->xregs[13] = env->regs[13]; |
| env->xregs[14] = env->regs[14]; |
| } else { |
| env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; |
| /* HYP is an exception in that it is copied from r14 */ |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->xregs[14] = env->regs[14]; |
| } else { |
| env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; |
| } |
| } |
| |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->xregs[15] = env->regs[13]; |
| } else { |
| env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_IRQ) { |
| env->xregs[16] = env->regs[14]; |
| env->xregs[17] = env->regs[13]; |
| } else { |
| env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; |
| env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_SVC) { |
| env->xregs[18] = env->regs[14]; |
| env->xregs[19] = env->regs[13]; |
| } else { |
| env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; |
| env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_ABT) { |
| env->xregs[20] = env->regs[14]; |
| env->xregs[21] = env->regs[13]; |
| } else { |
| env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; |
| env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_UND) { |
| env->xregs[22] = env->regs[14]; |
| env->xregs[23] = env->regs[13]; |
| } else { |
| env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; |
| env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; |
| } |
| |
| /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
| * mode, then we can copy from r8-r14. Otherwise, we copy from the |
| * FIQ bank for r8-r14. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 24; i < 31; i++) { |
| env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ |
| } |
| } else { |
| for (i = 24; i < 29; i++) { |
| env->xregs[i] = env->fiq_regs[i - 24]; |
| } |
| env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; |
| env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; |
| } |
| |
| env->pc = env->regs[15]; |
| } |
| |
| /* Function used to synchronize QEMU's AArch32 register set with AArch64 |
| * register set. This is necessary when switching between AArch32 and AArch64 |
| * execution state. |
| */ |
| void aarch64_sync_64_to_32(CPUARMState *env) |
| { |
| int i; |
| uint32_t mode = env->uncached_cpsr & CPSR_M; |
| |
| /* We can blanket copy X[0:7] to R[0:7] */ |
| for (i = 0; i < 8; i++) { |
| env->regs[i] = env->xregs[i]; |
| } |
| |
| /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. |
| * Otherwise, we copy x8-x12 into the banked user regs. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 8; i < 13; i++) { |
| env->usr_regs[i - 8] = env->xregs[i]; |
| } |
| } else { |
| for (i = 8; i < 13; i++) { |
| env->regs[i] = env->xregs[i]; |
| } |
| } |
| |
| /* Registers r13 & r14 depend on the current mode. |
| * If we are in a given mode, we copy the corresponding x registers to r13 |
| * and r14. Otherwise, we copy the x register to the banked r13 and r14 |
| * for the mode. |
| */ |
| if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
| env->regs[13] = env->xregs[13]; |
| env->regs[14] = env->xregs[14]; |
| } else { |
| env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; |
| |
| /* HYP is an exception in that it does not have its own banked r14 but |
| * shares the USR r14 |
| */ |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->regs[14] = env->xregs[14]; |
| } else { |
| env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; |
| } |
| } |
| |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->regs[13] = env->xregs[15]; |
| } else { |
| env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; |
| } |
| |
| if (mode == ARM_CPU_MODE_IRQ) { |
| env->regs[14] = env->xregs[16]; |
| env->regs[13] = env->xregs[17]; |
| } else { |
| env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; |
| } |
| |
| if (mode == ARM_CPU_MODE_SVC) { |
| env->regs[14] = env->xregs[18]; |
| env->regs[13] = env->xregs[19]; |
| } else { |
| env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; |
| } |
| |
| if (mode == ARM_CPU_MODE_ABT) { |
| env->regs[14] = env->xregs[20]; |
| env->regs[13] = env->xregs[21]; |
| } else { |
| env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; |
| } |
| |
| if (mode == ARM_CPU_MODE_UND) { |
| env->regs[14] = env->xregs[22]; |
| env->regs[13] = env->xregs[23]; |
| } else { |
| env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; |
| } |
| |
| /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
| * mode, then we can copy to r8-r14. Otherwise, we copy to the |
| * FIQ bank for r8-r14. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 24; i < 31; i++) { |
| env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ |
| } |
| } else { |
| for (i = 24; i < 29; i++) { |
| env->fiq_regs[i - 24] = env->xregs[i]; |
| } |
| env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; |
| env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; |
| } |
| |
| env->regs[15] = env->pc; |
| } |
| |
| static void take_aarch32_exception(CPUARMState *env, int new_mode, |
| uint32_t mask, uint32_t offset, |
| uint32_t newpc) |
| { |
| /* Change the CPU state so as to actually take the exception. */ |
| switch_mode(env, new_mode); |
| /* |
| * For exceptions taken to AArch32 we must clear the SS bit in both |
| * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. |
| */ |
| env->uncached_cpsr &= ~PSTATE_SS; |
| env->spsr = cpsr_read(env); |
| /* Clear IT bits. */ |
| env->condexec_bits = 0; |
| /* Switch to the new mode, and to the correct instruction set. */ |
| env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
| /* Set new mode endianness */ |
| env->uncached_cpsr &= ~CPSR_E; |
| if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { |
| env->uncached_cpsr |= CPSR_E; |
| } |
| /* J and IL must always be cleared for exception entry */ |
| env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); |
| env->daif |= mask; |
| |
| if (new_mode == ARM_CPU_MODE_HYP) { |
| env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; |
| env->elr_el[2] = env->regs[15]; |
| } else { |
| /* |
| * this is a lie, as there was no c1_sys on V4T/V5, but who cares |
| * and we should just guard the thumb mode on V4 |
| */ |
| if (arm_feature(env, ARM_FEATURE_V4T)) { |
| env->thumb = |
| (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
| } |
| env->regs[14] = env->regs[15] + offset; |
| } |
| env->regs[15] = newpc; |
| } |
| |
| static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) |
| { |
| /* |
| * Handle exception entry to Hyp mode; this is sufficiently |
| * different to entry to other AArch32 modes that we handle it |
| * separately here. |
| * |
| * The vector table entry used is always the 0x14 Hyp mode entry point, |
| * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. |
| * The offset applied to the preferred return address is always zero |
| * (see DDI0487C.a section G1.12.3). |
| * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. |
| */ |
| uint32_t addr, mask; |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| switch (cs->exception_index) { |
| case EXCP_UDEF: |
| addr = 0x04; |
| break; |
| case EXCP_SWI: |
| addr = 0x14; |
| break; |
| case EXCP_BKPT: |
| /* Fall through to prefetch abort. */ |
| case EXCP_PREFETCH_ABORT: |
| env->cp15.ifar_s = env->exception.vaddress; |
| qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", |
| (uint32_t)env->exception.vaddress); |
| addr = 0x0c; |
| break; |
| case EXCP_DATA_ABORT: |
| env->cp15.dfar_s = env->exception.vaddress; |
| qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", |
| (uint32_t)env->exception.vaddress); |
| addr = 0x10; |
| break; |
| case EXCP_IRQ: |
| addr = 0x18; |
| break; |
| case EXCP_FIQ: |
| addr = 0x1c; |
| break; |
| case EXCP_HVC: |
| addr = 0x08; |
| break; |
| case EXCP_HYP_TRAP: |
| addr = 0x14; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| } |
| |
| if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| /* |
| * QEMU syndrome values are v8-style. v7 has the IL bit |
| * UNK/SBZP for "field not valid" cases, where v8 uses RES1. |
| * If this is a v7 CPU, squash the IL bit in those cases. |
| */ |
| if (cs->exception_index == EXCP_PREFETCH_ABORT || |
| (cs->exception_index == EXCP_DATA_ABORT && |
| !(env->exception.syndrome & ARM_EL_ISV)) || |
| syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { |
| env->exception.syndrome &= ~ARM_EL_IL; |
| } |
| } |
| env->cp15.esr_el[2] = env->exception.syndrome; |
| } |
| |
| if (arm_current_el(env) != 2 && addr < 0x14) { |
| addr = 0x14; |
| } |
| |
| mask = 0; |
| if (!(env->cp15.scr_el3 & SCR_EA)) { |
| mask |= CPSR_A; |
| } |
| if (!(env->cp15.scr_el3 & SCR_IRQ)) { |
| mask |= CPSR_I; |
| } |
| if (!(env->cp15.scr_el3 & SCR_FIQ)) { |
| mask |= CPSR_F; |
| } |
| |
| addr += env->cp15.hvbar; |
| |
| take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); |
| } |
| |
| static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t addr; |
| uint32_t mask; |
| int new_mode; |
| uint32_t offset; |
| uint32_t moe; |
| |
| /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
| switch (syn_get_ec(env->exception.syndrome)) { |
| case EC_BREAKPOINT: |
| case EC_BREAKPOINT_SAME_EL: |
| moe = 1; |
| break; |
| case EC_WATCHPOINT: |
| case EC_WATCHPOINT_SAME_EL: |
| moe = 10; |
| break; |
| case EC_AA32_BKPT: |
| moe = 3; |
| break; |
| case EC_VECTORCATCH: |
| moe = 5; |
| break; |
| default: |
| moe = 0; |
| break; |
| } |
| |
| if (moe) { |
| env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); |
| } |
| |
| if (env->exception.target_el == 2) { |
| arm_cpu_do_interrupt_aarch32_hyp(cs); |
| return; |
| } |
| |
| switch (cs->exception_index) { |
| case EXCP_UDEF: |
| new_mode = ARM_CPU_MODE_UND; |
| addr = 0x04; |
| mask = CPSR_I; |
| if (env->thumb) |
| offset = 2; |
| else |
| offset = 4; |
| break; |
| case EXCP_SWI: |
| new_mode = ARM_CPU_MODE_SVC; |
| addr = 0x08; |
| mask = CPSR_I; |
| /* The PC already points to the next instruction. */ |
| offset = 0; |
| break; |
| case EXCP_BKPT: |
| /* Fall through to prefetch abort. */ |
| case EXCP_PREFETCH_ABORT: |
| A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
| A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
| qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
| env->exception.fsr, (uint32_t)env->exception.vaddress); |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x0c; |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_DATA_ABORT: |
| A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
| A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
| qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
| env->exception.fsr, |
| (uint32_t)env->exception.vaddress); |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x10; |
| mask = CPSR_A | CPSR_I; |
| offset = 8; |
| break; |
| case EXCP_IRQ: |
| new_mode = ARM_CPU_MODE_IRQ; |
| addr = 0x18; |
| /* Disable IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| if (env->cp15.scr_el3 & SCR_IRQ) { |
| /* IRQ routed to monitor mode */ |
| new_mode = ARM_CPU_MODE_MON; |
| mask |= CPSR_F; |
| } |
| break; |
| case EXCP_FIQ: |
| new_mode = ARM_CPU_MODE_FIQ; |
| addr = 0x1c; |
| /* Disable FIQ, IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| if (env->cp15.scr_el3 & SCR_FIQ) { |
| /* FIQ routed to monitor mode */ |
| new_mode = ARM_CPU_MODE_MON; |
| } |
| offset = 4; |
| break; |
| case EXCP_VIRQ: |
| new_mode = ARM_CPU_MODE_IRQ; |
| addr = 0x18; |
| /* Disable IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_VFIQ: |
| new_mode = ARM_CPU_MODE_FIQ; |
| addr = 0x1c; |
| /* Disable FIQ, IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| offset = 4; |
| break; |
| case EXCP_SMC: |
| new_mode = ARM_CPU_MODE_MON; |
| addr = 0x08; |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| offset = 0; |
| break; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| |
| if (new_mode == ARM_CPU_MODE_MON) { |
| addr += env->cp15.mvbar; |
| } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
| /* High vectors. When enabled, base address cannot be remapped. */ |
| addr += 0xffff0000; |
| } else { |
| /* ARM v7 architectures provide a vector base address register to remap |
| * the interrupt vector table. |
| * This register is only followed in non-monitor mode, and is banked. |
| * Note: only bits 31:5 are valid. |
| */ |
| addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
| } |
| |
| if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { |
| env->cp15.scr_el3 &= ~SCR_NS; |
| } |
| |
| take_aarch32_exception(env, new_mode, mask, offset, addr); |
| } |
| |
| /* Handle exception entry to a target EL which is using AArch64 */ |
| static void arm_cpu_do_interrupt_aarch64(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| unsigned int new_el = env->exception.target_el; |
| target_ulong addr = env->cp15.vbar_el[new_el]; |
| unsigned int new_mode = aarch64_pstate_mode(new_el, true); |
| unsigned int cur_el = arm_current_el(env); |
| |
| /* |
| * Note that new_el can never be 0. If cur_el is 0, then |
| * el0_a64 is is_a64(), else el0_a64 is ignored. |
| */ |
| aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); |
| |
| if (cur_el < new_el) { |
| /* Entry vector offset depends on whether the implemented EL |
| * immediately lower than the target level is using AArch32 or AArch64 |
| */ |
| bool is_aa64; |
| |
| switch (new_el) { |
| case 3: |
| is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; |
| break; |
| case 2: |
| is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; |
| break; |
| case 1: |
| is_aa64 = is_a64(env); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (is_aa64) { |
| addr += 0x400; |
| } else { |
| addr += 0x600; |
| } |
| } else if (pstate_read(env) & PSTATE_SP) { |
| addr += 0x200; |
| } |
| |
| switch (cs->exception_index) { |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| env->cp15.far_el[new_el] = env->exception.vaddress; |
| qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", |
| env->cp15.far_el[new_el]); |
| /* fall through */ |
| case EXCP_BKPT: |
| case EXCP_UDEF: |
| case EXCP_SWI: |
| case EXCP_HVC: |
| case EXCP_HYP_TRAP: |
| case EXCP_SMC: |
| if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { |
