| /* |
| * AArch64 specific helpers |
| * |
| * Copyright (c) 2013 Alexander Graf <agraf@suse.de> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "cpu.h" |
| #include "gdbstub/helpers.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/host-utils.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/bitops.h" |
| #include "internals.h" |
| #include "qemu/crc32c.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "qemu/int128.h" |
| #include "qemu/atomic128.h" |
| #include "fpu/softfloat.h" |
| #include <zlib.h> /* For crc32 */ |
| |
| /* C2.4.7 Multiply and divide */ |
| /* special cases for 0 and LLONG_MIN are mandated by the standard */ |
| uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) |
| { |
| if (den == 0) { |
| return 0; |
| } |
| return num / den; |
| } |
| |
| int64_t HELPER(sdiv64)(int64_t num, int64_t den) |
| { |
| if (den == 0) { |
| return 0; |
| } |
| if (num == LLONG_MIN && den == -1) { |
| return LLONG_MIN; |
| } |
| return num / den; |
| } |
| |
| uint64_t HELPER(rbit64)(uint64_t x) |
| { |
| return revbit64(x); |
| } |
| |
| void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm) |
| { |
| update_spsel(env, imm); |
| } |
| |
| static void daif_check(CPUARMState *env, uint32_t op, |
| uint32_t imm, uintptr_t ra) |
| { |
| /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */ |
| if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { |
| raise_exception_ra(env, EXCP_UDEF, |
| syn_aa64_sysregtrap(0, extract32(op, 0, 3), |
| extract32(op, 3, 3), 4, |
| imm, 0x1f, 0), |
| exception_target_el(env), ra); |
| } |
| } |
| |
| void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm) |
| { |
| daif_check(env, 0x1e, imm, GETPC()); |
| env->daif |= (imm << 6) & PSTATE_DAIF; |
| arm_rebuild_hflags(env); |
| } |
| |
| void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm) |
| { |
| daif_check(env, 0x1f, imm, GETPC()); |
| env->daif &= ~((imm << 6) & PSTATE_DAIF); |
| arm_rebuild_hflags(env); |
| } |
| |
| /* Convert a softfloat float_relation_ (as returned by |
| * the float*_compare functions) to the correct ARM |
| * NZCV flag state. |
| */ |
| static inline uint32_t float_rel_to_flags(int res) |
| { |
| uint64_t flags; |
| switch (res) { |
| case float_relation_equal: |
| flags = PSTATE_Z | PSTATE_C; |
| break; |
| case float_relation_less: |
| flags = PSTATE_N; |
| break; |
| case float_relation_greater: |
| flags = PSTATE_C; |
| break; |
| case float_relation_unordered: |
| default: |
| flags = PSTATE_C | PSTATE_V; |
| break; |
| } |
| return flags; |
| } |
| |
| uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status) |
| { |
| return float_rel_to_flags(float16_compare_quiet(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status) |
| { |
| return float_rel_to_flags(float16_compare(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) |
| { |
| return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) |
| { |
| return float_rel_to_flags(float32_compare(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) |
| { |
| return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) |
| { |
| return float_rel_to_flags(float64_compare(x, y, fp_status)); |
| } |
| |
| float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float32_squash_input_denormal(a, fpst); |
| b = float32_squash_input_denormal(b, fpst); |
| |
| if ((float32_is_zero(a) && float32_is_infinity(b)) || |
| (float32_is_infinity(a) && float32_is_zero(b))) { |
| /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ |
| return make_float32((1U << 30) | |
| ((float32_val(a) ^ float32_val(b)) & (1U << 31))); |
| } |
| return float32_mul(a, b, fpst); |
| } |
| |
| float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float64_squash_input_denormal(a, fpst); |
| b = float64_squash_input_denormal(b, fpst); |
| |
| if ((float64_is_zero(a) && float64_is_infinity(b)) || |
| (float64_is_infinity(a) && float64_is_zero(b))) { |
| /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ |
| return make_float64((1ULL << 62) | |
| ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); |
| } |
| return float64_mul(a, b, fpst); |
| } |
| |
| /* 64bit/double versions of the neon float compare functions */ |
| uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float64_eq_quiet(a, b, fpst); |
| } |
| |
| uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float64_le(b, a, fpst); |
| } |
| |
| uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float64_lt(b, a, fpst); |
| } |
| |
| /* Reciprocal step and sqrt step. Note that unlike the A32/T32 |
| * versions, these do a fully fused multiply-add or |
| * multiply-add-and-halve. |
| */ |
| |
| uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float16_squash_input_denormal(a, fpst); |
| b = float16_squash_input_denormal(b, fpst); |
| |
| a = float16_chs(a); |
| if ((float16_is_infinity(a) && float16_is_zero(b)) || |
