blob: 0f24905525a7c1bd43ece455f64f63218587946a [file] [log] [blame]
/*
* NeXT Cube System Driver
*
* Copyright (c) 2011 Bryce Lanham
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "exec/hwaddr.h"
#include "system/system.h"
#include "system/qtest.h"
#include "hw/irq.h"
#include "hw/m68k/next-cube.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/scsi/esp.h"
#include "hw/sysbus.h"
#include "qom/object.h"
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
#include "hw/block/fdc.h"
#include "hw/misc/empty_slot.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "ui/console.h"
#include "target/m68k/cpu.h"
#include "migration/vmstate.h"
/* #define DEBUG_NEXT */
#ifdef DEBUG_NEXT
#define DPRINTF(fmt, ...) \
do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define ENTRY 0x0100001e
#define RAM_SIZE 0x4000000
#define ROM_FILE "Rev_2.5_v66.bin"
typedef struct NeXTRTC {
int8_t phase;
uint8_t ram[32];
uint8_t command;
uint8_t value;
uint8_t status;
uint8_t control;
uint8_t retval;
} NeXTRTC;
#define TYPE_NEXT_SCSI "next-scsi"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTSCSI, NEXT_SCSI)
/* NeXT SCSI Controller */
struct NeXTSCSI {
SysBusDevice parent_obj;
MemoryRegion scsi_mem;
SysBusESPState sysbus_esp;
MemoryRegion scsi_csr_mem;
uint8_t scsi_csr_1;
uint8_t scsi_csr_2;
};
#define TYPE_NEXT_PC "next-pc"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTPC, NEXT_PC)
/* NeXT Peripheral Controller */
struct NeXTPC {
SysBusDevice parent_obj;
M68kCPU *cpu;
MemoryRegion floppy_mem;
MemoryRegion timer_mem;
MemoryRegion dummyen_mem;
MemoryRegion mmiomem;
MemoryRegion scrmem;
uint32_t scr1;
uint32_t scr2;
uint32_t old_scr2;
uint32_t int_mask;
uint32_t int_status;
uint32_t led;
NeXTSCSI next_scsi;
qemu_irq scsi_reset;
qemu_irq scsi_dma;
ESCCState escc;
NeXTRTC rtc;
qemu_irq rtc_power_irq;
};
typedef struct next_dma {
uint32_t csr;
uint32_t saved_next;
uint32_t saved_limit;
uint32_t saved_start;
uint32_t saved_stop;
uint32_t next;
uint32_t limit;
uint32_t start;
uint32_t stop;
uint32_t next_initbuf;
uint32_t size;
} next_dma;
#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)
struct NeXTState {
MachineState parent;
MemoryRegion rom;
MemoryRegion rom2;
MemoryRegion dmamem;
MemoryRegion bmapm1;
MemoryRegion bmapm2;
next_dma dma[10];
};
/* Thanks to NeXT forums for this */
/*
static const uint8_t rtc_ram3[32] = {
0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
};
*/
static const uint8_t rtc_ram2[32] = {
0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
};
#define SCR2_RTCLK 0x2
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
static void next_scr2_led_update(NeXTPC *s)
{
if (s->scr2 & 0x1) {
DPRINTF("fault!\n");
s->led++;
if (s->led == 10) {
DPRINTF("LED flashing, possible fault!\n");
s->led = 0;
}
}
}
static bool next_rtc_cmd_is_write(uint8_t cmd)
{
return (cmd >= 0x80 && cmd <= 0x9f) ||
(cmd == 0xb1);
}
static void next_rtc_data_in_irq(void *opaque, int n, int level)
{
NeXTPC *s = NEXT_PC(opaque);
NeXTRTC *rtc = &s->rtc;
if (rtc->phase < 8) {
rtc->command = (rtc->command << 1) | level;
if (rtc->phase == 7 && !next_rtc_cmd_is_write(rtc->command)) {
if (rtc->command <= 0x1f) {
/* RAM registers */
rtc->retval = rtc->ram[rtc->command];
}
if ((rtc->command >= 0x20) && (rtc->command <= 0x2f)) {
/* RTC */
time_t time_h = time(NULL);
struct tm *info = localtime(&time_h);
rtc->retval = 0;
switch (rtc->command) {
case 0x20:
rtc->retval = SCR2_TOBCD(info->tm_sec);
break;
case 0x21:
rtc->retval = SCR2_TOBCD(info->tm_min);
break;
case 0x22:
rtc->retval = SCR2_TOBCD(info->tm_hour);
break;
case 0x24:
rtc->retval = SCR2_TOBCD(info->tm_mday);
break;
case 0x25:
rtc->retval = SCR2_TOBCD((info->tm_mon + 1));
break;
case 0x26:
rtc->retval = SCR2_TOBCD((info->tm_year - 100));
