blob: 86dd3d6199527ae3a233b71ff7ce7ffe029d4378 [file] [log] [blame]
/*
* dyngen helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
int __op_param1, __op_param2, __op_param3;
#if defined(__sparc__) || defined(__arm__)
void __op_gen_label1(){}
void __op_gen_label2(){}
void __op_gen_label3(){}
#else
int __op_gen_label1, __op_gen_label2, __op_gen_label3;
#endif
int __op_jmp0, __op_jmp1, __op_jmp2, __op_jmp3;
#if defined(__i386__) || defined(__x86_64__) || defined(__s390__)
static inline void flush_icache_range(unsigned long start, unsigned long stop)
{
}
#elif defined(__ia64__)
static inline void flush_icache_range(unsigned long start, unsigned long stop)
{
while (start < stop) {
asm volatile ("fc %0" :: "r"(start));
start += 32;
}
asm volatile (";;sync.i;;srlz.i;;");
}
#elif defined(__powerpc__)
#define MIN_CACHE_LINE_SIZE 8 /* conservative value */
static void inline flush_icache_range(unsigned long start, unsigned long stop)
{
unsigned long p;
start &= ~(MIN_CACHE_LINE_SIZE - 1);
stop = (stop + MIN_CACHE_LINE_SIZE - 1) & ~(MIN_CACHE_LINE_SIZE - 1);
for (p = start; p < stop; p += MIN_CACHE_LINE_SIZE) {
asm volatile ("dcbst 0,%0" : : "r"(p) : "memory");
}
asm volatile ("sync" : : : "memory");
for (p = start; p < stop; p += MIN_CACHE_LINE_SIZE) {
asm volatile ("icbi 0,%0" : : "r"(p) : "memory");
}
asm volatile ("sync" : : : "memory");
asm volatile ("isync" : : : "memory");
}
#elif defined(__alpha__)
static inline void flush_icache_range(unsigned long start, unsigned long stop)
{
asm ("imb");
}
#elif defined(__sparc__)
static void inline flush_icache_range(unsigned long start, unsigned long stop)
{
unsigned long p;
p = start & ~(8UL - 1UL);
stop = (stop + (8UL - 1UL)) & ~(8UL - 1UL);
for (; p < stop; p += 8)
__asm__ __volatile__("flush\t%0" : : "r" (p));
}
#elif defined(__arm__)
static inline void flush_icache_range(unsigned long start, unsigned long stop)
{
register unsigned long _beg __asm ("a1") = start;
register unsigned long _end __asm ("a2") = stop;
register unsigned long _flg __asm ("a3") = 0;
__asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
}
#elif defined(__mc68000)
# include <asm/cachectl.h>
static inline void flush_icache_range(unsigned long start, unsigned long stop)
{
cacheflush(start,FLUSH_SCOPE_LINE,FLUSH_CACHE_BOTH,stop-start+16);
}
#elif defined(__mips__)
#include <sys/cachectl.h>
static inline void flush_icache_range(unsigned long start, unsigned long stop)
{
_flush_cache ((void *)start, stop - start, BCACHE);
}
#else
#error unsupported CPU
#endif
#ifdef __alpha__
register int gp asm("$29");
static inline void immediate_ldah(void *p, int val) {
uint32_t *dest = p;
long high = ((val >> 16) + ((val >> 15) & 1)) & 0xffff;
*dest &= ~0xffff;
*dest |= high;
*dest |= 31 << 16;
}
static inline void immediate_lda(void *dest, int val) {
*(uint16_t *) dest = val;
}
void fix_bsr(void *p, int offset) {
uint32_t *dest = p;
*dest &= ~((1 << 21) - 1);
*dest |= (offset >> 2) & ((1 << 21) - 1);
}
#endif /* __alpha__ */
#ifdef __arm__
#define ARM_LDR_TABLE_SIZE 1024
typedef struct LDREntry {
uint8_t *ptr;
uint32_t *data_ptr;
unsigned type:2;
} LDREntry;
static LDREntry arm_ldr_table[1024];
static uint32_t arm_data_table[ARM_LDR_TABLE_SIZE];
extern char exec_loop;
static inline void arm_reloc_pc24(uint32_t *ptr, uint32_t insn, int val)
{
*ptr = (insn & ~0xffffff) | ((insn + ((val - (int)ptr) >> 2)) & 0xffffff);
}
static uint8_t *arm_flush_ldr(uint8_t *gen_code_ptr,
LDREntry *ldr_start, LDREntry *ldr_end,
uint32_t *data_start, uint32_t *data_end,
int gen_jmp)
{
LDREntry *le;
uint32_t *ptr;
int offset, data_size, target;
uint8_t *data_ptr;
uint32_t insn;
uint32_t mask;
data_size = (data_end - data_start) << 2;
if (gen_jmp) {
/* generate branch to skip the data */