| /* |
| * QEMU internal FP/SIMD syndromes from AArch32 include the |
| * TA and coproc fields which are only exposed if the exception |
| * is taken to AArch32 Hyp mode. Mask them out to get a valid |
| * AArch64 format syndrome. |
| */ |
| env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); |
| } |
| env->cp15.esr_el[new_el] = env->exception.syndrome; |
| break; |
| case EXCP_IRQ: |
| case EXCP_VIRQ: |
| addr += 0x80; |
| break; |
| case EXCP_FIQ: |
| case EXCP_VFIQ: |
| addr += 0x100; |
| break; |
| case EXCP_SEMIHOST: |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%" PRIx64 "\n", |
| env->xregs[0]); |
| env->xregs[0] = do_arm_semihosting(env); |
| return; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| } |
| |
| if (is_a64(env)) { |
| env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); |
| aarch64_save_sp(env, arm_current_el(env)); |
| env->elr_el[new_el] = env->pc; |
| } else { |
| env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); |
| env->elr_el[new_el] = env->regs[15]; |
| |
| aarch64_sync_32_to_64(env); |
| |
| env->condexec_bits = 0; |
| } |
| qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", |
| env->elr_el[new_el]); |
| |
| pstate_write(env, PSTATE_DAIF | new_mode); |
| env->aarch64 = 1; |
| aarch64_restore_sp(env, new_el); |
| |
| env->pc = addr; |
| |
| qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", |
| new_el, env->pc, pstate_read(env)); |
| } |
| |
| static inline bool check_for_semihosting(CPUState *cs) |
| { |
| /* Check whether this exception is a semihosting call; if so |
| * then handle it and return true; otherwise return false. |
| */ |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (is_a64(env)) { |
| if (cs->exception_index == EXCP_SEMIHOST) { |
| /* This is always the 64-bit semihosting exception. |
| * The "is this usermode" and "is semihosting enabled" |
| * checks have been done at translate time. |
| */ |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%" PRIx64 "\n", |
| env->xregs[0]); |
| env->xregs[0] = do_arm_semihosting(env); |
| return true; |
| } |
| return false; |
| } else { |
| uint32_t imm; |
| |
| /* Only intercept calls from privileged modes, to provide some |
| * semblance of security. |
| */ |
| if (cs->exception_index != EXCP_SEMIHOST && |
| (!semihosting_enabled() || |
| ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { |
| return false; |
| } |
| |
| switch (cs->exception_index) { |
| case EXCP_SEMIHOST: |
| /* This is always a semihosting call; the "is this usermode" |
| * and "is semihosting enabled" checks have been done at |
| * translate time. |
| */ |
| break; |
| case EXCP_SWI: |
| /* Check for semihosting interrupt. */ |
| if (env->thumb) { |
| imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
| & 0xff; |
| if (imm == 0xab) { |
| break; |
| } |
| } else { |
| imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
| & 0xffffff; |
| if (imm == 0x123456) { |
| break; |
| } |
| } |
| return false; |
| case EXCP_BKPT: |
| /* See if this is a semihosting syscall. */ |
| if (env->thumb) { |
| imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
| & 0xff; |
| if (imm == 0xab) { |
| env->regs[15] += 2; |
| break; |
| } |
| } |
| return false; |
| default: |
| return false; |
| } |
| |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%x\n", |
| env->regs[0]); |
| env->regs[0] = do_arm_semihosting(env); |
| return true; |
| } |
| } |
| |
| /* Handle a CPU exception for A and R profile CPUs. |
| * Do any appropriate logging, handle PSCI calls, and then hand off |
| * to the AArch64-entry or AArch32-entry function depending on the |
| * target exception level's register width. |
| */ |
| void arm_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| unsigned int new_el = env->exception.target_el; |
| |
| assert(!arm_feature(env, ARM_FEATURE_M)); |
| |
| arm_log_exception(cs->exception_index); |
| qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), |
| new_el); |
| if (qemu_loglevel_mask(CPU_LOG_INT) |
| && !excp_is_internal(cs->exception_index)) { |
| qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", |
| syn_get_ec(env->exception.syndrome), |
| env->exception.syndrome); |
| } |
| |
| if (arm_is_psci_call(cpu, cs->exception_index)) { |
| arm_handle_psci_call(cpu); |
| qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); |
| return; |
| } |
| |
| /* Semihosting semantics depend on the register width of the |
| * code that caused the exception, not the target exception level, |
| * so must be handled here. |
| */ |
| if (check_for_semihosting(cs)) { |
| return; |
| } |
| |
| /* Hooks may change global state so BQL should be held, also the |
| * BQL needs to be held for any modification of |
| * cs->interrupt_request. |
| */ |
| g_assert(qemu_mutex_iothread_locked()); |
| |
| arm_call_pre_el_change_hook(cpu); |
| |
| assert(!excp_is_internal(cs->exception_index)); |
| if (arm_el_is_aa64(env, new_el)) { |
| arm_cpu_do_interrupt_aarch64(cs); |
| } else { |
| arm_cpu_do_interrupt_aarch32(cs); |
| } |
| |
| arm_call_el_change_hook(cpu); |
| |
| if (!kvm_enabled()) { |
| cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* Return the exception level which controls this address translation regime */ |
| static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_S2NS: |
| case ARMMMUIdx_S1E2: |
| return 2; |
| case ARMMMUIdx_S1E3: |
| return 3; |
| case ARMMMUIdx_S1SE0: |
| return arm_el_is_aa64(env, 3) ? 1 : 3; |
| case ARMMMUIdx_S1SE1: |
| case ARMMMUIdx_S1NSE0: |
| case ARMMMUIdx_S1NSE1: |
| case ARMMMUIdx_MPrivNegPri: |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MPriv: |
| case ARMMMUIdx_MUser: |
| case ARMMMUIdx_MSPrivNegPri: |
| case ARMMMUIdx_MSUserNegPri: |
| case ARMMMUIdx_MSPriv: |
| case ARMMMUIdx_MSUser: |
| return 1; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| /* Return the SCTLR value which controls this address translation regime */ |
| static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; |
| } |
| |
| /* Return true if the specified stage of address translation is disabled */ |
| static inline bool regime_translation_disabled(CPUARMState *env, |
| ARMMMUIdx mmu_idx) |
| { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & |
| (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
| case R_V7M_MPU_CTRL_ENABLE_MASK: |
| /* Enabled, but not for HardFault and NMI */ |
| return mmu_idx & ARM_MMU_IDX_M_NEGPRI; |
| case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
| /* Enabled for all cases */ |
| return false; |
| case 0: |
| default: |
| /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but |
| * we warned about that in armv7m_nvic.c when the guest set it. |
| */ |
| return true; |
| } |
| } |
| |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| /* HCR.DC means HCR.VM behaves as 1 */ |
| return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; |
| } |
| |
| if (env->cp15.hcr_el2 & HCR_TGE) { |
| /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ |
| if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { |
| return true; |
| } |
| } |
| |
| if ((env->cp15.hcr_el2 & HCR_DC) && |
| (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { |
| /* HCR.DC means SCTLR_EL1.M behaves as 0 */ |
| return true; |
| } |
| |
| return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; |
| } |
| |
| static inline bool regime_translation_big_endian(CPUARMState *env, |
| ARMMMUIdx mmu_idx) |
| { |
| return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; |
| } |
| |
| /* Return the TTBR associated with this translation regime */ |
| static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, |
| int ttbrn) |
| { |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| return env->cp15.vttbr_el2; |
| } |
| if (ttbrn == 0) { |
| return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; |
| } else { |
| return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; |
| } |
| } |
| |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* Return the TCR controlling this translation regime */ |
| static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| return &env->cp15.vtcr_el2; |
| } |
| return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; |
| } |
| |
| /* Convert a possible stage1+2 MMU index into the appropriate |
| * stage 1 MMU index |
| */ |
| static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) |
| { |
| if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); |
| } |
| return mmu_idx; |
| } |
| |
| /* Return true if the translation regime is using LPAE format page tables */ |
| static inline bool regime_using_lpae_format(CPUARMState *env, |
| ARMMMUIdx mmu_idx) |
| { |
| int el = regime_el(env, mmu_idx); |
| if (el == 2 || arm_el_is_aa64(env, el)) { |
| return true; |
| } |
| if (arm_feature(env, ARM_FEATURE_LPAE) |
| && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { |
| return true; |
| } |
| return false; |
| } |
| |
| /* Returns true if the stage 1 translation regime is using LPAE format page |
| * tables. Used when raising alignment exceptions, whose FSR changes depending |
| * on whether the long or short descriptor format is in use. */ |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| mmu_idx = stage_1_mmu_idx(mmu_idx); |
| |
| return regime_using_lpae_format(env, mmu_idx); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_S1SE0: |
| case ARMMMUIdx_S1NSE0: |
| case ARMMMUIdx_MUser: |
| case ARMMMUIdx_MSUser: |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MSUserNegPri: |
| return true; |
| default: |
| return false; |
| case ARMMMUIdx_S12NSE0: |
| case ARMMMUIdx_S12NSE1: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Translate section/page access permissions to page |
| * R/W protection flags |
| * |
| * @env: CPUARMState |
| * @mmu_idx: MMU index indicating required translation regime |
| * @ap: The 3-bit access permissions (AP[2:0]) |
| * @domain_prot: The 2-bit domain access permissions |
| */ |
| static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, |
| int ap, int domain_prot) |
| { |
| bool is_user = regime_is_user(env, mmu_idx); |
| |
| if (domain_prot == 3) { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| |
| switch (ap) { |
| case 0: |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| return 0; |
| } |
| switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
| case SCTLR_S: |
| return is_user ? 0 : PAGE_READ; |
| case SCTLR_R: |
| return PAGE_READ; |
| default: |
| return 0; |
| } |
| case 1: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 2: |
| if (is_user) { |
| return PAGE_READ; |
| } else { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| case 3: |
| return PAGE_READ | PAGE_WRITE; |
| case 4: /* Reserved. */ |
| return 0; |
| case 5: |
| return is_user ? 0 : PAGE_READ; |
| case 6: |
| return PAGE_READ; |
| case 7: |
| if (!arm_feature(env, ARM_FEATURE_V6K)) { |
| return 0; |
| } |
| return PAGE_READ; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Translate section/page access permissions to page |
| * R/W protection flags. |
| * |
| * @ap: The 2-bit simple AP (AP[2:1]) |
| * @is_user: TRUE if accessing from PL0 |
| */ |
| static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
| { |
| switch (ap) { |
| case 0: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 1: |
| return PAGE_READ | PAGE_WRITE; |
| case 2: |
| return is_user ? 0 : PAGE_READ; |
| case 3: |
| return PAGE_READ; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static inline int |
| simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) |
| { |
| return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); |
| } |
| |
| /* Translate S2 section/page access permissions to protection flags |
| * |
| * @env: CPUARMState |
| * @s2ap: The 2-bit stage2 access permissions (S2AP) |
| * @xn: XN (execute-never) bit |
| */ |
| static int get_S2prot(CPUARMState *env, int s2ap, int xn) |
| { |
| int prot = 0; |
| |
| if (s2ap & 1) { |
| prot |= PAGE_READ; |
| } |
| if (s2ap & 2) { |
| prot |= PAGE_WRITE; |
| } |
| if (!xn) { |
| if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
| prot |= PAGE_EXEC; |
| } |
| } |
| return prot; |
| } |
| |
| /* Translate section/page access permissions to protection flags |
| * |
| * @env: CPUARMState |
| * @mmu_idx: MMU index indicating required translation regime |
| * @is_aa64: TRUE if AArch64 |
| * @ap: The 2-bit simple AP (AP[2:1]) |
| * @ns: NS (non-secure) bit |
| * @xn: XN (execute-never) bit |
| * @pxn: PXN (privileged execute-never) bit |
| */ |
| static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, |
| int ap, int ns, int xn, int pxn) |
| { |
| bool is_user = regime_is_user(env, mmu_idx); |
| int prot_rw, user_rw; |
| bool have_wxn; |
| int wxn = 0; |
| |
| assert(mmu_idx != ARMMMUIdx_S2NS); |
| |
| user_rw = simple_ap_to_rw_prot_is_user(ap, true); |
| if (is_user) { |
| prot_rw = user_rw; |
| } else { |
| prot_rw = simple_ap_to_rw_prot_is_user(ap, false); |
| } |
| |
| if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { |
| return prot_rw; |
| } |
| |
| /* TODO have_wxn should be replaced with |
| * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) |
| * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE |
| * compatible processors have EL2, which is required for [U]WXN. |
| */ |
| have_wxn = arm_feature(env, ARM_FEATURE_LPAE); |
| |
| if (have_wxn) { |
| wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; |
| } |
| |
| if (is_aa64) { |
| switch (regime_el(env, mmu_idx)) { |
| case 1: |
| if (!is_user) { |
| xn = pxn || (user_rw & PAGE_WRITE); |
| } |
| break; |
| case 2: |
| case 3: |
| break; |
| } |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| switch (regime_el(env, mmu_idx)) { |
| case 1: |
| case 3: |
| if (is_user) { |
| xn = xn || !(user_rw & PAGE_READ); |
| } else { |
| int uwxn = 0; |
| if (have_wxn) { |
| uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; |
| } |
| xn = xn || !(prot_rw & PAGE_READ) || pxn || |
| (uwxn && (user_rw & PAGE_WRITE)); |
| } |
| break; |
| case 2: |
| break; |
| } |
| } else { |
| xn = wxn = 0; |
| } |
| |
| if (xn || (wxn && (prot_rw & PAGE_WRITE))) { |
| return prot_rw; |
| } |
