| /* mips internal definitions and helpers |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #ifndef MIPS_INTERNAL_H |
| #define MIPS_INTERNAL_H |
| |
| |
| /* MMU types, the first four entries have the same layout as the |
| CP0C0_MT field. */ |
| enum mips_mmu_types { |
| MMU_TYPE_NONE, |
| MMU_TYPE_R4000, |
| MMU_TYPE_RESERVED, |
| MMU_TYPE_FMT, |
| MMU_TYPE_R3000, |
| MMU_TYPE_R6000, |
| MMU_TYPE_R8000 |
| }; |
| |
| struct mips_def_t { |
| const char *name; |
| int32_t CP0_PRid; |
| int32_t CP0_Config0; |
| int32_t CP0_Config1; |
| int32_t CP0_Config2; |
| int32_t CP0_Config3; |
| int32_t CP0_Config4; |
| int32_t CP0_Config4_rw_bitmask; |
| int32_t CP0_Config5; |
| int32_t CP0_Config5_rw_bitmask; |
| int32_t CP0_Config6; |
| int32_t CP0_Config7; |
| target_ulong CP0_LLAddr_rw_bitmask; |
| int CP0_LLAddr_shift; |
| int32_t SYNCI_Step; |
| int32_t CCRes; |
| int32_t CP0_Status_rw_bitmask; |
| int32_t CP0_TCStatus_rw_bitmask; |
| int32_t CP0_SRSCtl; |
| int32_t CP1_fcr0; |
| int32_t CP1_fcr31_rw_bitmask; |
| int32_t CP1_fcr31; |
| int32_t MSAIR; |
| int32_t SEGBITS; |
| int32_t PABITS; |
| int32_t CP0_SRSConf0_rw_bitmask; |
| int32_t CP0_SRSConf0; |
| int32_t CP0_SRSConf1_rw_bitmask; |
| int32_t CP0_SRSConf1; |
| int32_t CP0_SRSConf2_rw_bitmask; |
| int32_t CP0_SRSConf2; |
| int32_t CP0_SRSConf3_rw_bitmask; |
| int32_t CP0_SRSConf3; |
| int32_t CP0_SRSConf4_rw_bitmask; |
| int32_t CP0_SRSConf4; |
| int32_t CP0_PageGrain_rw_bitmask; |
| int32_t CP0_PageGrain; |
| target_ulong CP0_EBaseWG_rw_bitmask; |
| uint64_t insn_flags; |
| enum mips_mmu_types mmu_type; |
| int32_t SAARP; |
| }; |
| |
| extern const struct mips_def_t mips_defs[]; |
| extern const int mips_defs_number; |
| |
| enum CPUMIPSMSADataFormat { |
| DF_BYTE = 0, |
| DF_HALF, |
| DF_WORD, |
| DF_DOUBLE |
| }; |
| |
| void mips_cpu_do_interrupt(CPUState *cpu); |
| bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req); |
| void mips_cpu_dump_state(CPUState *cpu, FILE *f, int flags); |
| hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); |
| int mips_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); |
| int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); |
| void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr, |
| MMUAccessType access_type, |
| int mmu_idx, uintptr_t retaddr); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| typedef struct r4k_tlb_t r4k_tlb_t; |
| struct r4k_tlb_t { |
| target_ulong VPN; |
| uint32_t PageMask; |
| uint16_t ASID; |
| unsigned int G:1; |
| unsigned int C0:3; |
| unsigned int C1:3; |
| unsigned int V0:1; |
| unsigned int V1:1; |
| unsigned int D0:1; |
| unsigned int D1:1; |
| unsigned int XI0:1; |
| unsigned int XI1:1; |
| unsigned int RI0:1; |
| unsigned int RI1:1; |
| unsigned int EHINV:1; |
| uint64_t PFN[2]; |
| }; |
| |
| struct CPUMIPSTLBContext { |
| uint32_t nb_tlb; |
| uint32_t tlb_in_use; |
| int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot, |
| target_ulong address, int rw, int access_type); |
| void (*helper_tlbwi)(struct CPUMIPSState *env); |
| void (*helper_tlbwr)(struct CPUMIPSState *env); |
| void (*helper_tlbp)(struct CPUMIPSState *env); |
| void (*helper_tlbr)(struct CPUMIPSState *env); |
| void (*helper_tlbinv)(struct CPUMIPSState *env); |
| void (*helper_tlbinvf)(struct CPUMIPSState *env); |
| union { |
| struct { |
| r4k_tlb_t tlb[MIPS_TLB_MAX]; |
| } r4k; |
| } mmu; |
| }; |
| |