if (data_size == 0)
return gen_code_ptr;
target = (long)gen_code_ptr + data_size + 4;
arm_reloc_pc24((uint32_t *)gen_code_ptr, 0xeafffffe, target);
gen_code_ptr += 4;
}
/* copy the data */
data_ptr = gen_code_ptr;
memcpy(gen_code_ptr, data_start, data_size);
gen_code_ptr += data_size;
/* patch the ldr to point to the data */
for(le = ldr_start; le < ldr_end; le++) {
ptr = (uint32_t *)le->ptr;
offset = ((unsigned long)(le->data_ptr) - (unsigned long)data_start) +
(unsigned long)data_ptr -
(unsigned long)ptr - 8;
if (offset < 0) {
fprintf(stderr, "Negative constant pool offset\n");
abort();
}
switch (le->type) {
case 0: /* ldr */
mask = ~0x00800fff;
if (offset >= 4096) {
fprintf(stderr, "Bad ldr offset\n");
abort();
}
break;
case 1: /* ldc */
mask = ~0x008000ff;
if (offset >= 1024 ) {
fprintf(stderr, "Bad ldc offset\n");
abort();
}
break;
case 2: /* add */
mask = ~0xfff;
if (offset >= 1024 ) {
fprintf(stderr, "Bad add offset\n");
abort();
}
break;
default:
fprintf(stderr, "Bad pc relative fixup\n");
abort();
}
insn = *ptr & mask;
switch (le->type) {
case 0: /* ldr */
insn |= offset | 0x00800000;
break;
case 1: /* ldc */
insn |= (offset >> 2) | 0x00800000;
break;
case 2: /* add */
insn |= (offset >> 2) | 0xf00;
break;
}
*ptr = insn;
}
return gen_code_ptr;
}
#endif /* __arm__ */
#ifdef __ia64
/* Patch instruction with "val" where "mask" has 1 bits. */
static inline void ia64_patch (uint64_t insn_addr, uint64_t mask, uint64_t val)
{
uint64_t m0, m1, v0, v1, b0, b1, *b = (uint64_t *) (insn_addr & -16);
# define insn_mask ((1UL << 41) - 1)
unsigned long shift;
b0 = b[0]; b1 = b[1];
shift = 5 + 41 * (insn_addr % 16); /* 5 template, 3 x 41-bit insns */
if (shift >= 64) {
m1 = mask << (shift - 64);
v1 = val << (shift - 64);
} else {
m0 = mask << shift; m1 = mask >> (64 - shift);
v0 = val << shift; v1 = val >> (64 - shift);
b[0] = (b0 & ~m0) | (v0 & m0);
}
b[1] = (b1 & ~m1) | (v1 & m1);
}
static inline void ia64_patch_imm60 (uint64_t insn_addr, uint64_t val)
{
ia64_patch(insn_addr,
0x011ffffe000UL,
( ((val & 0x0800000000000000UL) >> 23) /* bit 59 -> 36 */
| ((val & 0x00000000000fffffUL) << 13) /* bit 0 -> 13 */));
ia64_patch(insn_addr - 1, 0x1fffffffffcUL, val >> 18);
}
static inline void ia64_imm64 (void *insn, uint64_t val)
{
/* Ignore the slot number of the relocation; GCC and Intel
toolchains differed for some time on whether IMM64 relocs are
against slot 1 (Intel) or slot 2 (GCC). */
uint64_t insn_addr = (uint64_t) insn & ~3UL;
ia64_patch(insn_addr + 2,
0x01fffefe000UL,
( ((val & 0x8000000000000000UL) >> 27) /* bit 63 -> 36 */
| ((val & 0x0000000000200000UL) << 0) /* bit 21 -> 21 */
| ((val & 0x00000000001f0000UL) << 6) /* bit 16 -> 22 */
| ((val & 0x000000000000ff80UL) << 20) /* bit 7 -> 27 */
| ((val & 0x000000000000007fUL) << 13) /* bit 0 -> 13 */)
);
ia64_patch(insn_addr + 1, 0x1ffffffffffUL, val >> 22);
}
static inline void ia64_imm60b (void *insn, uint64_t val)
{
/* Ignore the slot number of the relocation; GCC and Intel
toolchains differed for some time on whether IMM64 relocs are
against slot 1 (Intel) or slot 2 (GCC). */
uint64_t insn_addr = (uint64_t) insn & ~3UL;
if (val + ((uint64_t) 1 << 59) >= (1UL << 60))
fprintf(stderr, "%s: value %ld out of IMM60 range\n",
__FUNCTION__, (int64_t) val);
ia64_patch_imm60(insn_addr + 2, val);
}
static inline void ia64_imm22 (void *insn, uint64_t val)
{
if (val + (1 << 21) >= (1 << 22))
fprintf(stderr, "%s: value %li out of IMM22 range\n",
__FUNCTION__, (int64_t)val);
ia64_patch((uint64_t) insn, 0x01fffcfe000UL,
( ((val & 0x200000UL) << 15) /* bit 21 -> 36 */
| ((val & 0x1f0000UL) << 6) /* bit 16 -> 22 */
| ((val & 0x00ff80UL) << 20) /* bit 7 -> 27 */
| ((val & 0x00007fUL) << 13) /* bit 0 -> 13 */));
}
/* Like ia64_imm22(), but also clear bits 20-21. For addl, this has
