| /* |
| * QEMU MC146818 RTC emulation |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw.h" |
| #include "qemu-timer.h" |
| #include "sysemu.h" |
| #include "pc.h" |
| #include "isa.h" |
| #include "hpet_emul.h" |
| |
| //#define DEBUG_CMOS |
| |
| #define RTC_SECONDS 0 |
| #define RTC_SECONDS_ALARM 1 |
| #define RTC_MINUTES 2 |
| #define RTC_MINUTES_ALARM 3 |
| #define RTC_HOURS 4 |
| #define RTC_HOURS_ALARM 5 |
| #define RTC_ALARM_DONT_CARE 0xC0 |
| |
| #define RTC_DAY_OF_WEEK 6 |
| #define RTC_DAY_OF_MONTH 7 |
| #define RTC_MONTH 8 |
| #define RTC_YEAR 9 |
| |
| #define RTC_REG_A 10 |
| #define RTC_REG_B 11 |
| #define RTC_REG_C 12 |
| #define RTC_REG_D 13 |
| |
| #define REG_A_UIP 0x80 |
| |
| #define REG_B_SET 0x80 |
| #define REG_B_PIE 0x40 |
| #define REG_B_AIE 0x20 |
| #define REG_B_UIE 0x10 |
| #define REG_B_SQWE 0x08 |
| #define REG_B_DM 0x04 |
| |
| #define REG_C_UF 0x10 |
| #define REG_C_IRQF 0x80 |
| #define REG_C_PF 0x40 |
| #define REG_C_AF 0x20 |
| |
| struct RTCState { |
| ISADevice dev; |
| uint8_t cmos_data[128]; |
| uint8_t cmos_index; |
| struct tm current_tm; |
| int32_t base_year; |
| qemu_irq irq; |
| qemu_irq sqw_irq; |
| int it_shift; |
| /* periodic timer */ |
| QEMUTimer *periodic_timer; |
| int64_t next_periodic_time; |
| /* second update */ |
| int64_t next_second_time; |
| #ifdef TARGET_I386 |
| uint32_t irq_coalesced; |
| uint32_t period; |
| QEMUTimer *coalesced_timer; |
| #endif |
| QEMUTimer *second_timer; |
| QEMUTimer *second_timer2; |
| }; |
| |
| static void rtc_irq_raise(qemu_irq irq) { |
| /* When HPET is operating in legacy mode, RTC interrupts are disabled |
| * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy |
| * mode is established while interrupt is raised. We want it to |
| * be lowered in any case |
| */ |
| #if defined TARGET_I386 || defined TARGET_X86_64 |
| if (!hpet_in_legacy_mode()) |
| #endif |
| qemu_irq_raise(irq); |
| } |
| |
| static void rtc_set_time(RTCState *s); |
| static void rtc_copy_date(RTCState *s); |
| |
| #ifdef TARGET_I386 |
| static void rtc_coalesced_timer_update(RTCState *s) |
| { |
| if (s->irq_coalesced == 0) { |
| qemu_del_timer(s->coalesced_timer); |
| } else { |
| /* divide each RTC interval to 2 - 8 smaller intervals */ |
| int c = MIN(s->irq_coalesced, 7) + 1; |
| int64_t next_clock = qemu_get_clock(vm_clock) + |
| muldiv64(s->period / c, get_ticks_per_sec(), 32768); |
| qemu_mod_timer(s->coalesced_timer, next_clock); |
| } |
| } |
| |
| static void rtc_coalesced_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| if (s->irq_coalesced != 0) { |
| apic_reset_irq_delivered(); |
| s->cmos_data[RTC_REG_C] |= 0xc0; |
| rtc_irq_raise(s->irq); |
| if (apic_get_irq_delivered()) { |
| s->irq_coalesced--; |
| } |
| } |
| |
| rtc_coalesced_timer_update(s); |
| } |
| #endif |
| |
| static void rtc_timer_update(RTCState *s, int64_t current_time) |
| { |
| int period_code, period; |
| int64_t cur_clock, next_irq_clock; |
| int enable_pie; |
| |
| period_code = s->cmos_data[RTC_REG_A] & 0x0f; |
| #if defined TARGET_I386 || defined TARGET_X86_64 |
| /* disable periodic timer if hpet is in legacy mode, since interrupts are |
| * disabled anyway. |
| */ |
| enable_pie = !hpet_in_legacy_mode(); |
| #else |
| enable_pie = 1; |
| #endif |
| if (period_code != 0 |
| && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie) |
| || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) { |
| if (period_code <= 2) |
| period_code += 7; |
| /* period in 32 Khz cycles */ |
| period = 1 << (period_code - 1); |
| #ifdef TARGET_I386 |
| if(period != s->period) |
| s->irq_coalesced = (s->irq_coalesced * s->period) / period; |
| s->period = period; |
| #endif |
| /* compute 32 khz clock */ |
| cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec()); |
| next_irq_clock = (cur_clock & ~(period - 1)) + period; |
| s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1; |
| qemu_mod_timer(s->periodic_timer, s->next_periodic_time); |
| } else { |
| #ifdef TARGET_I386 |