| int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, |
| target_ulong address, int rw, int access_type); |
| int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, |
| target_ulong address, int rw, int access_type); |
| int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, |
| target_ulong address, int rw, int access_type); |
| void r4k_helper_tlbwi(CPUMIPSState *env); |
| void r4k_helper_tlbwr(CPUMIPSState *env); |
| void r4k_helper_tlbp(CPUMIPSState *env); |
| void r4k_helper_tlbr(CPUMIPSState *env); |
| void r4k_helper_tlbinv(CPUMIPSState *env); |
| void r4k_helper_tlbinvf(CPUMIPSState *env); |
| void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra); |
| |
| void mips_cpu_unassigned_access(CPUState *cpu, hwaddr addr, |
| bool is_write, bool is_exec, int unused, |
| unsigned size); |
| hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, |
| int rw); |
| #endif |
| |
| #define cpu_signal_handler cpu_mips_signal_handler |
| |
| #ifndef CONFIG_USER_ONLY |
| extern const struct VMStateDescription vmstate_mips_cpu; |
| #endif |
| |
| static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env) |
| { |
| return (env->CP0_Status & (1 << CP0St_IE)) && |
| !(env->CP0_Status & (1 << CP0St_EXL)) && |
| !(env->CP0_Status & (1 << CP0St_ERL)) && |
| !(env->hflags & MIPS_HFLAG_DM) && |
| /* Note that the TCStatus IXMT field is initialized to zero, |
| and only MT capable cores can set it to one. So we don't |
| need to check for MT capabilities here. */ |
| !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT)); |
| } |
| |
| /* Check if there is pending and not masked out interrupt */ |
| static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env) |
| { |
| int32_t pending; |
| int32_t status; |
| bool r; |
| |
| pending = env->CP0_Cause & CP0Ca_IP_mask; |
| status = env->CP0_Status & CP0Ca_IP_mask; |
| |
| if (env->CP0_Config3 & (1 << CP0C3_VEIC)) { |
| /* A MIPS configured with a vectorizing external interrupt controller |
| will feed a vector into the Cause pending lines. The core treats |
| the status lines as a vector level, not as indiviual masks. */ |
| r = pending > status; |
| } else { |
| /* A MIPS configured with compatibility or VInt (Vectored Interrupts) |
| treats the pending lines as individual interrupt lines, the status |
| lines are individual masks. */ |
| r = (pending & status) != 0; |
| } |
| return r; |
| } |
| |
| void mips_tcg_init(void); |
| |
| /* TODO QOM'ify CPU reset and remove */ |
| void cpu_state_reset(CPUMIPSState *s); |
| void cpu_mips_realize_env(CPUMIPSState *env); |
| |
| /* cp0_timer.c */ |
| uint32_t cpu_mips_get_random(CPUMIPSState *env); |
| uint32_t cpu_mips_get_count(CPUMIPSState *env); |
| void cpu_mips_store_count(CPUMIPSState *env, uint32_t value); |
| void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value); |
| void cpu_mips_start_count(CPUMIPSState *env); |
| void cpu_mips_stop_count(CPUMIPSState *env); |
| |
| /* helper.c */ |
| bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr); |
| |
| /* op_helper.c */ |
| uint32_t float_class_s(uint32_t arg, float_status *fst); |
| uint64_t float_class_d(uint64_t arg, float_status *fst); |
| |
| extern unsigned int ieee_rm[]; |
| int ieee_ex_to_mips(int xcpt); |
| void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask); |
| |
| static inline void restore_rounding_mode(CPUMIPSState *env) |
| { |
| set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], |