| (float16_is_infinity(b) && float16_is_zero(a))) { |
| return float16_two; |
| } |
| return float16_muladd(a, b, float16_two, 0, fpst); |
| } |
| |
| float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float32_squash_input_denormal(a, fpst); |
| b = float32_squash_input_denormal(b, fpst); |
| |
| a = float32_chs(a); |
| if ((float32_is_infinity(a) && float32_is_zero(b)) || |
| (float32_is_infinity(b) && float32_is_zero(a))) { |
| return float32_two; |
| } |
| return float32_muladd(a, b, float32_two, 0, fpst); |
| } |
| |
| float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float64_squash_input_denormal(a, fpst); |
| b = float64_squash_input_denormal(b, fpst); |
| |
| a = float64_chs(a); |
| if ((float64_is_infinity(a) && float64_is_zero(b)) || |
| (float64_is_infinity(b) && float64_is_zero(a))) { |
| return float64_two; |
| } |
| return float64_muladd(a, b, float64_two, 0, fpst); |
| } |
| |
| uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float16_squash_input_denormal(a, fpst); |
| b = float16_squash_input_denormal(b, fpst); |
| |
| a = float16_chs(a); |
| if ((float16_is_infinity(a) && float16_is_zero(b)) || |
| (float16_is_infinity(b) && float16_is_zero(a))) { |
| return float16_one_point_five; |
| } |
| return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst); |
| } |
| |
| float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float32_squash_input_denormal(a, fpst); |
| b = float32_squash_input_denormal(b, fpst); |
| |
| a = float32_chs(a); |
| if ((float32_is_infinity(a) && float32_is_zero(b)) || |
| (float32_is_infinity(b) && float32_is_zero(a))) { |
| return float32_one_point_five; |
| } |
| return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); |
| } |
| |
| float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float64_squash_input_denormal(a, fpst); |
| b = float64_squash_input_denormal(b, fpst); |
| |
| a = float64_chs(a); |
| if ((float64_is_infinity(a) && float64_is_zero(b)) || |
| (float64_is_infinity(b) && float64_is_zero(a))) { |
| return float64_one_point_five; |
| } |
| return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); |
| } |
| |
| /* Pairwise long add: add pairs of adjacent elements into |
| * double-width elements in the result (eg _s8 is an 8x8->16 op) |
| */ |
| uint64_t HELPER(neon_addlp_s8)(uint64_t a) |
| { |
| uint64_t nsignmask = 0x0080008000800080ULL; |
| uint64_t wsignmask = 0x8000800080008000ULL; |
| uint64_t elementmask = 0x00ff00ff00ff00ffULL; |
| uint64_t tmp1, tmp2; |
| uint64_t res, signres; |
| |
| /* Extract odd elements, sign extend each to a 16 bit field */ |
| tmp1 = a & elementmask; |
| tmp1 ^= nsignmask; |
| tmp1 |= wsignmask; |
| tmp1 = (tmp1 - nsignmask) ^ wsignmask; |
| /* Ditto for the even elements */ |
| tmp2 = (a >> 8) & elementmask; |
| tmp2 ^= nsignmask; |
| tmp2 |= wsignmask; |
| tmp2 = (tmp2 - nsignmask) ^ wsignmask; |
| |
| /* calculate the result by summing bits 0..14, 16..22, etc, |
| * and then adjusting the sign bits 15, 23, etc manually. |
| * This ensures the addition can't overflow the 16 bit field. |
| */ |
| signres = (tmp1 ^ tmp2) & wsignmask; |
| res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); |
| res ^= signres; |
| |
| return res; |
| } |
| |
| uint64_t HELPER(neon_addlp_u8)(uint64_t a) |
| { |
| uint64_t tmp; |
| |
| tmp = a & 0x00ff00ff00ff00ffULL; |
| tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; |
| return tmp; |
| } |
| |
| uint64_t HELPER(neon_addlp_s16)(uint64_t a) |
| { |
| int32_t reslo, reshi; |
| |
| reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); |
| reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); |
| |
| return (uint32_t)reslo | (((uint64_t)reshi) << 32); |
| } |
| |
| uint64_t HELPER(neon_addlp_u16)(uint64_t a) |
| { |
| uint64_t tmp; |
| |
| tmp = a & 0x0000ffff0000ffffULL; |
| tmp += (a >> 16) & 0x0000ffff0000ffffULL; |
| return tmp; |
| } |
| |
| /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ |
| uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| uint16_t val16, sbit; |
| int16_t exp; |
| |
| if (float16_is_any_nan(a)) { |
| float16 nan = a; |
| if (float16_is_signaling_nan(a, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| if (!fpst->default_nan_mode) { |
| nan = float16_silence_nan(a, fpst); |
| } |
| } |
| if (fpst->default_nan_mode) { |
| nan = float16_default_nan(fpst); |
| } |
| return nan; |
| } |
| |
| a = float16_squash_input_denormal(a, fpst); |
| |
| val16 = float16_val(a); |
| sbit = 0x8000 & val16; |
| exp = extract32(val16, 10, 5); |
| |
| if (exp == 0) { |
| return make_float16(deposit32(sbit, 10, 5, 0x1e)); |
| } else { |
| return make_float16(deposit32(sbit, 10, 5, ~exp)); |
| } |
| } |
| |
| float32 HELPER(frecpx_f32)(float32 a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| uint32_t val32, sbit; |
| int32_t exp; |
| |
| if (float32_is_any_nan(a)) { |