break;
}
}
if (rtc->command == 0x30) {
/* read the status 0x30 */
rtc->retval = rtc->status;
}
if (rtc->command == 0x31) {
/* read the control 0x31 */
rtc->retval = rtc->control;
}
}
}
if (rtc->phase >= 8 && rtc->phase < 16) {
if (next_rtc_cmd_is_write(rtc->command)) {
/* Shift in value to write */
rtc->value = (rtc->value << 1) | level;
} else {
/* Shift out value to read */
qemu_irq rtc_data_in_irq = qdev_get_gpio_in_named(
DEVICE(s), "pc-rtc-data-in", 0);
if (rtc->retval & (0x80 >> (rtc->phase - 8))) {
qemu_irq_raise(rtc_data_in_irq);
} else {
qemu_irq_lower(rtc_data_in_irq);
}
}
}
rtc->phase++;
if (rtc->phase == 16 && next_rtc_cmd_is_write(rtc->command)) {
if (rtc->command >= 0x80 && rtc->command <= 0x9f) {
/* RAM registers */
rtc->ram[rtc->command - 0x80] = rtc->value;
}
if (rtc->command == 0xb1) {
/* write to 0x30 register */
if (rtc->value & 0x04) {
/* clear FTU */
rtc->status = rtc->status & (~0x18);
qemu_irq_lower(s->rtc_power_irq);
}
}
}
}
static void next_scr2_rtc_update(NeXTPC *s)
{
uint8_t old_scr2, scr2_2;
NeXTRTC *rtc = &s->rtc;
old_scr2 = extract32(s->old_scr2, 8, 8);
scr2_2 = extract32(s->scr2, 8, 8);
if (scr2_2 & 0x1) {
/* DPRINTF("RTC %x phase %i\n", scr2_2, rtc->phase); */
if (rtc->phase == -1) {
rtc->phase = 0;
}
/* If we are in going down clock... do something */
if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
((scr2_2 & SCR2_RTCLK) == 0)) {
qemu_irq rtc_data_in_irq = qdev_get_gpio_in_named(
DEVICE(s), "rtc-data-in", 0);
if (scr2_2 & SCR2_RTDATA) {
qemu_irq_raise(rtc_data_in_irq);
} else {
qemu_irq_lower(rtc_data_in_irq);
}
}
} else {
/* else end or abort */
rtc->phase = -1;
rtc->command = 0;
rtc->value = 0;
}
}
static uint64_t next_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
uint64_t val;
switch (addr) {
case 0x2000: /* 0x2007000 */
/* DPRINTF("Read INT status: %x\n", s->int_status); */
val = s->int_status;
break;
case 0x2800: /* 0x2007800 */
DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
val = s->int_mask;
break;
case 0x7000 ... 0x7003: /* 0x200c000 */
val = extract32(s->scr1, (4 - (addr - 0x7000) - size) << 3,
size << 3);
break;
case 0x8000 ... 0x8003: /* 0x200d000 */
val = extract32(s->scr2, (4 - (addr - 0x8000) - size) << 3,
size << 3);
break;
default:
val = 0;
DPRINTF("MMIO Read @ 0x%"HWADDR_PRIx" size %d\n", addr, size);
break;
}
return val;
}
static void next_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (addr) {
case 0x2000: /* 0x2007000 */
DPRINTF("INT Status old: %x new: %x\n", s->int_status,
(unsigned int)val);
s->int_status = val;
break;
case 0x2800: /* 0x2007800 */
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, (unsigned int)val);
s->int_mask = val;
break;
case 0x7000 ... 0x7003: /* 0x200c000 */
DPRINTF("SCR1 Write: %x\n", (unsigned int)val);
s->scr1 = deposit32(s->scr1, (4 - (addr - 0x7000) - size) << 3,
size << 3, val);
break;
case 0x8000 ... 0x8003: /* 0x200d000 */
s->scr2 = deposit32(s->scr2, (4 - (addr - 0x8000) - size) << 3,
size << 3, val);
next_scr2_led_update(s);
next_scr2_rtc_update(s);
s->old_scr2 = s->scr2;
break;
default:
DPRINTF("MMIO Write @ 0x%"HWADDR_PRIx " with 0x%x size %u\n", addr,
(unsigned int)val, size);
}
}
static const MemoryRegionOps next_mmio_ops = {
.read = next_mmio_read,
.write = next_mmio_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
#define SCSICSR_ENABLE 0x01
#define SCSICSR_RESET 0x02 /* reset scsi dma */
#define SCSICSR_FIFOFL 0x04
#define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */
#define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */
#define NEXTDMA_SCSI(x) (0x10 + x)
#define NEXTDMA_FD(x) (0x10 + x)
#define NEXTDMA_ENTX(x) (0x110 + x)
#define NEXTDMA_ENRX(x) (0x150 + x)
#define NEXTDMA_CSR 0x0
#define NEXTDMA_NEXT 0x4000