| &env->active_fpu.fp_status); |
| } |
| |
| static inline void restore_flush_mode(CPUMIPSState *env) |
| { |
| set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0, |
| &env->active_fpu.fp_status); |
| } |
| |
| static inline void restore_fp_status(CPUMIPSState *env) |
| { |
| restore_rounding_mode(env); |
| restore_flush_mode(env); |
| restore_snan_bit_mode(env); |
| } |
| |
| static inline void restore_msa_fp_status(CPUMIPSState *env) |
| { |
| float_status *status = &env->active_tc.msa_fp_status; |
| int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM; |
| bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0; |
| |
| set_float_rounding_mode(ieee_rm[rounding_mode], status); |
| set_flush_to_zero(flush_to_zero, status); |
| set_flush_inputs_to_zero(flush_to_zero, status); |
| } |
| |
| static inline void restore_pamask(CPUMIPSState *env) |
| { |
| if (env->hflags & MIPS_HFLAG_ELPA) { |
| env->PAMask = (1ULL << env->PABITS) - 1; |
| } else { |
| env->PAMask = PAMASK_BASE; |
| } |
| } |
| |
| static inline int mips_vpe_active(CPUMIPSState *env) |
| { |
| int active = 1; |
| |
| /* Check that the VPE is enabled. */ |
| if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) { |
| active = 0; |
| } |
| /* Check that the VPE is activated. */ |
| if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) { |
| active = 0; |
| } |
| |
| /* Now verify that there are active thread contexts in the VPE. |
| |
| This assumes the CPU model will internally reschedule threads |
| if the active one goes to sleep. If there are no threads available |
| the active one will be in a sleeping state, and we can turn off |
| the entire VPE. */ |
| if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) { |
| /* TC is not activated. */ |
| active = 0; |
| } |
| if (env->active_tc.CP0_TCHalt & 1) { |
| /* TC is in halt state. */ |
| active = 0; |
| } |
| |
| return active; |
| } |
| |
| static inline int mips_vp_active(CPUMIPSState *env) |
| { |
| CPUState *other_cs = first_cpu; |
| |
| /* Check if the VP disabled other VPs (which means the VP is enabled) */ |
| if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) { |
| return 1; |
| } |
| |
| /* Check if the virtual processor is disabled due to a DVP */ |
| CPU_FOREACH(other_cs) { |
| MIPSCPU *other_cpu = MIPS_CPU(other_cs); |
| if ((&other_cpu->env != env) && |
| ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static inline void compute_hflags(CPUMIPSState *env) |
| { |
| env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 | |
| MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU | |
| MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | |
| MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA | |
| MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL); |
| if (env->CP0_Status & (1 << CP0St_ERL)) { |
| env->hflags |= MIPS_HFLAG_ERL; |
| } |
| if (!(env->CP0_Status & (1 << CP0St_EXL)) && |
| !(env->CP0_Status & (1 << CP0St_ERL)) && |
| !(env->hflags & MIPS_HFLAG_DM)) { |
| env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU; |
| } |
| #if defined(TARGET_MIPS64) |
| if ((env->insn_flags & ISA_MIPS3) && |
| (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) || |
| (env->CP0_Status & (1 << CP0St_PX)) || |
| (env->CP0_Status & (1 << CP0St_UX)))) { |
| env->hflags |= MIPS_HFLAG_64; |
| } |
| |
| if (!(env->insn_flags & ISA_MIPS3)) { |
| env->hflags |= MIPS_HFLAG_AWRAP; |
| } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) && |
| !(env->CP0_Status & (1 << CP0St_UX))) { |
| env->hflags |= MIPS_HFLAG_AWRAP; |
| } else if (env->insn_flags & ISA_MIPS64R6) { |
| /* Address wrapping for Supervisor and Kernel is specified in R6 */ |
| if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) && |
| !(env->CP0_Status & (1 << CP0St_SX))) || |
| (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) && |
| !(env->CP0_Status & (1 << CP0St_KX)))) { |
| env->hflags |= MIPS_HFLAG_AWRAP; |
| } |
| } |
| #endif |
| if (((env->CP0_Status & (1 << CP0St_CU0)) && |
| !(env->insn_flags & ISA_MIPS32R6)) || |
| !(env->hflags & MIPS_HFLAG_KSU)) { |
| env->hflags |= MIPS_HFLAG_CP0; |
| } |
| if (env->CP0_Status & (1 << CP0St_CU1)) { |
| env->hflags |= MIPS_HFLAG_FPU; |
| } |
| if (env->CP0_Status & (1 << CP0St_FR)) { |
| env->hflags |= MIPS_HFLAG_F64; |
| } |
| if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) && |
| (env->CP0_Config5 & (1 << CP0C5_SBRI))) { |
| env->hflags |= MIPS_HFLAG_SBRI; |
| } |
| if (env->insn_flags & ASE_DSP_R3) { |
| /* |
| * Our cpu supports DSP R3 ASE, so enable |
| * access to DSP R3 resources. |
| */ |
| if (env->CP0_Status & (1 << CP0St_MX)) { |
| env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | |
| MIPS_HFLAG_DSP_R3; |
| } |
| } else if (env->insn_flags & ASE_DSP_R2) { |
| /* |
| * Our cpu supports DSP R2 ASE, so enable |
| * access to DSP R2 resources. |
| */ |
| if (env->CP0_Status & (1 << CP0St_MX)) { |
| env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2; |
| } |
| |
| } else if (env->insn_flags & ASE_DSP) { |
| /* |
| * Our cpu supports DSP ASE, so enable |
| * access to DSP resources. |
| */ |
| if (env->CP0_Status & (1 << CP0St_MX)) { |
| env->hflags |= MIPS_HFLAG_DSP; |
| } |
| |
| } |
| if (env->insn_flags & ISA_MIPS32R2) { |
| if (env->active_fpu.fcr0 & (1 << FCR0_F64)) { |
| env->hflags |= MIPS_HFLAG_COP1X; |
| } |
| } else if (env->insn_flags & ISA_MIPS32) { |
| if (env->hflags & MIPS_HFLAG_64) { |
| env->hflags |= MIPS_HFLAG_COP1X; |
| } |
| } else if (env->insn_flags & ISA_MIPS4) { |
| /* All supported MIPS IV CPUs use the XX (CU3) to enable |
| and disable the MIPS IV extensions to the MIPS III ISA. |
| Some other MIPS IV CPUs ignore the bit, so the check here |
| would be too restrictive for them. */ |
| if (env->CP0_Status & (1U << CP0St_CU3)) { |
| env->hflags |= MIPS_HFLAG_COP1X; |
| } |
| } |
| if (env->insn_flags & ASE_MSA) { |
| if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) { |
| env->hflags |= MIPS_HFLAG_MSA; |
| } |
| } |
| if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { |
| if (env->CP0_Config5 & (1 << CP0C5_FRE)) { |
| env->hflags |= MIPS_HFLAG_FRE; |
| } |
| } |
| if (env->CP0_Config3 & (1 << CP0C3_LPA)) { |
| if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) { |
| env->hflags |= MIPS_HFLAG_ELPA; |
| } |
| } |
| } |
| |
| void cpu_mips_tlb_flush(CPUMIPSState *env); |
| void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc); |
| void cpu_mips_store_status(CPUMIPSState *env, target_ulong val); |
| void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val); |
| |
| void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception, |
| int error_code, uintptr_t pc); |
| |
| static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env, |
| uint32_t exception, |
| uintptr_t pc) |
| { |
| do_raise_exception_err(env, exception, 0, pc); |
| } |
| |
| #endif |