| float32 nan = a; |
| if (float32_is_signaling_nan(a, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| if (!fpst->default_nan_mode) { |
| nan = float32_silence_nan(a, fpst); |
| } |
| } |
| if (fpst->default_nan_mode) { |
| nan = float32_default_nan(fpst); |
| } |
| return nan; |
| } |
| |
| a = float32_squash_input_denormal(a, fpst); |
| |
| val32 = float32_val(a); |
| sbit = 0x80000000ULL & val32; |
| exp = extract32(val32, 23, 8); |
| |
| if (exp == 0) { |
| return make_float32(sbit | (0xfe << 23)); |
| } else { |
| return make_float32(sbit | (~exp & 0xff) << 23); |
| } |
| } |
| |
| float64 HELPER(frecpx_f64)(float64 a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| uint64_t val64, sbit; |
| int64_t exp; |
| |
| if (float64_is_any_nan(a)) { |
| float64 nan = a; |
| if (float64_is_signaling_nan(a, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| if (!fpst->default_nan_mode) { |
| nan = float64_silence_nan(a, fpst); |
| } |
| } |
| if (fpst->default_nan_mode) { |
| nan = float64_default_nan(fpst); |
| } |
| return nan; |
| } |
| |
| a = float64_squash_input_denormal(a, fpst); |
| |
| val64 = float64_val(a); |
| sbit = 0x8000000000000000ULL & val64; |
| exp = extract64(float64_val(a), 52, 11); |
| |
| if (exp == 0) { |
| return make_float64(sbit | (0x7feULL << 52)); |
| } else { |
| return make_float64(sbit | (~exp & 0x7ffULL) << 52); |
| } |
| } |
| |
| float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) |
| { |
| /* Von Neumann rounding is implemented by using round-to-zero |
| * and then setting the LSB of the result if Inexact was raised. |
| */ |
| float32 r; |
| float_status *fpst = &env->vfp.fp_status; |
| float_status tstat = *fpst; |
| int exflags; |
| |
| set_float_rounding_mode(float_round_to_zero, &tstat); |
| set_float_exception_flags(0, &tstat); |
| r = float64_to_float32(a, &tstat); |
| exflags = get_float_exception_flags(&tstat); |
| if (exflags & float_flag_inexact) { |
| r = make_float32(float32_val(r) | 1); |
| } |
| exflags |= get_float_exception_flags(fpst); |
| set_float_exception_flags(exflags, fpst); |
| return r; |
| } |
| |
| /* 64-bit versions of the CRC helpers. Note that although the operation |
| * (and the prototypes of crc32c() and crc32() mean that only the bottom |
| * 32 bits of the accumulator and result are used, we pass and return |
| * uint64_t for convenience of the generated code. Unlike the 32-bit |
| * instruction set versions, val may genuinely have 64 bits of data in it. |
| * The upper bytes of val (above the number specified by 'bytes') must have |
| * been zeroed out by the caller. |
| */ |
| uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) |
| { |
| uint8_t buf[8]; |
| |
| stq_le_p(buf, val); |
| |
| /* zlib crc32 converts the accumulator and output to one's complement. */ |
| return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; |
| } |
| |
| uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) |
| { |
| uint8_t buf[8]; |
| |
| stq_le_p(buf, val); |
| |
| /* Linux crc32c converts the output to one's complement. */ |
| return crc32c(acc, buf, bytes) ^ 0xffffffff; |
| } |
| |
| /* |
| * AdvSIMD half-precision |
| */ |
| |
| #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix)) |
| |
| #define ADVSIMD_HALFOP(name) \ |
| uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float16_ ## name(a, b, fpst); \ |
| } |
| |
| ADVSIMD_HALFOP(add) |
| ADVSIMD_HALFOP(sub) |
| ADVSIMD_HALFOP(mul) |
| ADVSIMD_HALFOP(div) |
| ADVSIMD_HALFOP(min) |
| ADVSIMD_HALFOP(max) |
| ADVSIMD_HALFOP(minnum) |
| ADVSIMD_HALFOP(maxnum) |
| |
| #define ADVSIMD_TWOHALFOP(name) \ |
| uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \ |
| { \ |
| float16 a1, a2, b1, b2; \ |
| uint32_t r1, r2; \ |
| float_status *fpst = fpstp; \ |
| a1 = extract32(two_a, 0, 16); \ |
| a2 = extract32(two_a, 16, 16); \ |
| b1 = extract32(two_b, 0, 16); \ |
| b2 = extract32(two_b, 16, 16); \ |
| r1 = float16_ ## name(a1, b1, fpst); \ |
| r2 = float16_ ## name(a2, b2, fpst); \ |
| return deposit32(r1, 16, 16, r2); \ |
| } |
| |
| ADVSIMD_TWOHALFOP(add) |
| ADVSIMD_TWOHALFOP(sub) |
| ADVSIMD_TWOHALFOP(mul) |
| ADVSIMD_TWOHALFOP(div) |
| ADVSIMD_TWOHALFOP(min) |
| ADVSIMD_TWOHALFOP(max) |
| ADVSIMD_TWOHALFOP(minnum) |
| ADVSIMD_TWOHALFOP(maxnum) |
| |
| /* Data processing - scalar floating-point and advanced SIMD */ |
| static float16 float16_mulx(float16 a, float16 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float16_squash_input_denormal(a, fpst); |
| b = float16_squash_input_denormal(b, fpst); |
| |
| if ((float16_is_zero(a) && float16_is_infinity(b)) || |
| (float16_is_infinity(a) && float16_is_zero(b))) { |
| /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ |
| return make_float16((1U << 14) | |
| ((float16_val(a) ^ float16_val(b)) & (1U << 15))); |
| } |
| return float16_mul(a, b, fpst); |