| return prot_rw | PAGE_EXEC; |
| } |
| |
| static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
| uint32_t *table, uint32_t address) |
| { |
| /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
| TCR *tcr = regime_tcr(env, mmu_idx); |
| |
| if (address & tcr->mask) { |
| if (tcr->raw_tcr & TTBCR_PD1) { |
| /* Translation table walk disabled for TTBR1 */ |
| return false; |
| } |
| *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
| } else { |
| if (tcr->raw_tcr & TTBCR_PD0) { |
| /* Translation table walk disabled for TTBR0 */ |
| return false; |
| } |
| *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
| } |
| *table |= (address >> 18) & 0x3ffc; |
| return true; |
| } |
| |
| /* Translate a S1 pagetable walk through S2 if needed. */ |
| static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, |
| hwaddr addr, MemTxAttrs txattrs, |
| ARMMMUFaultInfo *fi) |
| { |
| if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && |
| !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { |
| target_ulong s2size; |
| hwaddr s2pa; |
| int s2prot; |
| int ret; |
| ARMCacheAttrs cacheattrs = {}; |
| ARMCacheAttrs *pcacheattrs = NULL; |
| |
| if (env->cp15.hcr_el2 & HCR_PTW) { |
| /* |
| * PTW means we must fault if this S1 walk touches S2 Device |
| * memory; otherwise we don't care about the attributes and can |
| * save the S2 translation the effort of computing them. |
| */ |
| pcacheattrs = &cacheattrs; |
| } |
| |
| ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, |
| &txattrs, &s2prot, &s2size, fi, pcacheattrs); |
| if (ret) { |
| assert(fi->type != ARMFault_None); |
| fi->s2addr = addr; |
| fi->stage2 = true; |
| fi->s1ptw = true; |
| return ~0; |
| } |
| if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { |
| /* Access was to Device memory: generate Permission fault */ |
| fi->type = ARMFault_Permission; |
| fi->s2addr = addr; |
| fi->stage2 = true; |
| fi->s1ptw = true; |
| return ~0; |
| } |
| addr = s2pa; |
| } |
| return addr; |
| } |
| |
| /* All loads done in the course of a page table walk go through here. */ |
| static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
| ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| MemTxAttrs attrs = {}; |
| MemTxResult result = MEMTX_OK; |
| AddressSpace *as; |
| uint32_t data; |
| |
| attrs.secure = is_secure; |
| as = arm_addressspace(cs, attrs); |
| addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
| if (fi->s1ptw) { |
| return 0; |
| } |
| if (regime_translation_big_endian(env, mmu_idx)) { |
| data = address_space_ldl_be(as, addr, attrs, &result); |
| } else { |
| data = address_space_ldl_le(as, addr, attrs, &result); |
| } |
| if (result == MEMTX_OK) { |
| return data; |
| } |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| return 0; |
| } |
| |
| static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
| ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| MemTxAttrs attrs = {}; |
| MemTxResult result = MEMTX_OK; |
| AddressSpace *as; |
| uint64_t data; |
| |
| attrs.secure = is_secure; |
| as = arm_addressspace(cs, attrs); |
| addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); |
| if (fi->s1ptw) { |
| return 0; |
| } |
| if (regime_translation_big_endian(env, mmu_idx)) { |
| data = address_space_ldq_be(as, addr, attrs, &result); |
| } else { |
| data = address_space_ldq_le(as, addr, attrs, &result); |
| } |
| if (result == MEMTX_OK) { |
| return data; |
| } |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| return 0; |
| } |
| |
| static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, int *prot, |
| target_ulong *page_size, |
| ARMMMUFaultInfo *fi) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| int level = 1; |
| uint32_t table; |
| uint32_t desc; |
| int type; |
| int ap; |
| int domain = 0; |
| int domain_prot; |
| hwaddr phys_addr; |
| uint32_t dacr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
| /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| type = (desc & 3); |
| domain = (desc >> 5) & 0x0f; |
| if (regime_el(env, mmu_idx) == 1) { |
| dacr = env->cp15.dacr_ns; |
| } else { |
| dacr = env->cp15.dacr_s; |
| } |
| domain_prot = (dacr >> (domain * 2)) & 3; |
| if (type == 0) { |
| /* Section translation fault. */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| if (type != 2) { |
| level = 2; |
| } |
| if (domain_prot == 0 || domain_prot == 2) { |
| fi->type = ARMFault_Domain; |
| goto do_fault; |
| } |
| if (type == 2) { |
| /* 1Mb section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| ap = (desc >> 10) & 3; |
| *page_size = 1024 * 1024; |
| } else { |
| /* Lookup l2 entry. */ |
| if (type == 1) { |
| /* Coarse pagetable. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| } else { |
| /* Fine pagetable. */ |
| table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| } |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x10000; |
| break; |
| case 2: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
| *page_size = 0x1000; |
| break; |
| case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
| if (type == 1) { |
| /* ARMv6/XScale extended small page format */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE) |
| || arm_feature(env, ARM_FEATURE_V6)) { |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| *page_size = 0x1000; |
| } else { |
| /* UNPREDICTABLE in ARMv5; we choose to take a |
| * page translation fault. |
| */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| } else { |
| phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| *page_size = 0x400; |
| } |
| ap = (desc >> 4) & 3; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| } |
| *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
| *prot |= *prot ? PAGE_EXEC : 0; |
| if (!(*prot & (1 << access_type))) { |
| /* Access permission fault. */ |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| *phys_ptr = phys_addr; |
| return false; |
| do_fault: |
| fi->domain = domain; |
| fi->level = level; |
| return true; |
| } |
| |
| static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| target_ulong *page_size, ARMMMUFaultInfo *fi) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| int level = 1; |
| uint32_t table; |
| uint32_t desc; |
| uint32_t xn; |
| uint32_t pxn = 0; |
| int type; |
| int ap; |
| int domain = 0; |
| int domain_prot; |
| hwaddr phys_addr; |
| uint32_t dacr; |
| bool ns; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
| /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| type = (desc & 3); |
| if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
| /* Section translation fault, or attempt to use the encoding |
| * which is Reserved on implementations without PXN. |
| */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| if ((type == 1) || !(desc & (1 << 18))) { |
| /* Page or Section. */ |
| domain = (desc >> 5) & 0x0f; |
| } |
| if (regime_el(env, mmu_idx) == 1) { |
| dacr = env->cp15.dacr_ns; |
| } else { |
| dacr = env->cp15.dacr_s; |
| } |
| if (type == 1) { |
| level = 2; |
| } |
| domain_prot = (dacr >> (domain * 2)) & 3; |
| if (domain_prot == 0 || domain_prot == 2) { |
| /* Section or Page domain fault */ |
| fi->type = ARMFault_Domain; |
| goto do_fault; |
| } |
| if (type != 1) { |
| if (desc & (1 << 18)) { |
| /* Supersection. */ |
| phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
| phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; |
| *page_size = 0x1000000; |
| } else { |
| /* Section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| *page_size = 0x100000; |
| } |
| ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| xn = desc & (1 << 4); |
| pxn = desc & 1; |
| ns = extract32(desc, 19, 1); |
| } else { |
| if (arm_feature(env, ARM_FEATURE_PXN)) { |
| pxn = (desc >> 2) & 1; |
| } |
| ns = extract32(desc, 3, 1); |
| /* Lookup l2 entry. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| xn = desc & (1 << 15); |
| *page_size = 0x10000; |
| break; |
| case 2: case 3: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| xn = desc & 1; |
| *page_size = 0x1000; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| } |
| if (domain_prot == 3) { |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } else { |
| if (pxn && !regime_is_user(env, mmu_idx)) { |
| xn = 1; |
| } |
| if (xn && access_type == MMU_INST_FETCH) { |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V6K) && |
| (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { |
| /* The simplified model uses AP[0] as an access control bit. */ |
| if ((ap & 1) == 0) { |
| /* Access flag fault. */ |
| fi->type = ARMFault_AccessFlag; |
| goto do_fault; |
| } |
| *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); |
| } else { |
| *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
| } |
| if (*prot && !xn) { |
| *prot |= PAGE_EXEC; |
| } |
| if (!(*prot & (1 << access_type))) { |
| /* Access permission fault. */ |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| } |
| if (ns) { |
| /* The NS bit will (as required by the architecture) have no effect if |
| * the CPU doesn't support TZ or this is a non-secure translation |
| * regime, because the attribute will already be non-secure. |
| */ |
| attrs->secure = false; |
| } |
| *phys_ptr = phys_addr; |
| return false; |
| do_fault: |
| fi->domain = domain; |
| fi->level = level; |
| return true; |
| } |
| |
| /* |
| * check_s2_mmu_setup |
| * @cpu: ARMCPU |
| * @is_aa64: True if the translation regime is in AArch64 state |
| * @startlevel: Suggested starting level |
| * @inputsize: Bitsize of IPAs |
| * @stride: Page-table stride (See the ARM ARM) |
| * |
| * Returns true if the suggested S2 translation parameters are OK and |
| * false otherwise. |
| */ |
| static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
| int inputsize, int stride) |
| { |
| const int grainsize = stride + 3; |
| int startsizecheck; |
| |
| /* Negative levels are never allowed. */ |
| if (level < 0) { |
| return false; |
| } |
| |
| startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
| if (startsizecheck < 1 || startsizecheck > stride + 4) { |
| return false; |
| } |
| |
| if (is_aa64) { |
| CPUARMState *env = &cpu->env; |
| unsigned int pamax = arm_pamax(cpu); |
| |
| switch (stride) { |
| case 13: /* 64KB Pages. */ |
| if (level == 0 || (level == 1 && pamax <= 42)) { |
| return false; |
| } |
| break; |
| case 11: /* 16KB Pages. */ |
| if (level == 0 || (level == 1 && pamax <= 40)) { |
| return false; |
| } |
| break; |
| case 9: /* 4KB Pages. */ |
| if (level == 0 && pamax <= 42) { |
| return false; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* Inputsize checks. */ |
| if (inputsize > pamax && |
| (arm_el_is_aa64(env, 1) || inputsize > 40)) { |
| /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ |
| return false; |
| } |
| } else { |
| /* AArch32 only supports 4KB pages. Assert on that. */ |
| assert(stride == 9); |
| |
| if (level == 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Translate from the 4-bit stage 2 representation of |
| * memory attributes (without cache-allocation hints) to |
| * the 8-bit representation of the stage 1 MAIR registers |
| * (which includes allocation hints). |
| * |
| * ref: shared/translation/attrs/S2AttrDecode() |
| * .../S2ConvertAttrsHints() |
| */ |
| static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) |
| { |
| uint8_t hiattr = extract32(s2attrs, 2, 2); |
| uint8_t loattr = extract32(s2attrs, 0, 2); |
| uint8_t hihint = 0, lohint = 0; |
| |
| if (hiattr != 0) { /* normal memory */ |
| if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ |
| hiattr = loattr = 1; /* non-cacheable */ |
| } else { |
| if (hiattr != 1) { /* Write-through or write-back */ |
| hihint = 3; /* RW allocate */ |
| } |
| if (loattr != 1) { /* Write-through or write-back */ |
| lohint = 3; /* RW allocate */ |
| } |
| } |
| } |
| |
| return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, |
| ARMMMUIdx mmu_idx) |
| { |
| uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; |
| uint32_t el = regime_el(env, mmu_idx); |
| bool tbi, tbid, epd, hpd, using16k, using64k; |
| int select, tsz; |
| |
| /* |
| * Bit 55 is always between the two regions, and is canonical for |
| * determining if address tagging is enabled. |
| */ |
| select = extract64(va, 55, 1); |
| |
| if (el > 1) { |
| tsz = extract32(tcr, 0, 6); |
| using64k = extract32(tcr, 14, 1); |
| using16k = extract32(tcr, 15, 1); |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| /* VTCR_EL2 */ |
| tbi = tbid = hpd = false; |
| } else { |
| tbi = extract32(tcr, 20, 1); |
| hpd = extract32(tcr, 24, 1); |
| tbid = extract32(tcr, 29, 1); |
| } |
| epd = false; |
| } else if (!select) { |
| tsz = extract32(tcr, 0, 6); |
| epd = extract32(tcr, 7, 1); |
| using64k = extract32(tcr, 14, 1); |
| using16k = extract32(tcr, 15, 1); |
| tbi = extract64(tcr, 37, 1); |
| hpd = extract64(tcr, 41, 1); |
| tbid = extract64(tcr, 51, 1); |
| } else { |
| int tg = extract32(tcr, 30, 2); |
| using16k = tg == 1; |
| using64k = tg == 3; |
| tsz = extract32(tcr, 16, 6); |
| epd = extract32(tcr, 23, 1); |
| tbi = extract64(tcr, 38, 1); |
| hpd = extract64(tcr, 42, 1); |
| tbid = extract64(tcr, 52, 1); |
| } |
| tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ |
| tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ |
| |
| return (ARMVAParameters) { |
| .tsz = tsz, |
| .select = select, |
| .tbi = tbi, |
| .tbid = tbid, |
| .epd = epd, |
| .hpd = hpd, |
| .using16k = using16k, |
| .using64k = using64k, |
| }; |
| } |
| |
| ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, |
| ARMMMUIdx mmu_idx, bool data) |
| { |
| ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); |
| |
| /* Present TBI as a composite with TBID. */ |
| ret.tbi &= (data || !ret.tbid); |
| return ret; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, |
| ARMMMUIdx mmu_idx) |
| { |
| uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; |
| uint32_t el = regime_el(env, mmu_idx); |
| int select, tsz; |
| bool epd, hpd; |
| |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| /* VTCR */ |
| bool sext = extract32(tcr, 4, 1); |
| bool sign = extract32(tcr, 3, 1); |
| |
| /* |