| s->irq_coalesced = 0; |
| #endif |
| qemu_del_timer(s->periodic_timer); |
| } |
| } |
| |
| static void rtc_periodic_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| rtc_timer_update(s, s->next_periodic_time); |
| if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { |
| s->cmos_data[RTC_REG_C] |= 0xc0; |
| #ifdef TARGET_I386 |
| if(rtc_td_hack) { |
| apic_reset_irq_delivered(); |
| rtc_irq_raise(s->irq); |
| if (!apic_get_irq_delivered()) { |
| s->irq_coalesced++; |
| rtc_coalesced_timer_update(s); |
| } |
| } else |
| #endif |
| rtc_irq_raise(s->irq); |
| } |
| if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) { |
| /* Not square wave at all but we don't want 2048Hz interrupts! |
| Must be seen as a pulse. */ |
| qemu_irq_raise(s->sqw_irq); |
| } |
| } |
| |
| static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) |
| { |
| RTCState *s = opaque; |
| |
| if ((addr & 1) == 0) { |
| s->cmos_index = data & 0x7f; |
| } else { |
| #ifdef DEBUG_CMOS |
| printf("cmos: write index=0x%02x val=0x%02x\n", |
| s->cmos_index, data); |
| #endif |
| switch(s->cmos_index) { |
| case RTC_SECONDS_ALARM: |
| case RTC_MINUTES_ALARM: |
| case RTC_HOURS_ALARM: |
| /* XXX: not supported */ |
| s->cmos_data[s->cmos_index] = data; |
| break; |
| case RTC_SECONDS: |
| case RTC_MINUTES: |
| case RTC_HOURS: |
| case RTC_DAY_OF_WEEK: |
| case RTC_DAY_OF_MONTH: |
| case RTC_MONTH: |
| case RTC_YEAR: |
| s->cmos_data[s->cmos_index] = data; |
| /* if in set mode, do not update the time */ |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| rtc_set_time(s); |
| } |
| break; |
| case RTC_REG_A: |
| /* UIP bit is read only */ |
| s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | |
| (s->cmos_data[RTC_REG_A] & REG_A_UIP); |
| rtc_timer_update(s, qemu_get_clock(vm_clock)); |
| break; |
| case RTC_REG_B: |
| if (data & REG_B_SET) { |
| /* set mode: reset UIP mode */ |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| data &= ~REG_B_UIE; |
| } else { |
| /* if disabling set mode, update the time */ |
| if (s->cmos_data[RTC_REG_B] & REG_B_SET) { |
| rtc_set_time(s); |
| } |
| } |
| s->cmos_data[RTC_REG_B] = data; |
| rtc_timer_update(s, qemu_get_clock(vm_clock)); |
| break; |
| case RTC_REG_C: |
| case RTC_REG_D: |
| /* cannot write to them */ |
| break; |
| default: |
| s->cmos_data[s->cmos_index] = data; |
| break; |
| } |
| } |
| } |
| |
| static inline int to_bcd(RTCState *s, int a) |
| { |
| if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| return a; |
| } else { |
| return ((a / 10) << 4) | (a % 10); |
| } |
| } |
| |
| static inline int from_bcd(RTCState *s, int a) |
| { |
| if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| return a; |
| } else { |
| return ((a >> 4) * 10) + (a & 0x0f); |
| } |
| } |
| |
| static void rtc_set_time(RTCState *s) |
| { |
| struct tm *tm = &s->current_tm; |
| |
| tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]); |
| tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]); |
| tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); |
| if (!(s->cmos_data[RTC_REG_B] & 0x02) && |
| (s->cmos_data[RTC_HOURS] & 0x80)) { |
| tm->tm_hour += 12; |
| } |
| tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; |
| tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); |
| tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; |
| tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900; |
| } |
| |
| static void rtc_copy_date(RTCState *s) |
| { |
| const struct tm *tm = &s->current_tm; |
| int year; |
| |
| s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec); |
| s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min); |
| if (s->cmos_data[RTC_REG_B] & 0x02) { |
| /* 24 hour format */ |
| s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour); |
| } else { |
| /* 12 hour format */ |
| s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12); |
| if (tm->tm_hour >= 12) |
| s->cmos_data[RTC_HOURS] |= 0x80; |
| } |
| s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1); |