| } |
| |
| ADVSIMD_HALFOP(mulx) |
| ADVSIMD_TWOHALFOP(mulx) |
| |
| /* fused multiply-accumulate */ |
| uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c, |
| void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float16_muladd(a, b, c, 0, fpst); |
| } |
| |
| uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b, |
| uint32_t two_c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float16 a1, a2, b1, b2, c1, c2; |
| uint32_t r1, r2; |
| a1 = extract32(two_a, 0, 16); |
| a2 = extract32(two_a, 16, 16); |
| b1 = extract32(two_b, 0, 16); |
| b2 = extract32(two_b, 16, 16); |
| c1 = extract32(two_c, 0, 16); |
| c2 = extract32(two_c, 16, 16); |
| r1 = float16_muladd(a1, b1, c1, 0, fpst); |
| r2 = float16_muladd(a2, b2, c2, 0, fpst); |
| return deposit32(r1, 16, 16, r2); |
| } |
| |
| /* |
| * Floating point comparisons produce an integer result. Softfloat |
| * routines return float_relation types which we convert to the 0/-1 |
| * Neon requires. |
| */ |
| |
| #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0 |
| |
| uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| int compare = float16_compare_quiet(a, b, fpst); |
| return ADVSIMD_CMPRES(compare == float_relation_equal); |
| } |
| |
| uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| int compare = float16_compare(a, b, fpst); |
| return ADVSIMD_CMPRES(compare == float_relation_greater || |
| compare == float_relation_equal); |
| } |
| |
| uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| int compare = float16_compare(a, b, fpst); |
| return ADVSIMD_CMPRES(compare == float_relation_greater); |
| } |
| |
| uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float16 f0 = float16_abs(a); |
| float16 f1 = float16_abs(b); |
| int compare = float16_compare(f0, f1, fpst); |
| return ADVSIMD_CMPRES(compare == float_relation_greater || |
| compare == float_relation_equal); |
| } |
| |
| uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float16 f0 = float16_abs(a); |
| float16 f1 = float16_abs(b); |
| int compare = float16_compare(f0, f1, fpst); |
| return ADVSIMD_CMPRES(compare == float_relation_greater); |
| } |
| |
| /* round to integral */ |
| uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status) |
| { |
| return float16_round_to_int(x, fp_status); |
| } |
| |
| uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float16 ret; |
| |
| ret = float16_round_to_int(x, fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Half-precision floating point conversion functions |
| * |
| * There are a multitude of conversion functions with various |
| * different rounding modes. This is dealt with by the calling code |
| * setting the mode appropriately before calling the helper. |
| */ |
| |
| uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| /* Invalid if we are passed a NaN */ |
| if (float16_is_any_nan(a)) { |
| float_raise(float_flag_invalid, fpst); |
| return 0; |
| } |
| return float16_to_int16(a, fpst); |
| } |
| |
| uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| /* Invalid if we are passed a NaN */ |
| if (float16_is_any_nan(a)) { |
| float_raise(float_flag_invalid, fpst); |
| return 0; |
| } |
| return float16_to_uint16(a, fpst); |
| } |
| |
| static int el_from_spsr(uint32_t spsr) |
| { |
| /* Return the exception level that this SPSR is requesting a return to, |
| * or -1 if it is invalid (an illegal return) |
| */ |
| if (spsr & PSTATE_nRW) { |
| switch (spsr & CPSR_M) { |
| case ARM_CPU_MODE_USR: |
| return 0; |
| case ARM_CPU_MODE_HYP: |
| return 2; |
| case ARM_CPU_MODE_FIQ: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_SYS: |
| return 1; |
| case ARM_CPU_MODE_MON: |
| /* Returning to Mon from AArch64 is never possible, |
| * so this is an illegal return. |
| */ |
| default: |
| return -1; |
| } |
| } else { |
| if (extract32(spsr, 1, 1)) { |
| /* Return with reserved M[1] bit set */ |
| return -1; |
| } |
| if (extract32(spsr, 0, 4) == 1) { |
| /* return to EL0 with M[0] bit set */ |
| return -1; |
| } |
| return extract32(spsr, 2, 2); |
| } |
| } |
| |
| static void cpsr_write_from_spsr_elx(CPUARMState *env, |
| uint32_t val) |
| { |
| uint32_t mask; |
| |
| /* Save SPSR_ELx.SS into PSTATE. */ |
| env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS); |
| val &= ~PSTATE_SS; |
| |
| /* Move DIT to the correct location for CPSR */ |
| if (val & PSTATE_DIT) { |
| val &= ~PSTATE_DIT; |
| val |= CPSR_DIT; |
| } |
| |
| mask = aarch32_cpsr_valid_mask(env->features, \ |
| &env_archcpu(env)->isar); |
| cpsr_write(env, val, mask, CPSRWriteRaw); |
| } |
| |
| void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc) |
| { |
| int cur_el = arm_current_el(env); |
| unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); |
| uint32_t spsr = env->banked_spsr[spsr_idx]; |
| int new_el; |
| bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; |