| * If the sign-extend bit is not the same as t0sz[3], the result |
| * is unpredictable. Flag this as a guest error. |
| */ |
| if (sign != sext) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); |
| } |
| tsz = sextract32(tcr, 0, 4) + 8; |
| select = 0; |
| hpd = false; |
| epd = false; |
| } else if (el == 2) { |
| /* HTCR */ |
| tsz = extract32(tcr, 0, 3); |
| select = 0; |
| hpd = extract64(tcr, 24, 1); |
| epd = false; |
| } else { |
| int t0sz = extract32(tcr, 0, 3); |
| int t1sz = extract32(tcr, 16, 3); |
| |
| if (t1sz == 0) { |
| select = va > (0xffffffffu >> t0sz); |
| } else { |
| /* Note that we will detect errors later. */ |
| select = va >= ~(0xffffffffu >> t1sz); |
| } |
| if (!select) { |
| tsz = t0sz; |
| epd = extract32(tcr, 7, 1); |
| hpd = extract64(tcr, 41, 1); |
| } else { |
| tsz = t1sz; |
| epd = extract32(tcr, 23, 1); |
| hpd = extract64(tcr, 42, 1); |
| } |
| /* For aarch32, hpd0 is not enabled without t2e as well. */ |
| hpd &= extract32(tcr, 6, 1); |
| } |
| |
| return (ARMVAParameters) { |
| .tsz = tsz, |
| .select = select, |
| .epd = epd, |
| .hpd = hpd, |
| }; |
| } |
| |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
| target_ulong *page_size_ptr, |
| ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| /* Read an LPAE long-descriptor translation table. */ |
| ARMFaultType fault_type = ARMFault_Translation; |
| uint32_t level; |
| ARMVAParameters param; |
| uint64_t ttbr; |
| hwaddr descaddr, indexmask, indexmask_grainsize; |
| uint32_t tableattrs; |
| target_ulong page_size; |
| uint32_t attrs; |
| int32_t stride; |
| int addrsize, inputsize; |
| TCR *tcr = regime_tcr(env, mmu_idx); |
| int ap, ns, xn, pxn; |
| uint32_t el = regime_el(env, mmu_idx); |
| bool ttbr1_valid; |
| uint64_t descaddrmask; |
| bool aarch64 = arm_el_is_aa64(env, el); |
| bool guarded = false; |
| |
| /* TODO: |
| * This code does not handle the different format TCR for VTCR_EL2. |
| * This code also does not support shareability levels. |
| * Attribute and permission bit handling should also be checked when adding |
| * support for those page table walks. |
| */ |
| if (aarch64) { |
| param = aa64_va_parameters(env, address, mmu_idx, |
| access_type != MMU_INST_FETCH); |
| level = 0; |
| /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it |
| * invalid. |
| */ |
| ttbr1_valid = (el < 2); |
| addrsize = 64 - 8 * param.tbi; |
| inputsize = 64 - param.tsz; |
| } else { |
| param = aa32_va_parameters(env, address, mmu_idx); |
| level = 1; |
| /* There is no TTBR1 for EL2 */ |
| ttbr1_valid = (el != 2); |
| addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); |
| inputsize = addrsize - param.tsz; |
| } |
| |
| /* |
| * We determined the region when collecting the parameters, but we |
| * have not yet validated that the address is valid for the region. |
| * Extract the top bits and verify that they all match select. |
| * |
| * For aa32, if inputsize == addrsize, then we have selected the |
| * region by exclusion in aa32_va_parameters and there is no more |
| * validation to do here. |
| */ |
| if (inputsize < addrsize) { |
| target_ulong top_bits = sextract64(address, inputsize, |
| addrsize - inputsize); |
| if (-top_bits != param.select || (param.select && !ttbr1_valid)) { |
| /* The gap between the two regions is a Translation fault */ |
| fault_type = ARMFault_Translation; |
| goto do_fault; |
| } |
| } |
| |
| if (param.using64k) { |
| stride = 13; |
| } else if (param.using16k) { |
| stride = 11; |
| } else { |
| stride = 9; |
| } |
| |
| /* Note that QEMU ignores shareability and cacheability attributes, |
| * so we don't need to do anything with the SH, ORGN, IRGN fields |
| * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the |
| * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently |
| * implement any ASID-like capability so we can ignore it (instead |
| * we will always flush the TLB any time the ASID is changed). |
| */ |
| ttbr = regime_ttbr(env, mmu_idx, param.select); |
| |
| /* Here we should have set up all the parameters for the translation: |
| * inputsize, ttbr, epd, stride, tbi |
| */ |
| |
| if (param.epd) { |
| /* Translation table walk disabled => Translation fault on TLB miss |
| * Note: This is always 0 on 64-bit EL2 and EL3. |
| */ |
| goto do_fault; |
| } |
| |
| if (mmu_idx != ARMMMUIdx_S2NS) { |
| /* The starting level depends on the virtual address size (which can |
| * be up to 48 bits) and the translation granule size. It indicates |
| * the number of strides (stride bits at a time) needed to |
| * consume the bits of the input address. In the pseudocode this is: |
| * level = 4 - RoundUp((inputsize - grainsize) / stride) |
| * where their 'inputsize' is our 'inputsize', 'grainsize' is |
| * our 'stride + 3' and 'stride' is our 'stride'. |
| * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: |
| * = 4 - (inputsize - stride - 3 + stride - 1) / stride |
| * = 4 - (inputsize - 4) / stride; |
| */ |
| level = 4 - (inputsize - 4) / stride; |
| } else { |
| /* For stage 2 translations the starting level is specified by the |
| * VTCR_EL2.SL0 field (whose interpretation depends on the page size) |
| */ |
| uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
| uint32_t startlevel; |
| bool ok; |
| |
| if (!aarch64 || stride == 9) { |
| /* AArch32 or 4KB pages */ |
| startlevel = 2 - sl0; |
| } else { |
| /* 16KB or 64KB pages */ |
| startlevel = 3 - sl0; |
| } |
| |
| /* Check that the starting level is valid. */ |
| ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
| inputsize, stride); |
| if (!ok) { |
| fault_type = ARMFault_Translation; |
| goto do_fault; |
| } |
| level = startlevel; |
| } |
| |
| indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
| indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; |
| |
| /* Now we can extract the actual base address from the TTBR */ |
| descaddr = extract64(ttbr, 0, 48); |
| descaddr &= ~indexmask; |
| |
| /* The address field in the descriptor goes up to bit 39 for ARMv7 |
| * but up to bit 47 for ARMv8, but we use the descaddrmask |
| * up to bit 39 for AArch32, because we don't need other bits in that case |
| * to construct next descriptor address (anyway they should be all zeroes). |
| */ |
| descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
| ~indexmask_grainsize; |
| |
| /* Secure accesses start with the page table in secure memory and |
| * can be downgraded to non-secure at any step. Non-secure accesses |
| * remain non-secure. We implement this by just ORing in the NSTable/NS |
| * bits at each step. |
| */ |
| tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); |
| for (;;) { |
| uint64_t descriptor; |
| bool nstable; |
| |
| descaddr |= (address >> (stride * (4 - level))) & indexmask; |
| descaddr &= ~7ULL; |
| nstable = extract32(tableattrs, 4, 1); |
| descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| |
| if (!(descriptor & 1) || |
| (!(descriptor & 2) && (level == 3))) { |
| /* Invalid, or the Reserved level 3 encoding */ |
| goto do_fault; |
| } |
| descaddr = descriptor & descaddrmask; |
| |
| if ((descriptor & 2) && (level < 3)) { |
| /* Table entry. The top five bits are attributes which may |
| * propagate down through lower levels of the table (and |
| * which are all arranged so that 0 means "no effect", so |
| * we can gather them up by ORing in the bits at each level). |
| */ |
| tableattrs |= extract64(descriptor, 59, 5); |
| level++; |
| indexmask = indexmask_grainsize; |
| continue; |
| } |
| /* Block entry at level 1 or 2, or page entry at level 3. |
| * These are basically the same thing, although the number |
| * of bits we pull in from the vaddr varies. |
| */ |
| page_size = (1ULL << ((stride * (4 - level)) + 3)); |
| descaddr |= (address & (page_size - 1)); |
| /* Extract attributes from the descriptor */ |
| attrs = extract64(descriptor, 2, 10) |
| | (extract64(descriptor, 52, 12) << 10); |
| |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| /* Stage 2 table descriptors do not include any attribute fields */ |
| break; |
| } |
| /* Merge in attributes from table descriptors */ |
| attrs |= nstable << 3; /* NS */ |
| guarded = extract64(descriptor, 50, 1); /* GP */ |
| if (param.hpd) { |
| /* HPD disables all the table attributes except NSTable. */ |
| break; |
| } |
| attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
| /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
| * means "force PL1 access only", which means forcing AP[1] to 0. |
| */ |
| attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ |
| attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ |
| break; |
| } |
| /* Here descaddr is the final physical address, and attributes |
| * are all in attrs. |
| */ |
| fault_type = ARMFault_AccessFlag; |
| if ((attrs & (1 << 8)) == 0) { |
| /* Access flag */ |
| goto do_fault; |
| } |
| |
| ap = extract32(attrs, 4, 2); |
| xn = extract32(attrs, 12, 1); |
| |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| ns = true; |
| *prot = get_S2prot(env, ap, xn); |
| } else { |
| ns = extract32(attrs, 3, 1); |
| pxn = extract32(attrs, 11, 1); |
| *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
| } |
| |
| fault_type = ARMFault_Permission; |
| if (!(*prot & (1 << access_type))) { |
| goto do_fault; |
| } |
| |
| if (ns) { |
| /* The NS bit will (as required by the architecture) have no effect if |
| * the CPU doesn't support TZ or this is a non-secure translation |
| * regime, because the attribute will already be non-secure. |
| */ |
| txattrs->secure = false; |
| } |
| /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ |
| if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { |
| txattrs->target_tlb_bit0 = true; |
| } |
| |
| if (cacheattrs != NULL) { |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| cacheattrs->attrs = convert_stage2_attrs(env, |
| extract32(attrs, 0, 4)); |
| } else { |
| /* Index into MAIR registers for cache attributes */ |
| uint8_t attrindx = extract32(attrs, 0, 3); |
| uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; |
| assert(attrindx <= 7); |
| cacheattrs->attrs = extract64(mair, attrindx * 8, 8); |
| } |
| cacheattrs->shareability = extract32(attrs, 6, 2); |
| } |
| |
| *phys_ptr = descaddr; |
| *page_size_ptr = page_size; |
| return false; |
| |
| do_fault: |
| fi->type = fault_type; |
| fi->level = level; |
| /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
| fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); |
| return true; |
| } |
| |
| static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
| ARMMMUIdx mmu_idx, |
| int32_t address, int *prot) |
| { |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| *prot = PAGE_READ | PAGE_WRITE; |
| switch (address) { |
| case 0xF0000000 ... 0xFFFFFFFF: |
| if (regime_sctlr(env, mmu_idx) & SCTLR_V) { |
| /* hivecs execing is ok */ |
| *prot |= PAGE_EXEC; |
| } |
| break; |
| case 0x00000000 ... 0x7FFFFFFF: |
| *prot |= PAGE_EXEC; |
| break; |
| } |
| } else { |
| /* Default system address map for M profile cores. |
| * The architecture specifies which regions are execute-never; |
| * at the MPU level no other checks are defined. |
| */ |
| switch (address) { |
| case 0x00000000 ... 0x1fffffff: /* ROM */ |
| case 0x20000000 ... 0x3fffffff: /* SRAM */ |
| case 0x60000000 ... 0x7fffffff: /* RAM */ |
| case 0x80000000 ... 0x9fffffff: /* RAM */ |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| break; |
| case 0x40000000 ... 0x5fffffff: /* Peripheral */ |
| case 0xa0000000 ... 0xbfffffff: /* Device */ |
| case 0xc0000000 ... 0xdfffffff: /* Device */ |
| case 0xe0000000 ... 0xffffffff: /* System */ |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| } |
| |
| static bool pmsav7_use_background_region(ARMCPU *cpu, |
| ARMMMUIdx mmu_idx, bool is_user) |
| { |
| /* Return true if we should use the default memory map as a |
| * "background" region if there are no hits against any MPU regions. |
| */ |
| CPUARMState *env = &cpu->env; |
| |
| if (is_user) { |
| return false; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] |
| & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; |
| } else { |
| return regime_sctlr(env, mmu_idx) & SCTLR_BR; |
| } |
| } |
| |
| static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
| { |
| /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ |
| return arm_feature(env, ARM_FEATURE_M) && |
| extract32(address, 20, 12) == 0xe00; |
| } |
| |
| static inline bool m_is_system_region(CPUARMState *env, uint32_t address) |
| { |
| /* True if address is in the M profile system region |
| * 0xe0000000 - 0xffffffff |
| */ |
| return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; |
| } |
| |
| static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, int *prot, |
| target_ulong *page_size, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int n; |
| bool is_user = regime_is_user(env, mmu_idx); |
| |
| *phys_ptr = address; |
| *page_size = TARGET_PAGE_SIZE; |
| *prot = 0; |
| |
| if (regime_translation_disabled(env, mmu_idx) || |
| m_is_ppb_region(env, address)) { |
| /* MPU disabled or M profile PPB access: use default memory map. |
| * The other case which uses the default memory map in the |
| * v7M ARM ARM pseudocode is exception vector reads from the vector |
| * table. In QEMU those accesses are done in arm_v7m_load_vector(), |
| * which always does a direct read using address_space_ldl(), rather |
| * than going via this function, so we don't need to check that here. |
| */ |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| } else { /* MPU enabled */ |
| for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
| /* region search */ |
| uint32_t base = env->pmsav7.drbar[n]; |
| uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); |
| uint32_t rmask; |
| bool srdis = false; |
| |
| if (!(env->pmsav7.drsr[n] & 0x1)) { |
| continue; |
| } |
| |
| if (!rsize) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRSR[%d]: Rsize field cannot be 0\n", n); |
| continue; |
| } |
| rsize++; |
| rmask = (1ull << rsize) - 1; |
| |
| if (base & rmask) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRBAR[%d]: 0x%" PRIx32 " misaligned " |