| s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday); |
| s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1); |
| year = (tm->tm_year - s->base_year) % 100; |
| if (year < 0) |
| year += 100; |
| s->cmos_data[RTC_YEAR] = to_bcd(s, year); |
| } |
| |
| /* month is between 0 and 11. */ |
| static int get_days_in_month(int month, int year) |
| { |
| static const int days_tab[12] = { |
| 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| }; |
| int d; |
| if ((unsigned )month >= 12) |
| return 31; |
| d = days_tab[month]; |
| if (month == 1) { |
| if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) |
| d++; |
| } |
| return d; |
| } |
| |
| /* update 'tm' to the next second */ |
| static void rtc_next_second(struct tm *tm) |
| { |
| int days_in_month; |
| |
| tm->tm_sec++; |
| if ((unsigned)tm->tm_sec >= 60) { |
| tm->tm_sec = 0; |
| tm->tm_min++; |
| if ((unsigned)tm->tm_min >= 60) { |
| tm->tm_min = 0; |
| tm->tm_hour++; |
| if ((unsigned)tm->tm_hour >= 24) { |
| tm->tm_hour = 0; |
| /* next day */ |
| tm->tm_wday++; |
| if ((unsigned)tm->tm_wday >= 7) |
| tm->tm_wday = 0; |
| days_in_month = get_days_in_month(tm->tm_mon, |
| tm->tm_year + 1900); |
| tm->tm_mday++; |
| if (tm->tm_mday < 1) { |
| tm->tm_mday = 1; |
| } else if (tm->tm_mday > days_in_month) { |
| tm->tm_mday = 1; |
| tm->tm_mon++; |
| if (tm->tm_mon >= 12) { |
| tm->tm_mon = 0; |
| tm->tm_year++; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| static void rtc_update_second(void *opaque) |
| { |
| RTCState *s = opaque; |
| int64_t delay; |
| |
| /* if the oscillator is not in normal operation, we do not update */ |
| if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) { |
| s->next_second_time += get_ticks_per_sec(); |
| qemu_mod_timer(s->second_timer, s->next_second_time); |
| } else { |
| rtc_next_second(&s->current_tm); |
| |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| /* update in progress bit */ |
| s->cmos_data[RTC_REG_A] |= REG_A_UIP; |
| } |
| /* should be 244 us = 8 / 32768 seconds, but currently the |
| timers do not have the necessary resolution. */ |
| delay = (get_ticks_per_sec() * 1) / 100; |
| if (delay < 1) |
| delay = 1; |
| qemu_mod_timer(s->second_timer2, |
| s->next_second_time + delay); |
| } |
| } |
| |
| static void rtc_update_second2(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| rtc_copy_date(s); |
| } |
| |
| /* check alarm */ |
| if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { |
| if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 || |
| s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) && |
| ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 || |
| s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) && |
| ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 || |
| s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) { |
| |
| s->cmos_data[RTC_REG_C] |= 0xa0; |
| rtc_irq_raise(s->irq); |
| } |
| } |
| |
| /* update ended interrupt */ |
| s->cmos_data[RTC_REG_C] |= REG_C_UF; |
| if (s->cmos_data[RTC_REG_B] & REG_B_UIE) { |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
| rtc_irq_raise(s->irq); |
| } |
| |
| /* clear update in progress bit */ |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| |
| s->next_second_time += get_ticks_per_sec(); |
| qemu_mod_timer(s->second_timer, s->next_second_time); |
| } |
| |
| static uint32_t cmos_ioport_read(void *opaque, uint32_t addr) |
| { |
| RTCState *s = opaque; |
| int ret; |
| if ((addr & 1) == 0) { |
| return 0xff; |
| } else { |
| switch(s->cmos_index) { |
| case RTC_SECONDS: |
| case RTC_MINUTES: |
| case RTC_HOURS: |
| case RTC_DAY_OF_WEEK: |
| case RTC_DAY_OF_MONTH: |
| case RTC_MONTH: |
| case RTC_YEAR: |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| case RTC_REG_A: |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| case RTC_REG_C: |
| ret = s->cmos_data[s->cmos_index]; |
| qemu_irq_lower(s->irq); |
| s->cmos_data[RTC_REG_C] = 0x00; |
| break; |