| |
| aarch64_save_sp(env, cur_el); |
| |
| arm_clear_exclusive(env); |
| |
| /* We must squash the PSTATE.SS bit to zero unless both of the |
| * following hold: |
| * 1. debug exceptions are currently disabled |
| * 2. singlestep will be active in the EL we return to |
| * We check 1 here and 2 after we've done the pstate/cpsr write() to |
| * transition to the EL we're going to. |
| */ |
| if (arm_generate_debug_exceptions(env)) { |
| spsr &= ~PSTATE_SS; |
| } |
| |
| /* |
| * FEAT_RME forbids return from EL3 with an invalid security state. |
| * We don't need an explicit check for FEAT_RME here because we enforce |
| * in scr_write() that you can't set the NSE bit without it. |
| */ |
| if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) { |
| goto illegal_return; |
| } |
| |
| new_el = el_from_spsr(spsr); |
| if (new_el == -1) { |
| goto illegal_return; |
| } |
| if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) { |
| /* Disallow return to an EL which is unimplemented or higher |
| * than the current one. |
| */ |
| goto illegal_return; |
| } |
| |
| if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { |
| /* Return to an EL which is configured for a different register width */ |
| goto illegal_return; |
| } |
| |
| if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) { |
| goto illegal_return; |
| } |
| |
| qemu_mutex_lock_iothread(); |
| arm_call_pre_el_change_hook(env_archcpu(env)); |
| qemu_mutex_unlock_iothread(); |
| |
| if (!return_to_aa64) { |
| env->aarch64 = false; |
| /* We do a raw CPSR write because aarch64_sync_64_to_32() |
| * will sort the register banks out for us, and we've already |
| * caught all the bad-mode cases in el_from_spsr(). |
| */ |
| cpsr_write_from_spsr_elx(env, spsr); |
| if (!arm_singlestep_active(env)) { |
| env->pstate &= ~PSTATE_SS; |
| } |
| aarch64_sync_64_to_32(env); |
| |
| if (spsr & CPSR_T) { |
| env->regs[15] = new_pc & ~0x1; |
| } else { |
| env->regs[15] = new_pc & ~0x3; |
| } |
| helper_rebuild_hflags_a32(env, new_el); |
| qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
| "AArch32 EL%d PC 0x%" PRIx32 "\n", |
| cur_el, new_el, env->regs[15]); |
| } else { |
| int tbii; |
| |
| env->aarch64 = true; |
| spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar); |
| pstate_write(env, spsr); |
| if (!arm_singlestep_active(env)) { |
| env->pstate &= ~PSTATE_SS; |
| } |
| aarch64_restore_sp(env, new_el); |
| helper_rebuild_hflags_a64(env, new_el); |
| |
| /* |
| * Apply TBI to the exception return address. We had to delay this |
| * until after we selected the new EL, so that we could select the |
| * correct TBI+TBID bits. This is made easier by waiting until after |
| * the hflags rebuild, since we can pull the composite TBII field |
| * from there. |
| */ |
| tbii = EX_TBFLAG_A64(env->hflags, TBII); |
| if ((tbii >> extract64(new_pc, 55, 1)) & 1) { |
| /* TBI is enabled. */ |
| int core_mmu_idx = cpu_mmu_index(env, false); |
| if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) { |
| new_pc = sextract64(new_pc, 0, 56); |
| } else { |
| new_pc = extract64(new_pc, 0, 56); |
| } |
| } |
| env->pc = new_pc; |
| |
| qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
| "AArch64 EL%d PC 0x%" PRIx64 "\n", |
| cur_el, new_el, env->pc); |
| } |
| |
| /* |
| * Note that cur_el can never be 0. If new_el is 0, then |
| * el0_a64 is return_to_aa64, else el0_a64 is ignored. |
| */ |
| aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64); |
| |
| qemu_mutex_lock_iothread(); |
| arm_call_el_change_hook(env_archcpu(env)); |
| qemu_mutex_unlock_iothread(); |
| |
| return; |
| |
| illegal_return: |
| /* Illegal return events of various kinds have architecturally |
| * mandated behaviour: |
| * restore NZCV and DAIF from SPSR_ELx |
| * set PSTATE.IL |
| * restore PC from ELR_ELx |
| * no change to exception level, execution state or stack pointer |
| */ |
| env->pstate |= PSTATE_IL; |
| env->pc = new_pc; |
| spsr &= PSTATE_NZCV | PSTATE_DAIF; |
| spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); |
| pstate_write(env, spsr); |
| if (!arm_singlestep_active(env)) { |
| env->pstate &= ~PSTATE_SS; |
| } |
| helper_rebuild_hflags_a64(env, cur_el); |
| qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: " |
| "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc); |
| } |
| |
| /* |
| * Square Root and Reciprocal square root |
| */ |
| |
| uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp) |
| { |
| float_status *s = fpstp; |
| |
| return float16_sqrt(a, s); |
| } |
| |
| void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
| { |
| /* |
| * Implement DC ZVA, which zeroes a fixed-length block of memory. |
| * Note that we do not implement the (architecturally mandated) |
| * alignment fault for attempts to use this on Device memory |
| * (which matches the usual QEMU behaviour of not implementing either |