| "to DRSR region size, mask = 0x%" PRIx32 "\n", |
| n, base, rmask); |
| continue; |
| } |
| |
| if (address < base || address > base + rmask) { |
| /* |
| * Address not in this region. We must check whether the |
| * region covers addresses in the same page as our address. |
| * In that case we must not report a size that covers the |
| * whole page for a subsequent hit against a different MPU |
| * region or the background region, because it would result in |
| * incorrect TLB hits for subsequent accesses to addresses that |
| * are in this MPU region. |
| */ |
| if (ranges_overlap(base, rmask, |
| address & TARGET_PAGE_MASK, |
| TARGET_PAGE_SIZE)) { |
| *page_size = 1; |
| } |
| continue; |
| } |
| |
| /* Region matched */ |
| |
| if (rsize >= 8) { /* no subregions for regions < 256 bytes */ |
| int i, snd; |
| uint32_t srdis_mask; |
| |
| rsize -= 3; /* sub region size (power of 2) */ |
| snd = ((address - base) >> rsize) & 0x7; |
| srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); |
| |
| srdis_mask = srdis ? 0x3 : 0x0; |
| for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { |
| /* This will check in groups of 2, 4 and then 8, whether |
| * the subregion bits are consistent. rsize is incremented |
| * back up to give the region size, considering consistent |
| * adjacent subregions as one region. Stop testing if rsize |
| * is already big enough for an entire QEMU page. |
| */ |
| int snd_rounded = snd & ~(i - 1); |
| uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], |
| snd_rounded + 8, i); |
| if (srdis_mask ^ srdis_multi) { |
| break; |
| } |
| srdis_mask = (srdis_mask << i) | srdis_mask; |
| rsize++; |
| } |
| } |
| if (srdis) { |
| continue; |
| } |
| if (rsize < TARGET_PAGE_BITS) { |
| *page_size = 1 << rsize; |
| } |
| break; |
| } |
| |
| if (n == -1) { /* no hits */ |
| if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
| /* background fault */ |
| fi->type = ARMFault_Background; |
| return true; |
| } |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| } else { /* a MPU hit! */ |
| uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); |
| uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
| |
| if (m_is_system_region(env, address)) { |
| /* System space is always execute never */ |
| xn = 1; |
| } |
| |
| if (is_user) { /* User mode AP bit decoding */ |
| switch (ap) { |
| case 0: |
| case 1: |
| case 5: |
| break; /* no access */ |
| case 3: |
| *prot |= PAGE_WRITE; |
| /* fall through */ |
| case 2: |
| case 6: |
| *prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| case 7: |
| /* for v7M, same as 6; for R profile a reserved value */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| *prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| } |
| /* fall through */ |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRACR[%d]: Bad value for AP bits: 0x%" |
| PRIx32 "\n", n, ap); |
| } |
| } else { /* Priv. mode AP bits decoding */ |
| switch (ap) { |
| case 0: |
| break; /* no access */ |
| case 1: |
| case 2: |
| case 3: |
| *prot |= PAGE_WRITE; |
| /* fall through */ |
| case 5: |
| case 6: |
| *prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| case 7: |
| /* for v7M, same as 6; for R profile a reserved value */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| *prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| } |
| /* fall through */ |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRACR[%d]: Bad value for AP bits: 0x%" |
| PRIx32 "\n", n, ap); |
| } |
| } |
| |
| /* execute never */ |
| if (xn) { |
| *prot &= ~PAGE_EXEC; |
| } |
| } |
| } |
| |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return !(*prot & (1 << access_type)); |
| } |
| |
| static bool v8m_is_sau_exempt(CPUARMState *env, |
| uint32_t address, MMUAccessType access_type) |
| { |
| /* The architecture specifies that certain address ranges are |
| * exempt from v8M SAU/IDAU checks. |
| */ |
| return |
| (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || |
| (address >= 0xe0000000 && address <= 0xe0002fff) || |
| (address >= 0xe000e000 && address <= 0xe000efff) || |
| (address >= 0xe002e000 && address <= 0xe002efff) || |
| (address >= 0xe0040000 && address <= 0xe0041fff) || |
| (address >= 0xe00ff000 && address <= 0xe00fffff); |
| } |
| |
| static void v8m_security_lookup(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| V8M_SAttributes *sattrs) |
| { |
| /* Look up the security attributes for this address. Compare the |
| * pseudocode SecurityCheck() function. |
| * We assume the caller has zero-initialized *sattrs. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int r; |
| bool idau_exempt = false, idau_ns = true, idau_nsc = true; |
| int idau_region = IREGION_NOTVALID; |
| uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
| uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); |
| |
| if (cpu->idau) { |
| IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); |
| IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); |
| |
| iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, |
| &idau_nsc); |
| } |
| |
| if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { |
| /* 0xf0000000..0xffffffff is always S for insn fetches */ |
| return; |
| } |
| |
| if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { |
| sattrs->ns = !regime_is_secure(env, mmu_idx); |
| return; |
| } |
| |
| if (idau_region != IREGION_NOTVALID) { |
| sattrs->irvalid = true; |
| sattrs->iregion = idau_region; |
| } |
| |
| switch (env->sau.ctrl & 3) { |
| case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ |
| break; |
| case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ |
| sattrs->ns = true; |
| break; |
| default: /* SAU.ENABLE == 1 */ |
| for (r = 0; r < cpu->sau_sregion; r++) { |
| if (env->sau.rlar[r] & 1) { |
| uint32_t base = env->sau.rbar[r] & ~0x1f; |
| uint32_t limit = env->sau.rlar[r] | 0x1f; |
| |
| if (base <= address && limit >= address) { |
| if (base > addr_page_base || limit < addr_page_limit) { |
| sattrs->subpage = true; |
| } |
| if (sattrs->srvalid) { |
| /* If we hit in more than one region then we must report |
| * as Secure, not NS-Callable, with no valid region |
| * number info. |
| */ |
| sattrs->ns = false; |
| sattrs->nsc = false; |
| sattrs->sregion = 0; |
| sattrs->srvalid = false; |
| break; |
| } else { |
| if (env->sau.rlar[r] & 2) { |
| sattrs->nsc = true; |
| } else { |
| sattrs->ns = true; |
| } |
| sattrs->srvalid = true; |
| sattrs->sregion = r; |
| } |
| } else { |
| /* |
| * Address not in this region. We must check whether the |
| * region covers addresses in the same page as our address. |
| * In that case we must not report a size that covers the |
| * whole page for a subsequent hit against a different MPU |
| * region or the background region, because it would result |
| * in incorrect TLB hits for subsequent accesses to |
| * addresses that are in this MPU region. |
| */ |
| if (limit >= base && |
| ranges_overlap(base, limit - base + 1, |
| addr_page_base, |
| TARGET_PAGE_SIZE)) { |
| sattrs->subpage = true; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| /* |
| * The IDAU will override the SAU lookup results if it specifies |
| * higher security than the SAU does. |
| */ |
| if (!idau_ns) { |
| if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { |
| sattrs->ns = false; |
| sattrs->nsc = idau_nsc; |
| } |
| } |
| } |
| |
| static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *txattrs, |
| int *prot, bool *is_subpage, |
| ARMMMUFaultInfo *fi, uint32_t *mregion) |
| { |
| /* Perform a PMSAv8 MPU lookup (without also doing the SAU check |
| * that a full phys-to-virt translation does). |
| * mregion is (if not NULL) set to the region number which matched, |
| * or -1 if no region number is returned (MPU off, address did not |
| * hit a region, address hit in multiple regions). |
| * We set is_subpage to true if the region hit doesn't cover the |
| * entire TARGET_PAGE the address is within. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| bool is_user = regime_is_user(env, mmu_idx); |
| uint32_t secure = regime_is_secure(env, mmu_idx); |
| int n; |
| int matchregion = -1; |
| bool hit = false; |
| uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
| uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); |
| |
| *is_subpage = false; |
| *phys_ptr = address; |
| *prot = 0; |
| if (mregion) { |
| *mregion = -1; |
| } |
| |
| /* Unlike the ARM ARM pseudocode, we don't need to check whether this |
| * was an exception vector read from the vector table (which is always |
| * done using the default system address map), because those accesses |
| * are done in arm_v7m_load_vector(), which always does a direct |
| * read using address_space_ldl(), rather than going via this function. |
| */ |
| if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ |
| hit = true; |
| } else if (m_is_ppb_region(env, address)) { |
| hit = true; |
| } else { |
| if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { |
| hit = true; |
| } |
| |
| for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
| /* region search */ |
| /* Note that the base address is bits [31:5] from the register |
| * with bits [4:0] all zeroes, but the limit address is bits |
| * [31:5] from the register with bits [4:0] all ones. |
| */ |
| uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; |
| uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; |
| |
| if (!(env->pmsav8.rlar[secure][n] & 0x1)) { |
| /* Region disabled */ |
| continue; |
| } |
| |
| if (address < base || address > limit) { |
| /* |
| * Address not in this region. We must check whether the |
| * region covers addresses in the same page as our address. |
| * In that case we must not report a size that covers the |
| * whole page for a subsequent hit against a different MPU |
| * region or the background region, because it would result in |
| * incorrect TLB hits for subsequent accesses to addresses that |
| * are in this MPU region. |
| */ |
| if (limit >= base && |
| ranges_overlap(base, limit - base + 1, |
| addr_page_base, |
| TARGET_PAGE_SIZE)) { |
| *is_subpage = true; |
| } |
| continue; |
| } |
| |
| if (base > addr_page_base || limit < addr_page_limit) { |
| *is_subpage = true; |
| } |
| |
| if (matchregion != -1) { |
| /* Multiple regions match -- always a failure (unlike |
| * PMSAv7 where highest-numbered-region wins) |
| */ |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| } |
| |
| matchregion = n; |
| hit = true; |
| } |
| } |
| |
| if (!hit) { |
| /* background fault */ |
| fi->type = ARMFault_Background; |
| return true; |
| } |
| |
| if (matchregion == -1) { |
| /* hit using the background region */ |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| } else { |
| uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); |
| uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); |
| |
| if (m_is_system_region(env, address)) { |
| /* System space is always execute never */ |
| xn = 1; |
| } |
| |
| *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); |
| if (*prot && !xn) { |
| *prot |= PAGE_EXEC; |
| } |
| /* We don't need to look the attribute up in the MAIR0/MAIR1 |
| * registers because that only tells us about cacheability. |
| */ |
| if (mregion) { |
| *mregion = matchregion; |
| } |
| } |
| |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return !(*prot & (1 << access_type)); |
| } |
| |
| |
| static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *txattrs, |
| int *prot, target_ulong *page_size, |
| ARMMMUFaultInfo *fi) |
| { |
| uint32_t secure = regime_is_secure(env, mmu_idx); |
| V8M_SAttributes sattrs = {}; |
| bool ret; |
| bool mpu_is_subpage; |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); |
| if (access_type == MMU_INST_FETCH) { |
| /* Instruction fetches always use the MMU bank and the |
| * transaction attribute determined by the fetch address, |
| * regardless of CPU state. This is painful for QEMU |
| * to handle, because it would mean we need to encode |
| * into the mmu_idx not just the (user, negpri) information |
| * for the current security state but also that for the |
| * other security state, which would balloon the number |
| * of mmu_idx values needed alarmingly. |
| * Fortunately we can avoid this because it's not actually |
| * possible to arbitrarily execute code from memory with |
| * the wrong security attribute: it will always generate |
| * an exception of some kind or another, apart from the |
| * special case of an NS CPU executing an SG instruction |
| * in S&NSC memory. So we always just fail the translation |
| * here and sort things out in the exception handler |
| * (including possibly emulating an SG instruction). |
| */ |
| if (sattrs.ns != !secure) { |
| if (sattrs.nsc) { |
| fi->type = ARMFault_QEMU_NSCExec; |
| } else { |
| fi->type = ARMFault_QEMU_SFault; |
| } |
| *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
| *phys_ptr = address; |
| *prot = 0; |
| return true; |
| } |
| } else { |
| /* For data accesses we always use the MMU bank indicated |
| * by the current CPU state, but the security attributes |
| * might downgrade a secure access to nonsecure. |
| */ |
| if (sattrs.ns) { |
| txattrs->secure = false; |
| } else if (!secure) { |
| /* NS access to S memory must fault. |
| * Architecturally we should first check whether the |
| * MPU information for this address indicates that we |
| * are doing an unaligned access to Device memory, which |
| * should generate a UsageFault instead. QEMU does not |
| * currently check for that kind of unaligned access though. |
| * If we added it we would need to do so as a special case |
| * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). |
| */ |
| fi->type = ARMFault_QEMU_SFault; |
| *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; |
| *phys_ptr = address; |
| *prot = 0; |
| return true; |
| } |
| } |
| } |
| |
| ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, |
| txattrs, prot, &mpu_is_subpage, fi, NULL); |
| *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; |
| return ret; |
| } |
| |
| static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, int *prot, |