| default: |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| } |
| #ifdef DEBUG_CMOS |
| printf("cmos: read index=0x%02x val=0x%02x\n", |
| s->cmos_index, ret); |
| #endif |
| return ret; |
| } |
| } |
| |
| void rtc_set_memory(RTCState *s, int addr, int val) |
| { |
| if (addr >= 0 && addr <= 127) |
| s->cmos_data[addr] = val; |
| } |
| |
| void rtc_set_date(RTCState *s, const struct tm *tm) |
| { |
| s->current_tm = *tm; |
| rtc_copy_date(s); |
| } |
| |
| /* PC cmos mappings */ |
| #define REG_IBM_CENTURY_BYTE 0x32 |
| #define REG_IBM_PS2_CENTURY_BYTE 0x37 |
| |
| static void rtc_set_date_from_host(RTCState *s) |
| { |
| struct tm tm; |
| int val; |
| |
| /* set the CMOS date */ |
| qemu_get_timedate(&tm, 0); |
| rtc_set_date(s, &tm); |
| |
| val = to_bcd(s, (tm.tm_year / 100) + 19); |
| rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val); |
| rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val); |
| } |
| |
| static void rtc_save(QEMUFile *f, void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| qemu_put_buffer(f, s->cmos_data, 128); |
| qemu_put_8s(f, &s->cmos_index); |
| |
| qemu_put_be32(f, s->current_tm.tm_sec); |
| qemu_put_be32(f, s->current_tm.tm_min); |
| qemu_put_be32(f, s->current_tm.tm_hour); |
| qemu_put_be32(f, s->current_tm.tm_wday); |
| qemu_put_be32(f, s->current_tm.tm_mday); |
| qemu_put_be32(f, s->current_tm.tm_mon); |
| qemu_put_be32(f, s->current_tm.tm_year); |
| |
| qemu_put_timer(f, s->periodic_timer); |
| qemu_put_be64(f, s->next_periodic_time); |
| |
| qemu_put_be64(f, s->next_second_time); |
| qemu_put_timer(f, s->second_timer); |
| qemu_put_timer(f, s->second_timer2); |
| } |
| |
| static int rtc_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| RTCState *s = opaque; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| qemu_get_buffer(f, s->cmos_data, 128); |
| qemu_get_8s(f, &s->cmos_index); |
| |
| s->current_tm.tm_sec=qemu_get_be32(f); |
| s->current_tm.tm_min=qemu_get_be32(f); |
| s->current_tm.tm_hour=qemu_get_be32(f); |
| s->current_tm.tm_wday=qemu_get_be32(f); |
| s->current_tm.tm_mday=qemu_get_be32(f); |
| s->current_tm.tm_mon=qemu_get_be32(f); |
| s->current_tm.tm_year=qemu_get_be32(f); |
| |
| qemu_get_timer(f, s->periodic_timer); |
| s->next_periodic_time=qemu_get_be64(f); |
| |
| s->next_second_time=qemu_get_be64(f); |
| qemu_get_timer(f, s->second_timer); |
| qemu_get_timer(f, s->second_timer2); |
| return 0; |
| } |
| |
| #ifdef TARGET_I386 |
| static void rtc_save_td(QEMUFile *f, void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| qemu_put_be32(f, s->irq_coalesced); |
| qemu_put_be32(f, s->period); |
| } |
| |
| static int rtc_load_td(QEMUFile *f, void *opaque, int version_id) |
| { |
| RTCState *s = opaque; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| s->irq_coalesced = qemu_get_be32(f); |
| s->period = qemu_get_be32(f); |
| rtc_coalesced_timer_update(s); |
| return 0; |
| } |
| #endif |
| |
| static void rtc_reset(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); |
| s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); |
| |
| qemu_irq_lower(s->irq); |
| |
| #ifdef TARGET_I386 |
| if (rtc_td_hack) |
| s->irq_coalesced = 0; |
| #endif |
| } |
| |
| static int rtc_initfn(ISADevice *dev) |
| { |
| RTCState *s = DO_UPCAST(RTCState, dev, dev); |
| int base = 0x70; |
| int isairq = 8; |
| |
| isa_init_irq(dev, &s->irq, isairq); |
| |
| s->cmos_data[RTC_REG_A] = 0x26; |
| s->cmos_data[RTC_REG_B] = 0x02; |
| s->cmos_data[RTC_REG_C] = 0x00; |
| s->cmos_data[RTC_REG_D] = 0x80; |
| |
| rtc_set_date_from_host(s); |
| |
| s->periodic_timer = qemu_new_timer(vm_clock, |
| rtc_periodic_timer, s); |
| #ifdef TARGET_I386 |
| if (rtc_td_hack) |
| s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s); |
| #endif |
| s->second_timer = qemu_new_timer(vm_clock, |
| rtc_update_second, s); |
| s->second_timer2 = qemu_new_timer(vm_clock, |
| rtc_update_second2, s); |
| |
| s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100; |