| * alignment faults or any memory attribute handling). |
| */ |
| int blocklen = 4 << env_archcpu(env)->dcz_blocksize; |
| uint64_t vaddr = vaddr_in & ~(blocklen - 1); |
| int mmu_idx = cpu_mmu_index(env, false); |
| void *mem; |
| |
| /* |
| * Trapless lookup. In addition to actual invalid page, may |
| * return NULL for I/O, watchpoints, clean pages, etc. |
| */ |
| mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx); |
| |
| #ifndef CONFIG_USER_ONLY |
| if (unlikely(!mem)) { |
| uintptr_t ra = GETPC(); |
| |
| /* |
| * Trap if accessing an invalid page. DC_ZVA requires that we supply |
| * the original pointer for an invalid page. But watchpoints require |
| * that we probe the actual space. So do both. |
| */ |
| (void) probe_write(env, vaddr_in, 1, mmu_idx, ra); |
| mem = probe_write(env, vaddr, blocklen, mmu_idx, ra); |
| |
| if (unlikely(!mem)) { |
| /* |
| * The only remaining reason for mem == NULL is I/O. |
| * Just do a series of byte writes as the architecture demands. |
| */ |
| for (int i = 0; i < blocklen; i++) { |
| cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra); |
| } |
| return; |
| } |
| } |
| #endif |
| |
| memset(mem, 0, blocklen); |
| } |
| |
| void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr, |
| uint32_t access_type, uint32_t mmu_idx) |
| { |
| arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type, |
| mmu_idx, GETPC()); |
| } |
| |
| /* Memory operations (memset, memmove, memcpy) */ |
| |
| /* |
| * Return true if the CPY* and SET* insns can execute; compare |
| * pseudocode CheckMOPSEnabled(), though we refactor it a little. |
| */ |
| static bool mops_enabled(CPUARMState *env) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && |
| (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && |
| !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) { |
| return false; |
| } |
| |
| if (el == 0) { |
| if (!el_is_in_host(env, 0)) { |
| return env->cp15.sctlr_el[1] & SCTLR_MSCEN; |
| } else { |
| return env->cp15.sctlr_el[2] & SCTLR_MSCEN; |
| } |
| } |
| return true; |
| } |
| |
| static void check_mops_enabled(CPUARMState *env, uintptr_t ra) |
| { |
| if (!mops_enabled(env)) { |
| raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(), |
| exception_target_el(env), ra); |
| } |
| } |
| |
| /* |
| * Return the target exception level for an exception due |
| * to mismatched arguments in a FEAT_MOPS copy or set. |
| * Compare pseudocode MismatchedCpySetTargetEL() |
| */ |
| static int mops_mismatch_exception_target_el(CPUARMState *env) |
| { |
| int el = arm_current_el(env); |
| |
| if (el > 1) { |
| return el; |
| } |
| if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) { |
| return 2; |
| } |
| if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) { |
| return 2; |
| } |
| return 1; |
| } |
| |
| /* |
| * Check whether an M or E instruction was executed with a CF value |
| * indicating the wrong option for this implementation. |
| * Assumes we are always Option A. |
| */ |
| static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome, |
| uintptr_t ra) |
| { |
| if (env->CF != 0) { |
| syndrome |= 1 << 17; /* Set the wrong-option bit */ |
| raise_exception_ra(env, EXCP_UDEF, syndrome, |
| mops_mismatch_exception_target_el(env), ra); |
| } |
| } |
| |
| /* |
| * Return the maximum number of bytes we can transfer starting at addr |
| * without crossing a page boundary. |
| */ |
| static uint64_t page_limit(uint64_t addr) |
| { |
| return TARGET_PAGE_ALIGN(addr + 1) - addr; |
| } |
| |
| /* |
| * Perform part of a memory set on an area of guest memory starting at |
| * toaddr (a dirty address) and extending for setsize bytes. |
| * |
| * Returns the number of bytes actually set, which might be less than |
| * setsize; the caller should loop until the whole set has been done. |
| * The caller should ensure that the guest registers are correct |
| * for the possibility that the first byte of the set encounters |
| * an exception or watchpoint. We guarantee not to take any faults |
| * for bytes other than the first. |
| */ |
| static uint64_t set_step(CPUARMState *env, uint64_t toaddr, |
| uint64_t setsize, uint32_t data, int memidx, |
| uint32_t *mtedesc, uintptr_t ra) |
| { |
| void *mem; |
| |
| setsize = MIN(setsize, page_limit(toaddr)); |
| if (*mtedesc) { |
| uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc); |
| if (mtesize == 0) { |
| /* Trap, or not. All CPU state is up to date */ |
| mte_check_fail(env, *mtedesc, toaddr, ra); |
| /* Continue, with no further MTE checks required */ |
| *mtedesc = 0; |
| } else { |
| /* Advance to the end, or to the tag mismatch */ |
| setsize = MIN(setsize, mtesize); |
| } |
| } |
| |
| toaddr = useronly_clean_ptr(toaddr); |
| /* |
| * Trapless lookup: returns NULL for invalid page, I/O, |
| * watchpoints, clean pages, etc. |