| ARMMMUFaultInfo *fi) |
| { |
| int n; |
| uint32_t mask; |
| uint32_t base; |
| bool is_user = regime_is_user(env, mmu_idx); |
| |
| if (regime_translation_disabled(env, mmu_idx)) { |
| /* MPU disabled. */ |
| *phys_ptr = address; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return false; |
| } |
| |
| *phys_ptr = address; |
| for (n = 7; n >= 0; n--) { |
| base = env->cp15.c6_region[n]; |
| if ((base & 1) == 0) { |
| continue; |
| } |
| mask = 1 << ((base >> 1) & 0x1f); |
| /* Keep this shift separate from the above to avoid an |
| (undefined) << 32. */ |
| mask = (mask << 1) - 1; |
| if (((base ^ address) & ~mask) == 0) { |
| break; |
| } |
| } |
| if (n < 0) { |
| fi->type = ARMFault_Background; |
| return true; |
| } |
| |
| if (access_type == MMU_INST_FETCH) { |
| mask = env->cp15.pmsav5_insn_ap; |
| } else { |
| mask = env->cp15.pmsav5_data_ap; |
| } |
| mask = (mask >> (n * 4)) & 0xf; |
| switch (mask) { |
| case 0: |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| case 1: |
| if (is_user) { |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| } |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 2: |
| *prot = PAGE_READ; |
| if (!is_user) { |
| *prot |= PAGE_WRITE; |
| } |
| break; |
| case 3: |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 5: |
| if (is_user) { |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| } |
| *prot = PAGE_READ; |
| break; |
| case 6: |
| *prot = PAGE_READ; |
| break; |
| default: |
| /* Bad permission. */ |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| } |
| *prot |= PAGE_EXEC; |
| return false; |
| } |
| |
| /* Combine either inner or outer cacheability attributes for normal |
| * memory, according to table D4-42 and pseudocode procedure |
| * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). |
| * |
| * NB: only stage 1 includes allocation hints (RW bits), leading to |
| * some asymmetry. |
| */ |
| static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) |
| { |
| if (s1 == 4 || s2 == 4) { |
| /* non-cacheable has precedence */ |
| return 4; |
| } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { |
| /* stage 1 write-through takes precedence */ |
| return s1; |
| } else if (extract32(s2, 2, 2) == 2) { |
| /* stage 2 write-through takes precedence, but the allocation hint |
| * is still taken from stage 1 |
| */ |
| return (2 << 2) | extract32(s1, 0, 2); |
| } else { /* write-back */ |
| return s1; |
| } |
| } |
| |
| /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 |
| * and CombineS1S2Desc() |
| * |
| * @s1: Attributes from stage 1 walk |
| * @s2: Attributes from stage 2 walk |
| */ |
| static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) |
| { |
| uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); |
| uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); |
| ARMCacheAttrs ret; |
| |
| /* Combine shareability attributes (table D4-43) */ |
| if (s1.shareability == 2 || s2.shareability == 2) { |
| /* if either are outer-shareable, the result is outer-shareable */ |
| ret.shareability = 2; |
| } else if (s1.shareability == 3 || s2.shareability == 3) { |
| /* if either are inner-shareable, the result is inner-shareable */ |
| ret.shareability = 3; |
| } else { |
| /* both non-shareable */ |
| ret.shareability = 0; |
| } |
| |
| /* Combine memory type and cacheability attributes */ |
| if (s1hi == 0 || s2hi == 0) { |
| /* Device has precedence over normal */ |
| if (s1lo == 0 || s2lo == 0) { |
| /* nGnRnE has precedence over anything */ |
| ret.attrs = 0; |
| } else if (s1lo == 4 || s2lo == 4) { |
| /* non-Reordering has precedence over Reordering */ |
| ret.attrs = 4; /* nGnRE */ |
| } else if (s1lo == 8 || s2lo == 8) { |
| /* non-Gathering has precedence over Gathering */ |
| ret.attrs = 8; /* nGRE */ |
| } else { |
| ret.attrs = 0xc; /* GRE */ |
| } |
| |
| /* Any location for which the resultant memory type is any |
| * type of Device memory is always treated as Outer Shareable. |
| */ |
| ret.shareability = 2; |
| } else { /* Normal memory */ |
| /* Outer/inner cacheability combine independently */ |
| ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 |
| | combine_cacheattr_nibble(s1lo, s2lo); |
| |
| if (ret.attrs == 0x44) { |
| /* Any location for which the resultant memory type is Normal |
| * Inner Non-cacheable, Outer Non-cacheable is always treated |
| * as Outer Shareable. |
| */ |
| ret.shareability = 2; |
| } |
| } |
| |
| return ret; |
| } |
| |
| |
| /* get_phys_addr - get the physical address for this virtual address |
| * |
| * Find the physical address corresponding to the given virtual address, |
| * by doing a translation table walk on MMU based systems or using the |
| * MPU state on MPU based systems. |
| * |
| * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
| * prot and page_size may not be filled in, and the populated fsr value provides |
| * information on why the translation aborted, in the format of a |
| * DFSR/IFSR fault register, with the following caveats: |
| * * we honour the short vs long DFSR format differences. |
| * * the WnR bit is never set (the caller must do this). |
| * * for PSMAv5 based systems we don't bother to return a full FSR format |
| * value. |
| * |
| * @env: CPUARMState |
| * @address: virtual address to get physical address for |
| * @access_type: 0 for read, 1 for write, 2 for execute |
| * @mmu_idx: MMU index indicating required translation regime |
| * @phys_ptr: set to the physical address corresponding to the virtual address |
| * @attrs: set to the memory transaction attributes to use |
| * @prot: set to the permissions for the page containing phys_ptr |
| * @page_size: set to the size of the page containing phys_ptr |
| * @fi: set to fault info if the translation fails |
| * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes |
| */ |
| static bool get_phys_addr(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| target_ulong *page_size, |
| ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) |
| { |
| if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| /* Call ourselves recursively to do the stage 1 and then stage 2 |
| * translations. |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| hwaddr ipa; |
| int s2_prot; |
| int ret; |
| ARMCacheAttrs cacheattrs2 = {}; |
| |
| ret = get_phys_addr(env, address, access_type, |
| stage_1_mmu_idx(mmu_idx), &ipa, attrs, |
| prot, page_size, fi, cacheattrs); |
| |
| /* If S1 fails or S2 is disabled, return early. */ |
| if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { |
| *phys_ptr = ipa; |
| return ret; |
| } |
| |
| /* S1 is done. Now do S2 translation. */ |
| ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, |
| phys_ptr, attrs, &s2_prot, |
| page_size, fi, |
| cacheattrs != NULL ? &cacheattrs2 : NULL); |
| fi->s2addr = ipa; |
| /* Combine the S1 and S2 perms. */ |
| *prot &= s2_prot; |
| |
| /* Combine the S1 and S2 cache attributes, if needed */ |
| if (!ret && cacheattrs != NULL) { |
| if (env->cp15.hcr_el2 & HCR_DC) { |
| /* |
| * HCR.DC forces the first stage attributes to |
| * Normal Non-Shareable, |
| * Inner Write-Back Read-Allocate Write-Allocate, |
| * Outer Write-Back Read-Allocate Write-Allocate. |
| */ |
| cacheattrs->attrs = 0xff; |
| cacheattrs->shareability = 0; |
| } |
| *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); |
| } |
| |
| return ret; |
| } else { |
| /* |
| * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
| */ |
| mmu_idx = stage_1_mmu_idx(mmu_idx); |
| } |
| } |
| |
| /* The page table entries may downgrade secure to non-secure, but |
| * cannot upgrade an non-secure translation regime's attributes |
| * to secure. |
| */ |
| attrs->secure = regime_is_secure(env, mmu_idx); |
| attrs->user = regime_is_user(env, mmu_idx); |
| |
| /* Fast Context Switch Extension. This doesn't exist at all in v8. |
| * In v7 and earlier it affects all stage 1 translations. |
| */ |
| if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS |
| && !arm_feature(env, ARM_FEATURE_V8)) { |
| if (regime_el(env, mmu_idx) == 3) { |
| address += env->cp15.fcseidr_s; |
| } else { |
| address += env->cp15.fcseidr_ns; |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_PMSA)) { |
| bool ret; |
| *page_size = TARGET_PAGE_SIZE; |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* PMSAv8 */ |
| ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, |
| phys_ptr, attrs, prot, page_size, fi); |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| /* PMSAv7 */ |
| ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, |
| phys_ptr, prot, page_size, fi); |
| } else { |
| /* Pre-v7 MPU */ |
| ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
| phys_ptr, prot, fi); |
| } |
| qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 |
| " mmu_idx %u -> %s (prot %c%c%c)\n", |
| access_type == MMU_DATA_LOAD ? "reading" : |
| (access_type == MMU_DATA_STORE ? "writing" : "execute"), |
| (uint32_t)address, mmu_idx, |
| ret ? "Miss" : "Hit", |
| *prot & PAGE_READ ? 'r' : '-', |
| *prot & PAGE_WRITE ? 'w' : '-', |
| *prot & PAGE_EXEC ? 'x' : '-'); |
| |
| return ret; |
| } |
| |
| /* Definitely a real MMU, not an MPU */ |
| |
| if (regime_translation_disabled(env, mmu_idx)) { |
| /* MMU disabled. */ |
| *phys_ptr = address; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| *page_size = TARGET_PAGE_SIZE; |
| return 0; |
| } |
| |
| if (regime_using_lpae_format(env, mmu_idx)) { |
| return get_phys_addr_lpae(env, address, access_type, mmu_idx, |
| phys_ptr, attrs, prot, page_size, |
| fi, cacheattrs); |
| } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
| return get_phys_addr_v6(env, address, access_type, mmu_idx, |
| phys_ptr, attrs, prot, page_size, fi); |
| } else { |
| return get_phys_addr_v5(env, address, access_type, mmu_idx, |
| phys_ptr, prot, page_size, fi); |
| } |
| } |
| |
| hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
| MemTxAttrs *attrs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| bool ret; |
| ARMMMUFaultInfo fi = {}; |
| ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
| |
| *attrs = (MemTxAttrs) {}; |
| |
| ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, |
| attrs, &prot, &page_size, &fi, NULL); |
| |
| if (ret) { |
| return -1; |
| } |
| return phys_addr; |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| uint32_t mask; |
| unsigned el = arm_current_el(env); |
| |
| /* First handle registers which unprivileged can read */ |
| |
| switch (reg) { |
| case 0 ... 7: /* xPSR sub-fields */ |
| mask = 0; |
| if ((reg & 1) && el) { |
| mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ |
| } |
| if (!(reg & 4)) { |
| mask |= XPSR_NZCV | XPSR_Q; /* APSR */ |
| if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) { |
| mask |= XPSR_GE; |
| } |
| } |
| /* EPSR reads as zero */ |
| return xpsr_read(env) & mask; |
| break; |
| case 20: /* CONTROL */ |
| { |
| uint32_t value = env->v7m.control[env->v7m.secure]; |
| if (!env->v7m.secure) { |
| /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */ |
| value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK; |
| } |
| return value; |
| } |
| case 0x94: /* CONTROL_NS */ |
| /* We have to handle this here because unprivileged Secure code |
| * can read the NS CONTROL register. |
| */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.control[M_REG_NS] | |
| (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK); |
| } |
| |
| if (el == 0) { |
| return 0; /* unprivileged reads others as zero */ |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| switch (reg) { |
| case 0x88: /* MSP_NS */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.other_ss_msp; |
| case 0x89: /* PSP_NS */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.other_ss_psp; |
| case 0x8a: /* MSPLIM_NS */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.msplim[M_REG_NS]; |
| case 0x8b: /* PSPLIM_NS */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.psplim[M_REG_NS]; |
| case 0x90: /* PRIMASK_NS */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.primask[M_REG_NS]; |
| case 0x91: /* BASEPRI_NS */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.basepri[M_REG_NS]; |
| case 0x93: /* FAULTMASK_NS */ |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| return env->v7m.faultmask[M_REG_NS]; |
| case 0x98: /* SP_NS */ |
| { |
| /* This gives the non-secure SP selected based on whether we're |
| * currently in handler mode or not, using the NS CONTROL.SPSEL. |
| */ |
| bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; |
| |
| if (!env->v7m.secure) { |
| return 0; |
| } |
| if (!arm_v7m_is_handler_mode(env) && spsel) { |
| return env->v7m.other_ss_psp; |
| } else { |
| return env->v7m.other_ss_msp; |
| } |
| } |
| default: |
| break; |
| } |
| } |
| |
| switch (reg) { |
| case 8: /* MSP */ |
| return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; |
| case 9: /* PSP */ |
| return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; |
| case 10: /* MSPLIM */ |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| goto bad_reg; |
| } |
| return env->v7m.msplim[env->v7m.secure]; |
| case 11: /* PSPLIM */ |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| goto bad_reg; |
| } |
| return env->v7m.psplim[env->v7m.secure]; |
| case 16: /* PRIMASK */ |
| return env->v7m.primask[env->v7m.secure]; |
| case 17: /* BASEPRI */ |
| case 18: /* BASEPRI_MAX */ |
| return env->v7m.basepri[env->v7m.secure]; |
| case 19: /* FAULTMASK */ |
| return env->v7m.faultmask[env->v7m.secure]; |
| default: |
| bad_reg: |
| qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" |
| " register %d\n", reg); |
| return 0; |
| } |
| } |
| |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) |
| { |
| /* We're passed bits [11..0] of the instruction; extract |
| * SYSm and the mask bits. |
| * Invalid combinations of SYSm and mask are UNPREDICTABLE; |
| * we choose to treat them as if the mask bits were valid. |
| * NB that the pseudocode 'mask' variable is bits [11..10], |
| * whereas ours is [11..8]. |
| */ |
| uint32_t mask = extract32(maskreg, 8, 4); |
| uint32_t reg = extract32(maskreg, 0, 8); |
| int cur_el = arm_current_el(env); |
| |