| qemu_mod_timer(s->second_timer2, s->next_second_time); |
| |
| register_ioport_write(base, 2, 1, cmos_ioport_write, s); |
| register_ioport_read(base, 2, 1, cmos_ioport_read, s); |
| |
| register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); |
| #ifdef TARGET_I386 |
| if (rtc_td_hack) |
| register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s); |
| #endif |
| qemu_register_reset(rtc_reset, s); |
| return 0; |
| } |
| |
| RTCState *rtc_init(int base_year) |
| { |
| ISADevice *dev; |
| |
| dev = isa_create("mc146818rtc"); |
| qdev_prop_set_int32(&dev->qdev, "base_year", base_year); |
| qdev_init(&dev->qdev); |
| return DO_UPCAST(RTCState, dev, dev); |
| } |
| |
| static ISADeviceInfo mc146818rtc_info = { |
| .qdev.name = "mc146818rtc", |
| .qdev.size = sizeof(RTCState), |
| .qdev.no_user = 1, |
| .init = rtc_initfn, |
| .qdev.props = (Property[]) { |
| DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), |
| DEFINE_PROP_END_OF_LIST(), |
| } |
| }; |
| |
| static void mc146818rtc_register(void) |
| { |
| isa_qdev_register(&mc146818rtc_info); |
| } |
| device_init(mc146818rtc_register) |
| |
| /* Memory mapped interface */ |
| static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr) |
| { |
| RTCState *s = opaque; |
| |
| return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF; |
| } |
| |
| static void cmos_mm_writeb (void *opaque, |
| target_phys_addr_t addr, uint32_t value) |
| { |
| RTCState *s = opaque; |
| |
| cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF); |
| } |
| |
| static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr) |
| { |
| RTCState *s = opaque; |
| uint32_t val; |
| |
| val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF; |
| #ifdef TARGET_WORDS_BIGENDIAN |
| val = bswap16(val); |
| #endif |
| return val; |
| } |
| |
| static void cmos_mm_writew (void *opaque, |
| target_phys_addr_t addr, uint32_t value) |
| { |
| RTCState *s = opaque; |
| #ifdef TARGET_WORDS_BIGENDIAN |
| value = bswap16(value); |
| #endif |
| cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF); |
| } |
| |
| static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr) |
| { |
| RTCState *s = opaque; |
| uint32_t val; |
| |
| val = cmos_ioport_read(s, addr >> s->it_shift); |
| #ifdef TARGET_WORDS_BIGENDIAN |
| val = bswap32(val); |
| #endif |
| return val; |
| } |
| |
| static void cmos_mm_writel (void *opaque, |
| target_phys_addr_t addr, uint32_t value) |
| { |
| RTCState *s = opaque; |
| #ifdef TARGET_WORDS_BIGENDIAN |
| value = bswap32(value); |
| #endif |
| cmos_ioport_write(s, addr >> s->it_shift, value); |
| } |
| |
| static CPUReadMemoryFunc * const rtc_mm_read[] = { |
| &cmos_mm_readb, |
| &cmos_mm_readw, |
| &cmos_mm_readl, |
| }; |
| |
| static CPUWriteMemoryFunc * const rtc_mm_write[] = { |
| &cmos_mm_writeb, |
| &cmos_mm_writew, |
| &cmos_mm_writel, |
| }; |
| |
| RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq, |
| int base_year) |
| { |
| RTCState *s; |
| int io_memory; |
| |
| s = qemu_mallocz(sizeof(RTCState)); |
| |
| s->irq = irq; |
| s->cmos_data[RTC_REG_A] = 0x26; |
| s->cmos_data[RTC_REG_B] = 0x02; |
| s->cmos_data[RTC_REG_C] = 0x00; |
| s->cmos_data[RTC_REG_D] = 0x80; |
| |
| s->base_year = base_year; |
| rtc_set_date_from_host(s); |
| |
| s->periodic_timer = qemu_new_timer(vm_clock, |
| rtc_periodic_timer, s); |
| s->second_timer = qemu_new_timer(vm_clock, |
| rtc_update_second, s); |
| s->second_timer2 = qemu_new_timer(vm_clock, |
| rtc_update_second2, s); |
| |
| s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100; |
| qemu_mod_timer(s->second_timer2, s->next_second_time); |
| |
| io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s); |
| cpu_register_physical_memory(base, 2 << it_shift, io_memory); |
| |
| register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); |
| #ifdef TARGET_I386 |
| if (rtc_td_hack) |
| register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s); |
| #endif |
| qemu_register_reset(rtc_reset, s); |
| return s; |
| } |