| */ |
| mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx); |
| |
| #ifndef CONFIG_USER_ONLY |
| if (unlikely(!mem)) { |
| /* |
| * Slow-path: just do one byte write. This will handle the |
| * watchpoint, invalid page, etc handling correctly. |
| * For clean code pages, the next iteration will see |
| * the page dirty and will use the fast path. |
| */ |
| cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra); |
| return 1; |
| } |
| #endif |
| /* Easy case: just memset the host memory */ |
| memset(mem, data, setsize); |
| return setsize; |
| } |
| |
| /* |
| * Similar, but setting tags. The architecture requires us to do this |
| * in 16-byte chunks. SETP accesses are not tag checked; they set |
| * the tags. |
| */ |
| static uint64_t set_step_tags(CPUARMState *env, uint64_t toaddr, |
| uint64_t setsize, uint32_t data, int memidx, |
| uint32_t *mtedesc, uintptr_t ra) |
| { |
| void *mem; |
| uint64_t cleanaddr; |
| |
| setsize = MIN(setsize, page_limit(toaddr)); |
| |
| cleanaddr = useronly_clean_ptr(toaddr); |
| /* |
| * Trapless lookup: returns NULL for invalid page, I/O, |
| * watchpoints, clean pages, etc. |
| */ |
| mem = tlb_vaddr_to_host(env, cleanaddr, MMU_DATA_STORE, memidx); |
| |
| #ifndef CONFIG_USER_ONLY |
| if (unlikely(!mem)) { |
| /* |
| * Slow-path: just do one write. This will handle the |
| * watchpoint, invalid page, etc handling correctly. |
| * The architecture requires that we do 16 bytes at a time, |
| * and we know both ptr and size are 16 byte aligned. |
| * For clean code pages, the next iteration will see |
| * the page dirty and will use the fast path. |
| */ |
| uint64_t repldata = data * 0x0101010101010101ULL; |
| MemOpIdx oi16 = make_memop_idx(MO_TE | MO_128, memidx); |
| cpu_st16_mmu(env, toaddr, int128_make128(repldata, repldata), oi16, ra); |
| mte_mops_set_tags(env, toaddr, 16, *mtedesc); |
| return 16; |
| } |
| #endif |
| /* Easy case: just memset the host memory */ |
| memset(mem, data, setsize); |
| mte_mops_set_tags(env, toaddr, setsize, *mtedesc); |
| return setsize; |
| } |
| |
| typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr, |
| uint64_t setsize, uint32_t data, |
| int memidx, uint32_t *mtedesc, uintptr_t ra); |
| |
| /* Extract register numbers from a MOPS exception syndrome value */ |
| static int mops_destreg(uint32_t syndrome) |
| { |
| return extract32(syndrome, 10, 5); |
| } |
| |
| static int mops_srcreg(uint32_t syndrome) |
| { |
| return extract32(syndrome, 5, 5); |
| } |
| |
| static int mops_sizereg(uint32_t syndrome) |
| { |
| return extract32(syndrome, 0, 5); |
| } |
| |
| /* |
| * Return true if TCMA and TBI bits mean we need to do MTE checks. |
| * We only need to do this once per MOPS insn, not for every page. |
| */ |
| static bool mte_checks_needed(uint64_t ptr, uint32_t desc) |
| { |
| int bit55 = extract64(ptr, 55, 1); |
| |
| /* |
| * Note that tbi_check() returns true for "access checked" but |
| * tcma_check() returns true for "access unchecked". |
| */ |
| if (!tbi_check(desc, bit55)) { |
| return false; |
| } |
| return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr)); |
| } |
| |
| /* Take an exception if the SETG addr/size are not granule aligned */ |
| static void check_setg_alignment(CPUARMState *env, uint64_t ptr, uint64_t size, |
| uint32_t memidx, uintptr_t ra) |
| { |
| if ((size != 0 && !QEMU_IS_ALIGNED(ptr, TAG_GRANULE)) || |
| !QEMU_IS_ALIGNED(size, TAG_GRANULE)) { |
| arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, |
| memidx, ra); |
| |
| } |
| } |
| |
| /* |
| * For the Memory Set operation, our implementation chooses |
| * always to use "option A", where we update Xd to the final |
| * address in the SETP insn, and set Xn to be -(bytes remaining). |
| * On SETM and SETE insns we only need update Xn. |
| * |
| * @env: CPU |
| * @syndrome: syndrome value for mismatch exceptions |
| * (also contains the register numbers we need to use) |
| * @mtedesc: MTE descriptor word |
| * @stepfn: function which does a single part of the set operation |
| * @is_setg: true if this is the tag-setting SETG variant |
| */ |
| static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc, |
| StepFn *stepfn, bool is_setg, uintptr_t ra) |
| { |
| /* Prologue: we choose to do up to the next page boundary */ |
| int rd = mops_destreg(syndrome); |
| int rs = mops_srcreg(syndrome); |
| int rn = mops_sizereg(syndrome); |
| uint8_t data = env->xregs[rs]; |
| uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX); |
| uint64_t toaddr = env->xregs[rd]; |
| uint64_t setsize = env->xregs[rn]; |
| uint64_t stagesetsize, step; |
| |
| check_mops_enabled(env, ra); |
| |
| if (setsize > INT64_MAX) { |
| setsize = INT64_MAX; |
| if (is_setg) { |
| setsize &= ~0xf; |
| } |
| } |
| |
| if (unlikely(is_setg)) { |
| check_setg_alignment(env, toaddr, setsize, memidx, ra); |