| if (cur_el == 0 && reg > 7 && reg != 20) { |
| /* |
| * only xPSR sub-fields and CONTROL.SFPA may be written by |
| * unprivileged code |
| */ |
| return; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| switch (reg) { |
| case 0x88: /* MSP_NS */ |
| if (!env->v7m.secure) { |
| return; |
| } |
| env->v7m.other_ss_msp = val; |
| return; |
| case 0x89: /* PSP_NS */ |
| if (!env->v7m.secure) { |
| return; |
| } |
| env->v7m.other_ss_psp = val; |
| return; |
| case 0x8a: /* MSPLIM_NS */ |
| if (!env->v7m.secure) { |
| return; |
| } |
| env->v7m.msplim[M_REG_NS] = val & ~7; |
| return; |
| case 0x8b: /* PSPLIM_NS */ |
| if (!env->v7m.secure) { |
| return; |
| } |
| env->v7m.psplim[M_REG_NS] = val & ~7; |
| return; |
| case 0x90: /* PRIMASK_NS */ |
| if (!env->v7m.secure) { |
| return; |
| } |
| env->v7m.primask[M_REG_NS] = val & 1; |
| return; |
| case 0x91: /* BASEPRI_NS */ |
| if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| return; |
| } |
| env->v7m.basepri[M_REG_NS] = val & 0xff; |
| return; |
| case 0x93: /* FAULTMASK_NS */ |
| if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| return; |
| } |
| env->v7m.faultmask[M_REG_NS] = val & 1; |
| return; |
| case 0x94: /* CONTROL_NS */ |
| if (!env->v7m.secure) { |
| return; |
| } |
| write_v7m_control_spsel_for_secstate(env, |
| val & R_V7M_CONTROL_SPSEL_MASK, |
| M_REG_NS); |
| if (arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; |
| env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; |
| } |
| /* |
| * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0, |
| * RES0 if the FPU is not present, and is stored in the S bank |
| */ |
| if (arm_feature(env, ARM_FEATURE_VFP) && |
| extract32(env->v7m.nsacr, 10, 1)) { |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; |
| env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK; |
| } |
| return; |
| case 0x98: /* SP_NS */ |
| { |
| /* This gives the non-secure SP selected based on whether we're |
| * currently in handler mode or not, using the NS CONTROL.SPSEL. |
| */ |
| bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; |
| bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; |
| uint32_t limit; |
| |
| if (!env->v7m.secure) { |
| return; |
| } |
| |
| limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; |
| |
| if (val < limit) { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| |
| cpu_restore_state(cs, GETPC(), true); |
| raise_exception(env, EXCP_STKOF, 0, 1); |
| } |
| |
| if (is_psp) { |
| env->v7m.other_ss_psp = val; |
| } else { |
| env->v7m.other_ss_msp = val; |
| } |
| return; |
| } |
| default: |
| break; |
| } |
| } |
| |
| switch (reg) { |
| case 0 ... 7: /* xPSR sub-fields */ |
| /* only APSR is actually writable */ |
| if (!(reg & 4)) { |
| uint32_t apsrmask = 0; |
| |
| if (mask & 8) { |
| apsrmask |= XPSR_NZCV | XPSR_Q; |
| } |
| if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { |
| apsrmask |= XPSR_GE; |
| } |
| xpsr_write(env, val, apsrmask); |
| } |
| break; |
| case 8: /* MSP */ |
| if (v7m_using_psp(env)) { |
| env->v7m.other_sp = val; |
| } else { |
| env->regs[13] = val; |
| } |
| break; |
| case 9: /* PSP */ |
| if (v7m_using_psp(env)) { |
| env->regs[13] = val; |
| } else { |
| env->v7m.other_sp = val; |
| } |
| break; |
| case 10: /* MSPLIM */ |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| goto bad_reg; |
| } |
| env->v7m.msplim[env->v7m.secure] = val & ~7; |
| break; |
| case 11: /* PSPLIM */ |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| goto bad_reg; |
| } |
| env->v7m.psplim[env->v7m.secure] = val & ~7; |
| break; |
| case 16: /* PRIMASK */ |
| env->v7m.primask[env->v7m.secure] = val & 1; |
| break; |
| case 17: /* BASEPRI */ |
| if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| goto bad_reg; |
| } |
| env->v7m.basepri[env->v7m.secure] = val & 0xff; |
| break; |
| case 18: /* BASEPRI_MAX */ |
| if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| goto bad_reg; |
| } |
| val &= 0xff; |
| if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] |
| || env->v7m.basepri[env->v7m.secure] == 0)) { |
| env->v7m.basepri[env->v7m.secure] = val; |
| } |
| break; |
| case 19: /* FAULTMASK */ |
| if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| goto bad_reg; |
| } |
| env->v7m.faultmask[env->v7m.secure] = val & 1; |
| break; |
| case 20: /* CONTROL */ |
| /* |
| * Writing to the SPSEL bit only has an effect if we are in |
| * thread mode; other bits can be updated by any privileged code. |
| * write_v7m_control_spsel() deals with updating the SPSEL bit in |
| * env->v7m.control, so we only need update the others. |
| * For v7M, we must just ignore explicit writes to SPSEL in handler |
| * mode; for v8M the write is permitted but will have no effect. |
| * All these bits are writes-ignored from non-privileged code, |
| * except for SFPA. |
| */ |
| if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) || |
| !arm_v7m_is_handler_mode(env))) { |
| write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); |
| } |
| if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; |
| env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; |
| } |
| if (arm_feature(env, ARM_FEATURE_VFP)) { |
| /* |
| * SFPA is RAZ/WI from NS or if no FPU. |
| * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present. |
| * Both are stored in the S bank. |
| */ |
| if (env->v7m.secure) { |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; |
| env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK; |
| } |
| if (cur_el > 0 && |
| (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) || |
| extract32(env->v7m.nsacr, 10, 1))) { |
| env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; |
| env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK; |
| } |
| } |
| break; |
| default: |
| bad_reg: |
| qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" |
| " register %d\n", reg); |
| return; |
| } |
| } |
| |
| uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) |
| { |
| /* Implement the TT instruction. op is bits [7:6] of the insn. */ |
| bool forceunpriv = op & 1; |
| bool alt = op & 2; |
| V8M_SAttributes sattrs = {}; |
| uint32_t tt_resp; |
| bool r, rw, nsr, nsrw, mrvalid; |
| int prot; |
| ARMMMUFaultInfo fi = {}; |
| MemTxAttrs attrs = {}; |
| hwaddr phys_addr; |
| ARMMMUIdx mmu_idx; |
| uint32_t mregion; |
| bool targetpriv; |
| bool targetsec = env->v7m.secure; |
| bool is_subpage; |
| |
| /* Work out what the security state and privilege level we're |
| * interested in is... |
| */ |
| if (alt) { |
| targetsec = !targetsec; |
| } |
| |
| if (forceunpriv) { |
| targetpriv = false; |
| } else { |
| targetpriv = arm_v7m_is_handler_mode(env) || |
| !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); |
| } |
| |
| /* ...and then figure out which MMU index this is */ |
| mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); |
| |
| /* We know that the MPU and SAU don't care about the access type |
| * for our purposes beyond that we don't want to claim to be |
| * an insn fetch, so we arbitrarily call this a read. |
| */ |
| |
| /* MPU region info only available for privileged or if |
| * inspecting the other MPU state. |
| */ |
| if (arm_current_el(env) != 0 || alt) { |
| /* We can ignore the return value as prot is always set */ |
| pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, |
| &phys_addr, &attrs, &prot, &is_subpage, |
| &fi, &mregion); |
| if (mregion == -1) { |
| mrvalid = false; |
| mregion = 0; |
| } else { |
| mrvalid = true; |
| } |
| r = prot & PAGE_READ; |
| rw = prot & PAGE_WRITE; |
| } else { |
| r = false; |
| rw = false; |
| mrvalid = false; |
| mregion = 0; |
| } |
| |
| if (env->v7m.secure) { |
| v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); |
| nsr = sattrs.ns && r; |
| nsrw = sattrs.ns && rw; |
| } else { |
| sattrs.ns = true; |
| nsr = false; |
| nsrw = false; |
| } |
| |
| tt_resp = (sattrs.iregion << 24) | |
| (sattrs.irvalid << 23) | |
| ((!sattrs.ns) << 22) | |
| (nsrw << 21) | |
| (nsr << 20) | |
| (rw << 19) | |
| (r << 18) | |
| (sattrs.srvalid << 17) | |
| (mrvalid << 16) | |
| (sattrs.sregion << 8) | |
| mregion; |
| |
| return tt_resp; |
| } |
| |
| #endif |
| |
| bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| |
| #ifdef CONFIG_USER_ONLY |
| cpu->env.exception.vaddress = address; |
| if (access_type == MMU_INST_FETCH) { |
| cs->exception_index = EXCP_PREFETCH_ABORT; |
| } else { |
| cs->exception_index = EXCP_DATA_ABORT; |
| } |
| cpu_loop_exit_restore(cs, retaddr); |
| #else |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot, ret; |
| MemTxAttrs attrs = {}; |
| ARMMMUFaultInfo fi = {}; |
| |
| /* |
| * Walk the page table and (if the mapping exists) add the page |
| * to the TLB. On success, return true. Otherwise, if probing, |
| * return false. Otherwise populate fsr with ARM DFSR/IFSR fault |
| * register format, and signal the fault. |
| */ |
| ret = get_phys_addr(&cpu->env, address, access_type, |
| core_to_arm_mmu_idx(&cpu->env, mmu_idx), |
| &phys_addr, &attrs, &prot, &page_size, &fi, NULL); |
| if (likely(!ret)) { |
| /* |
| * Map a single [sub]page. Regions smaller than our declared |
| * target page size are handled specially, so for those we |
| * pass in the exact addresses. |
| */ |
| if (page_size >= TARGET_PAGE_SIZE) { |
| phys_addr &= TARGET_PAGE_MASK; |
| address &= TARGET_PAGE_MASK; |
| } |
| tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
| prot, mmu_idx, page_size); |
| return true; |
| } else if (probe) { |
| return false; |
| } else { |
| /* now we have a real cpu fault */ |
| cpu_restore_state(cs, retaddr, true); |
| arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); |
| } |
| #endif |
| } |
| |
| void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
| { |
| /* Implement DC ZVA, which zeroes a fixed-length block of memory. |
| * Note that we do not implement the (architecturally mandated) |
| * alignment fault for attempts to use this on Device memory |
| * (which matches the usual QEMU behaviour of not implementing either |
| * alignment faults or any memory attribute handling). |
| */ |
| |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint64_t blocklen = 4 << cpu->dcz_blocksize; |
| uint64_t vaddr = vaddr_in & ~(blocklen - 1); |
| |
| #ifndef CONFIG_USER_ONLY |
| { |
| /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than |
| * the block size so we might have to do more than one TLB lookup. |
| * We know that in fact for any v8 CPU the page size is at least 4K |
| * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only |
| * 1K as an artefact of legacy v5 subpage support being present in the |
| * same QEMU executable. So in practice the hostaddr[] array has |
| * two entries, given the current setting of TARGET_PAGE_BITS_MIN. |
| */ |
| int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); |
| void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)]; |
| int try, i; |
| unsigned mmu_idx = cpu_mmu_index(env, false); |
| TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
| |
| assert(maxidx <= ARRAY_SIZE(hostaddr)); |
| |
| for (try = 0; try < 2; try++) { |
| |
| for (i = 0; i < maxidx; i++) { |
| hostaddr[i] = tlb_vaddr_to_host(env, |
| vaddr + TARGET_PAGE_SIZE * i, |
| 1, mmu_idx); |
| if (!hostaddr[i]) { |
| break; |
| } |
| } |
| if (i == maxidx) { |
| /* If it's all in the TLB it's fair game for just writing to; |
| * we know we don't need to update dirty status, etc. |
| */ |
| for (i = 0; i < maxidx - 1; i++) { |
| memset(hostaddr[i], 0, TARGET_PAGE_SIZE); |
| } |
| memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); |
| return; |
| } |
| /* OK, try a store and see if we can populate the tlb. This |
| * might cause an exception if the memory isn't writable, |
| * in which case we will longjmp out of here. We must for |
| * this purpose use the actual register value passed to us |
| * so that we get the fault address right. |
| */ |
| helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); |
| /* Now we can populate the other TLB entries, if any */ |
| for (i = 0; i < maxidx; i++) { |
| uint64_t va = vaddr + TARGET_PAGE_SIZE * i; |
| if (va != (vaddr_in & TARGET_PAGE_MASK)) { |
| helper_ret_stb_mmu(env, va, 0, oi, GETPC()); |
| } |
| } |
| } |
| |
| /* Slow path (probably attempt to do this to an I/O device or |
| * similar, or clearing of a block of code we have translations |
| * cached for). Just do a series of byte writes as the architecture |
| * demands. It's not worth trying to use a cpu_physical_memory_map(), |
| * memset(), unmap() sequence here because: |
| * + we'd need to account for the blocksize being larger than a page |
| * + the direct-RAM access case is almost always going to be dealt |
| * with in the fastpath code above, so there's no speed benefit |
| * + we would have to deal with the map returning NULL because the |
| * bounce buffer was in use |
| */ |
| for (i = 0; i < blocklen; i++) { |
| helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); |
| } |
| } |
| #else |
| memset(g2h(vaddr), 0, blocklen); |
| #endif |
| } |
| |
| /* Note that signed overflow is undefined in C. The following routines are |
| careful to use unsigned types where modulo arithmetic is required. |
| Failure to do so _will_ break on newer gcc. */ |
| |
| /* Signed saturating arithmetic. */ |
| |
| /* Perform 16-bit signed saturating addition. */ |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating addition. */ |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| /* Perform 16-bit signed saturating subtraction. */ |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating subtraction. */ |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| #define PFX q |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned saturating arithmetic. */ |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xffff; |
| return res; |
| } |
| |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xff; |
| return res; |
| } |
| |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| #define PFX uq |
| |
| #include "op_addsub.h" |
| |
| /* Signed modulo arithmetic. */ |