the effect of turning "addl rX=imm22,rY" into "addl
rX=imm22,r0". */
static inline void ia64_imm22_r0 (void *insn, uint64_t val)
{
if (val + (1 << 21) >= (1 << 22))
fprintf(stderr, "%s: value %li out of IMM22 range\n",
__FUNCTION__, (int64_t)val);
ia64_patch((uint64_t) insn, 0x01fffcfe000UL | (0x3UL << 20),
( ((val & 0x200000UL) << 15) /* bit 21 -> 36 */
| ((val & 0x1f0000UL) << 6) /* bit 16 -> 22 */
| ((val & 0x00ff80UL) << 20) /* bit 7 -> 27 */
| ((val & 0x00007fUL) << 13) /* bit 0 -> 13 */));
}
static inline void ia64_imm21b (void *insn, uint64_t val)
{
if (val + (1 << 20) >= (1 << 21))
fprintf(stderr, "%s: value %li out of IMM21b range\n",
__FUNCTION__, (int64_t)val);
ia64_patch((uint64_t) insn, 0x11ffffe000UL,
( ((val & 0x100000UL) << 16) /* bit 20 -> 36 */
| ((val & 0x0fffffUL) << 13) /* bit 0 -> 13 */));
}
static inline void ia64_nop_b (void *insn)
{
ia64_patch((uint64_t) insn, (1UL << 41) - 1, 2UL << 37);
}
static inline void ia64_ldxmov(void *insn, uint64_t val)
{
if (val + (1 << 21) < (1 << 22))
ia64_patch((uint64_t) insn, 0x1fff80fe000UL, 8UL << 37);
}
static inline int ia64_patch_ltoff(void *insn, uint64_t val,
int relaxable)
{
if (relaxable && (val + (1 << 21) < (1 << 22))) {
ia64_imm22_r0(insn, val);
return 0;
}
return 1;
}
struct ia64_fixup {
struct ia64_fixup *next;
void *addr; /* address that needs to be patched */
long value;
};
#define IA64_PLT(insn, plt_index) \
do { \
struct ia64_fixup *fixup = alloca(sizeof(*fixup)); \
fixup->next = plt_fixes; \
plt_fixes = fixup; \
fixup->addr = (insn); \
fixup->value = (plt_index); \
plt_offset[(plt_index)] = 1; \
} while (0)
#define IA64_LTOFF(insn, val, relaxable) \
do { \
if (ia64_patch_ltoff(insn, val, relaxable)) { \
struct ia64_fixup *fixup = alloca(sizeof(*fixup)); \
fixup->next = ltoff_fixes; \
ltoff_fixes = fixup; \
fixup->addr = (insn); \
fixup->value = (val); \
} \
} while (0)
static inline void ia64_apply_fixes (uint8_t **gen_code_pp,
struct ia64_fixup *ltoff_fixes,
uint64_t gp,
struct ia64_fixup *plt_fixes,
int num_plts,
unsigned long *plt_target,
unsigned int *plt_offset)
{
static const uint8_t plt_bundle[] = {
0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, /* nop 0; movl r1=GP */
0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x60,
0x05, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, /* nop 0; brl IP */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0
};
uint8_t *gen_code_ptr = *gen_code_pp, *plt_start, *got_start;
uint64_t *vp;
struct ia64_fixup *fixup;
unsigned int offset = 0;
struct fdesc {
long ip;
long gp;
} *fdesc;
int i;
if (plt_fixes) {
plt_start = gen_code_ptr;
for (i = 0; i < num_plts; ++i) {
if (plt_offset[i]) {
plt_offset[i] = offset;
offset += sizeof(plt_bundle);
fdesc = (struct fdesc *) plt_target[i];
memcpy(gen_code_ptr, plt_bundle, sizeof(plt_bundle));
ia64_imm64 (gen_code_ptr + 0x02, fdesc->gp);
ia64_imm60b(gen_code_ptr + 0x12,
(fdesc->ip - (long) (gen_code_ptr + 0x10)) >> 4);
gen_code_ptr += sizeof(plt_bundle);
}
}
for (fixup = plt_fixes; fixup; fixup = fixup->next)
ia64_imm21b(fixup->addr,
((long) plt_start + plt_offset[fixup->value]
- ((long) fixup->addr & ~0xf)) >> 4);
}
got_start = gen_code_ptr;
/* First, create the GOT: */
for (fixup = ltoff_fixes; fixup; fixup = fixup->next) {
/* first check if we already have this value in the GOT: */
for (vp = (uint64_t *) got_start; vp < (uint64_t *) gen_code_ptr; ++vp)
if (*vp == fixup->value)
break;
if (vp == (uint64_t *) gen_code_ptr) {
/* Nope, we need to put the value in the GOT: */
*vp = fixup->value;
gen_code_ptr += 8;
}
ia64_imm22(fixup->addr, (long) vp - gp);
}
/* Keep code ptr aligned. */
if ((long) gen_code_ptr & 15)
gen_code_ptr += 8;
*gen_code_pp = gen_code_ptr;
}
#endif