| } else if (!mte_checks_needed(toaddr, mtedesc)) { |
| mtedesc = 0; |
| } |
| |
| stagesetsize = MIN(setsize, page_limit(toaddr)); |
| while (stagesetsize) { |
| env->xregs[rd] = toaddr; |
| env->xregs[rn] = setsize; |
| step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra); |
| toaddr += step; |
| setsize -= step; |
| stagesetsize -= step; |
| } |
| /* Insn completed, so update registers to the Option A format */ |
| env->xregs[rd] = toaddr + setsize; |
| env->xregs[rn] = -setsize; |
| |
| /* Set NZCV = 0000 to indicate we are an Option A implementation */ |
| env->NF = 0; |
| env->ZF = 1; /* our env->ZF encoding is inverted */ |
| env->CF = 0; |
| env->VF = 0; |
| return; |
| } |
| |
| void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc) |
| { |
| do_setp(env, syndrome, mtedesc, set_step, false, GETPC()); |
| } |
| |
| void HELPER(setgp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc) |
| { |
| do_setp(env, syndrome, mtedesc, set_step_tags, true, GETPC()); |
| } |
| |
| static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc, |
| StepFn *stepfn, bool is_setg, uintptr_t ra) |
| { |
| /* Main: we choose to do all the full-page chunks */ |
| CPUState *cs = env_cpu(env); |
| int rd = mops_destreg(syndrome); |
| int rs = mops_srcreg(syndrome); |
| int rn = mops_sizereg(syndrome); |
| uint8_t data = env->xregs[rs]; |
| uint64_t toaddr = env->xregs[rd] + env->xregs[rn]; |
| uint64_t setsize = -env->xregs[rn]; |
| uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX); |
| uint64_t step, stagesetsize; |
| |
| check_mops_enabled(env, ra); |
| |
| /* |
| * We're allowed to NOP out "no data to copy" before the consistency |
| * checks; we choose to do so. |
| */ |
| if (env->xregs[rn] == 0) { |
| return; |
| } |
| |
| check_mops_wrong_option(env, syndrome, ra); |
| |
| /* |
| * Our implementation will work fine even if we have an unaligned |
| * destination address, and because we update Xn every time around |
| * the loop below and the return value from stepfn() may be less |
| * than requested, we might find toaddr is unaligned. So we don't |
| * have an IMPDEF check for alignment here. |
| */ |
| |
| if (unlikely(is_setg)) { |
| check_setg_alignment(env, toaddr, setsize, memidx, ra); |
| } else if (!mte_checks_needed(toaddr, mtedesc)) { |
| mtedesc = 0; |
| } |
| |
| /* Do the actual memset: we leave the last partial page to SETE */ |
| stagesetsize = setsize & TARGET_PAGE_MASK; |
| while (stagesetsize > 0) { |
| step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra); |
| toaddr += step; |
| setsize -= step; |
| stagesetsize -= step; |
| env->xregs[rn] = -setsize; |
| if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) { |
| cpu_loop_exit_restore(cs, ra); |
| } |
| } |
| } |
| |
| void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc) |
| { |
| do_setm(env, syndrome, mtedesc, set_step, false, GETPC()); |
| } |
| |
| void HELPER(setgm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc) |
| { |
| do_setm(env, syndrome, mtedesc, set_step_tags, true, GETPC()); |
| } |
| |
| static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc, |
| StepFn *stepfn, bool is_setg, uintptr_t ra) |
| { |
| /* Epilogue: do the last partial page */ |
| int rd = mops_destreg(syndrome); |
| int rs = mops_srcreg(syndrome); |
| int rn = mops_sizereg(syndrome); |
| uint8_t data = env->xregs[rs]; |
| uint64_t toaddr = env->xregs[rd] + env->xregs[rn]; |
| uint64_t setsize = -env->xregs[rn]; |
| uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX); |
| uint64_t step; |
| |
| check_mops_enabled(env, ra); |
| |
| /* |
| * We're allowed to NOP out "no data to copy" before the consistency |
| * checks; we choose to do so. |
| */ |
| if (setsize == 0) { |
| return; |
| } |
| |
| check_mops_wrong_option(env, syndrome, ra); |
| |
| /* |
| * Our implementation has no address alignment requirements, but |
| * we do want to enforce the "less than a page" size requirement, |
| * so we don't need to have the "check for interrupts" here. |
| */ |
| if (setsize >= TARGET_PAGE_SIZE) { |
| raise_exception_ra(env, EXCP_UDEF, syndrome, |
| mops_mismatch_exception_target_el(env), ra); |
| } |
| |
| if (unlikely(is_setg)) { |
| check_setg_alignment(env, toaddr, setsize, memidx, ra); |
| } else if (!mte_checks_needed(toaddr, mtedesc)) { |
| mtedesc = 0; |
| } |
| |
| /* Do the actual memset */ |
| while (setsize > 0) { |
| step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra); |
| toaddr += step; |
| setsize -= step; |
| env->xregs[rn] = -setsize; |
| } |
| } |
| |
| void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc) |
| { |
| do_sete(env, syndrome, mtedesc, set_step, false, GETPC()); |
| } |
| |
| void HELPER(setge)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc) |
| { |
| do_sete(env, syndrome, mtedesc, set_step_tags, true, GETPC()); |
| } |