| #define SARITH16(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if (sum >= 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SARITH8(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if (sum >= 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| |
| #define ADD16(a, b, n) SARITH16(a, b, n, +) |
| #define SUB16(a, b, n) SARITH16(a, b, n, -) |
| #define ADD8(a, b, n) SARITH8(a, b, n, +) |
| #define SUB8(a, b, n) SARITH8(a, b, n, -) |
| #define PFX s |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned modulo arithmetic. */ |
| #define ADD16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 1) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define ADD8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 1) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define SUB16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SUB8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define PFX u |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Halved signed arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define PFX sh |
| |
| #include "op_addsub.h" |
| |
| /* Halved unsigned arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define PFX uh |
| |
| #include "op_addsub.h" |
| |
| static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return b - a; |
| } |
| |
| /* Unsigned sum of absolute byte differences. */ |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b) |
| { |
| uint32_t sum; |
| sum = do_usad(a, b); |
| sum += do_usad(a >> 8, b >> 8); |
| sum += do_usad(a >> 16, b >>16); |
| sum += do_usad(a >> 24, b >> 24); |
| return sum; |
| } |
| |
| /* For ARMv6 SEL instruction. */ |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) |
| { |
| uint32_t mask; |
| |
| mask = 0; |
| if (flags & 1) |
| mask |= 0xff; |
| if (flags & 2) |
| mask |= 0xff00; |
| if (flags & 4) |
| mask |= 0xff0000; |
| if (flags & 8) |
| mask |= 0xff000000; |
| return (a & mask) | (b & ~mask); |
| } |
| |
| /* CRC helpers. |
| * The upper bytes of val (above the number specified by 'bytes') must have |
| * been zeroed out by the caller. |
| */ |
| uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
| { |
| uint8_t buf[4]; |
| |
| stl_le_p(buf, val); |
| |
| /* zlib crc32 converts the accumulator and output to one's complement. */ |
| return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; |
| } |
| |
| uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) |
| { |
| uint8_t buf[4]; |
| |
| stl_le_p(buf, val); |
| |
| /* Linux crc32c converts the output to one's complement. */ |
| return crc32c(acc, buf, bytes) ^ 0xffffffff; |
| } |
| |
| /* Return the exception level to which FP-disabled exceptions should |
| * be taken, or 0 if FP is enabled. |
| */ |
| int fp_exception_el(CPUARMState *env, int cur_el) |
| { |
| #ifndef CONFIG_USER_ONLY |
| int fpen; |
| |
| /* CPACR and the CPTR registers don't exist before v6, so FP is |
| * always accessible |
| */ |
| if (!arm_feature(env, ARM_FEATURE_V6)) { |
| return 0; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| /* CPACR can cause a NOCP UsageFault taken to current security state */ |
| if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { |
| return 1; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { |
| if (!extract32(env->v7m.nsacr, 10, 1)) { |
| /* FP insns cause a NOCP UsageFault taken to Secure */ |
| return 3; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: |
| * 0, 2 : trap EL0 and EL1/PL1 accesses |
| * 1 : trap only EL0 accesses |
| * 3 : trap no accesses |
| */ |
| fpen = extract32(env->cp15.cpacr_el1, 20, 2); |
| switch (fpen) { |
| case 0: |
| case 2: |
| if (cur_el == 0 || cur_el == 1) { |
| /* Trap to PL1, which might be EL1 or EL3 */ |
| if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { |
| return 3; |
| } |
| return 1; |
| } |
| if (cur_el == 3 && !is_a64(env)) { |
| /* Secure PL1 running at EL3 */ |
| return 3; |
| } |
| break; |
| case 1: |
| if (cur_el == 0) { |
| return 1; |
| } |
| break; |
| case 3: |
| break; |
| } |
| |
| /* For the CPTR registers we don't need to guard with an ARM_FEATURE |
| * check because zero bits in the registers mean "don't trap". |
| */ |
| |
| /* CPTR_EL2 : present in v7VE or v8 */ |
| if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) |
| && !arm_is_secure_below_el3(env)) { |
| /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ |
| return 2; |
| } |
| |
| /* CPTR_EL3 : present in v8 */ |
| if (extract32(env->cp15.cptr_el[3], 10, 1)) { |
| /* Trap all FP ops to EL3 */ |
| return 3; |
| } |
| #endif |
| return 0; |
| } |
| |
| ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, |
| bool secstate, bool priv, bool negpri) |
| { |
| ARMMMUIdx mmu_idx = ARM_MMU_IDX_M; |
| |
| if (priv) { |
| mmu_idx |= ARM_MMU_IDX_M_PRIV; |
| } |
| |
| if (negpri) { |
| mmu_idx |= ARM_MMU_IDX_M_NEGPRI; |
| } |
| |
| if (secstate) { |
| mmu_idx |= ARM_MMU_IDX_M_S; |
| } |
| |
| return mmu_idx; |
| } |
| |
| ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, |
| bool secstate, bool priv) |
| { |
| bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate); |
| |
| return arm_v7m_mmu_idx_all(env, secstate, priv, negpri); |
| } |
| |
| /* Return the MMU index for a v7M CPU in the specified security state */ |
| ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) |
| { |
| bool priv = arm_current_el(env) != 0; |
| |
| return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv); |
| } |
| |
| ARMMMUIdx arm_mmu_idx(CPUARMState *env) |
| { |
| int el; |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); |
| } |
| |
| el = arm_current_el(env); |
| if (el < 2 && arm_is_secure_below_el3(env)) { |
| return ARMMMUIdx_S1SE0 + el; |
| } else { |
| return ARMMMUIdx_S12NSE0 + el; |
| } |
| } |
| |
| int cpu_mmu_index(CPUARMState *env, bool ifetch) |
| { |
| return arm_to_core_mmu_idx(arm_mmu_idx(env)); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) |
| { |
| return stage_1_mmu_idx(arm_mmu_idx(env)); |
| } |
| #endif |
| |
| void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
| target_ulong *cs_base, uint32_t *pflags) |
| { |
| ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
| int current_el = arm_current_el(env); |
| int fp_el = fp_exception_el(env, current_el); |
| uint32_t flags = 0; |
| |
| if (is_a64(env)) { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint64_t sctlr; |
| |
| *pc = env->pc; |
| flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); |
| |
| /* Get control bits for tagged addresses. */ |
| { |
| ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); |
| ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); |
| int tbii, tbid; |
| |
| /* FIXME: ARMv8.1-VHE S2 translation regime. */ |
| if (regime_el(env, stage1) < 2) { |
| ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); |
| tbid = (p1.tbi << 1) | p0.tbi; |
| tbii = tbid & ~((p1.tbid << 1) | p0.tbid); |
| } else { |
| tbid = p0.tbi; |
| tbii = tbid & !p0.tbid; |
| } |
| |
| flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); |
| flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| int sve_el = sve_exception_el(env, current_el); |
| uint32_t zcr_len; |
| |
| /* If SVE is disabled, but FP is enabled, |
| * then the effective len is 0. |
| */ |
| if (sve_el != 0 && fp_el == 0) { |
| zcr_len = 0; |
| } else { |
| zcr_len = sve_zcr_len_for_el(env, current_el); |
| } |
| flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); |
| flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); |
| } |
| |
| sctlr = arm_sctlr(env, current_el); |
| |
| if (cpu_isar_feature(aa64_pauth, cpu)) { |
| /* |
| * In order to save space in flags, we record only whether |
| * pauth is "inactive", meaning all insns are implemented as |
| * a nop, or "active" when some action must be performed. |
| * The decision of which action to take is left to a helper. |
| */ |
| if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { |
| flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); |
| } |
| } |
| |
| if (cpu_isar_feature(aa64_bti, cpu)) { |
| /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ |
| if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { |
| flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); |
| } |
| flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); |
| } |
| } else { |
| *pc = env->regs[15]; |
| flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); |
| flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); |
| flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); |
| flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); |
| flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); |
| flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); |
| if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) |
| || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) { |
| flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); |
| } |
| /* Note that XSCALE_CPAR shares bits with VECSTRIDE */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| flags = FIELD_DP32(flags, TBFLAG_A32, |
| XSCALE_CPAR, env->cp15.c15_cpar); |
| } |
| } |
| |
| flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); |
| |
| /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine |
| * states defined in the ARM ARM for software singlestep: |
| * SS_ACTIVE PSTATE.SS State |
| * 0 x Inactive (the TB flag for SS is always 0) |
| * 1 0 Active-pending |
| * 1 1 Active-not-pending |
| */ |
| if (arm_singlestep_active(env)) { |
| flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); |
| if (is_a64(env)) { |
| if (env->pstate & PSTATE_SS) { |
| flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); |
| } |
| } else { |
| if (env->uncached_cpsr & PSTATE_SS) { |
| flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); |
| } |
| } |
| } |
| if (arm_cpu_data_is_big_endian(env)) { |
| flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); |
| } |
| flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); |
| |
| if (arm_v7m_is_handler_mode(env)) { |
| flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); |
| } |
| |
| /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is |
| * suppressing them because the requested execution priority is less than 0. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V8) && |
| arm_feature(env, ARM_FEATURE_M) && |
| !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && |
| (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { |
| flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY) && |
| FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) { |
| flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M) && |
| (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && |
| (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || |
| (env->v7m.secure && |
| !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { |
| /* |
| * ASPEN is set, but FPCA/SFPA indicate that there is no active |
| * FP context; we must create a new FP context before executing |
| * any FP insn. |
| */ |
| flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; |
| |
| if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { |
| flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); |
| } |
| } |
| |
| *pflags = flags; |
| *cs_base = 0; |
| } |
| |
| #ifdef TARGET_AARCH64 |
| /* |
| * The manual says that when SVE is enabled and VQ is widened the |
| * implementation is allowed to zero the previously inaccessible |
| * portion of the registers. The corollary to that is that when |
| * SVE is enabled and VQ is narrowed we are also allowed to zero |
| * the now inaccessible portion of the registers. |
| * |
| * The intent of this is that no predicate bit beyond VQ is ever set. |
| * Which means that some operations on predicate registers themselves |
| * may operate on full uint64_t or even unrolled across the maximum |
| * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally |
| * may well be cheaper than conditionals to restrict the operation |
| * to the relevant portion of a uint16_t[16]. |
| */ |
| void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) |
| { |
| int i, j; |
| uint64_t pmask; |
| |
| assert(vq >= 1 && vq <= ARM_MAX_VQ); |
| assert(vq <= arm_env_get_cpu(env)->sve_max_vq); |
| |
| /* Zap the high bits of the zregs. */ |
| for (i = 0; i < 32; i++) { |
| memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); |
| } |
| |
| /* Zap the high bits of the pregs and ffr. */ |
| pmask = 0; |
| if (vq & 3) { |
| pmask = ~(-1ULL << (16 * (vq & 3))); |
| } |
| for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { |
| for (i = 0; i < 17; ++i) { |
| env->vfp.pregs[i].p[j] &= pmask; |
| } |
| pmask = 0; |
| } |
| } |
| |
| /* |
| * Notice a change in SVE vector size when changing EL. |
| */ |
| void aarch64_sve_change_el(CPUARMState *env, int old_el, |
| int new_el, bool el0_a64) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int old_len, new_len; |
| bool old_a64, new_a64; |
| |
| /* Nothing to do if no SVE. */ |
| if (!cpu_isar_feature(aa64_sve, cpu)) { |
| return; |
| } |
| |
| /* Nothing to do if FP is disabled in either EL. */ |
| if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { |
| return; |
| } |
| |
| /* |
| * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped |
| * at ELx, or not available because the EL is in AArch32 state, then |
| * for all purposes other than a direct read, the ZCR_ELx.LEN field |
| * has an effective value of 0". |
| * |
| * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). |
| * If we ignore aa32 state, we would fail to see the vq4->vq0 transition |
| * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that |
| * we already have the correct register contents when encountering the |
| * vq0->vq0 transition between EL0->EL1. |
| */ |
| old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; |
| old_len = (old_a64 && !sve_exception_el(env, old_el) |
| ? sve_zcr_len_for_el(env, old_el) : 0); |
| new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; |
| new_len = (new_a64 && !sve_exception_el(env, new_el) |
| ? sve_zcr_len_for_el(env, new_el) : 0); |
| |
| /* When changing vector length, clear inaccessible state. */ |
| if (new_len < old_len) { |
| aarch64_sve_narrow_vq(env, new_len + 1); |
| } |
| } |
| #endif |