#define NEXTDMA_LIMIT 0x4004
#define NEXTDMA_START 0x4008
#define NEXTDMA_STOP 0x400c
#define NEXTDMA_NEXT_INIT 0x4200
#define NEXTDMA_SIZE 0x4204
static void next_dma_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_ENRX(NEXTDMA_CSR):
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
}
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
}
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
}
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
}
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_ENRX].next_initbuf = val;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_ENRX].next = val;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_ENRX].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_CSR):
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
}
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
}
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
}
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
}
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
/* DPRINTF("SCSI DMA RESET\n"); */
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_SCSI].next = val;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_SCSI].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
next_state->dma[NEXTDMA_SCSI].start = val;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
next_state->dma[NEXTDMA_SCSI].stop = val;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_SCSI].next_initbuf = val;
break;
default:
DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)val);
}
}
static uint64_t next_dma_read(void *opaque, hwaddr addr, unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
uint64_t val;
switch (addr) {
case NEXTDMA_SCSI(NEXTDMA_CSR):
DPRINTF("SCSI DMA CSR READ\n");
val = next_state->dma[NEXTDMA_SCSI].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_CSR):
val = next_state->dma[NEXTDMA_ENRX].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
val = next_state->dma[NEXTDMA_ENRX].next_initbuf;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
val = next_state->dma[NEXTDMA_ENRX].next;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
val = next_state->dma[NEXTDMA_ENRX].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
val = next_state->dma[NEXTDMA_SCSI].next;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
val = next_state->dma[NEXTDMA_SCSI].next_initbuf;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
val = next_state->dma[NEXTDMA_SCSI].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
val = next_state->dma[NEXTDMA_SCSI].start;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
val = next_state->dma[NEXTDMA_SCSI].stop;
break;
default:
DPRINTF("DMA read @ %x\n", (unsigned int)addr);
val = 0;
}
/*
* once the csr's are done, subtract 0x3FEC from the addr, and that will
* normalize the upper registers
*/
return val;
}
static const MemoryRegionOps next_dma_ops = {
.read = next_dma_read,
.write = next_dma_write,
.impl.min_access_size = 4,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_irq(void *opaque, int number, int level)
{
NeXTPC *s = NEXT_PC(opaque);
M68kCPU *cpu = s->cpu;
int shift = 0;
/* first switch sets interrupt status */
/* DPRINTF("IRQ %i\n",number); */
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
shift = 7;
break;
case NEXT_KBD_I:
shift = 3;
break;
case NEXT_PWR_I:
shift = 2;
break;
case NEXT_ENRX_I:
shift = 9;
break;
case NEXT_ENTX_I:
shift = 10;
break;
case NEXT_SCSI_I:
shift = 12;
break;
case NEXT_CLK_I:
shift = 5;
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
shift = 17;
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
shift = 28;
break;
case NEXT_ENRX_DMA_I:
shift = 27;
break;
case NEXT_SCSI_DMA_I:
shift = 26;
break;
case NEXT_SND_I:
shift = 23;
break;
case NEXT_SCC_DMA_I:
shift = 21;
break;
}
/*
* this HAS to be wrong, the interrupt handlers in mach and together
* int_status and int_mask and return if there is a hit
*/
if (s->int_mask & (1 << shift)) {
DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
/* return; */
}
/* second switch triggers the correct interrupt */
if (level) {
s->int_status |= 1 << shift;
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
case NEXT_KBD_I:
case NEXT_PWR_I:
case NEXT_ENRX_I:
case NEXT_ENTX_I:
case NEXT_SCSI_I:
case NEXT_CLK_I:
m68k_set_irq_level(cpu, 3, 27);
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
m68k_set_irq_level(cpu, 5, 29);
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
case NEXT_ENRX_DMA_I:
case NEXT_SCSI_DMA_I:
case NEXT_SND_I:
case NEXT_SCC_DMA_I:
m68k_set_irq_level(cpu, 6, 30);
break;
}
} else {
s->int_status &= ~(1 << shift);
cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
}
}
static void nextdma_write(void *opaque, uint8_t *buf, int size, int type)
{
uint32_t base_addr;
int irq = 0;
uint8_t align = 16;
NeXTState *next_state = NEXT_MACHINE(qdev_get_machine());
if (type == NEXTDMA_ENRX || type == NEXTDMA_ENTX) {
align = 32;
}
/* Most DMA is supposedly 16 byte aligned */
if ((size % align) != 0) {
size -= size % align;
size += align;
}
/*
* prom sets the dma start using initbuf while the bootloader uses next
* so we check to see if initbuf is 0
*/
if (next_state->dma[type].next_initbuf == 0) {
base_addr = next_state->dma[type].next;
} else {
base_addr = next_state->dma[type].next_initbuf;
}
cpu_physical_memory_write(base_addr, buf, size);
next_state->dma[type].next_initbuf = 0;
/* saved limit is checked to calculate packet size by both, rom and netbsd */
next_state->dma[type].saved_limit = (next_state->dma[type].next + size);
next_state->dma[type].saved_next = (next_state->dma[type].next);
/*
* 32 bytes under savedbase seems to be some kind of register
* of which the purpose is unknown as of yet
*/
/* stl_phys(s->rx_dma.base-32,0xFFFFFFFF); */
if (!(next_state->dma[type].csr & DMA_SUPDATE)) {
next_state->dma[type].next = next_state->dma[type].start;
next_state->dma[type].limit = next_state->dma[type].stop;
}
/* Set dma registers and raise an irq */
next_state->dma[type].csr |= DMA_COMPLETE; /* DON'T CHANGE THIS! */
switch (type) {
case NEXTDMA_SCSI:
irq = NEXT_SCSI_DMA_I;
break;
}
next_irq(opaque, irq, 1);
next_irq(opaque, irq, 0);
}
static void nextscsi_read(void *opaque, uint8_t *buf, int len)
{
DPRINTF("SCSI READ: %x\n", len);
abort();
}
static void nextscsi_write(void *opaque, uint8_t *buf, int size)
{
DPRINTF("SCSI WRITE: %i\n", size);
nextdma_write(opaque, buf, size, NEXTDMA_SCSI);
}
static void next_scsi_csr_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
NeXTSCSI *s = NEXT_SCSI(opaque);
NeXTPC *pc = NEXT_PC(container_of(s, NeXTPC, next_scsi));
switch (addr) {
case 0:
if (val & SCSICSR_FIFOFL) {
DPRINTF("SCSICSR FIFO Flush\n");
/* will have to add another irq to the esp if this is needed */
/* esp_puflush_fifo(esp_g); */
}
if (val & SCSICSR_ENABLE) {
DPRINTF("SCSICSR Enable\n");
/*
* qemu_irq_raise(s->scsi_dma);
* s->scsi_csr_1 = 0xc0;
* s->scsi_csr_1 |= 0x1;
* qemu_irq_pulse(s->scsi_dma);
*/
}
/*
* else
* s->scsi_csr_1 &= ~SCSICSR_ENABLE;
*/
if (val & SCSICSR_RESET) {
DPRINTF("SCSICSR Reset\n");
/* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
qemu_irq_raise(pc->scsi_reset);
s->scsi_csr_1 &= ~(SCSICSR_INTMASK | 0x80 | 0x1);
qemu_irq_lower(pc->scsi_reset);
}
if (val & SCSICSR_DMADIR) {
DPRINTF("SCSICSR DMAdir\n");
}
if (val & SCSICSR_CPUDMA) {
DPRINTF("SCSICSR CPUDMA\n");
/* qemu_irq_raise(s->scsi_dma); */
pc->int_status |= 0x4000000;
} else {
/* fprintf(stderr,"SCSICSR CPUDMA disabled\n"); */
pc->int_status &= ~(0x4000000);
/* qemu_irq_lower(s->scsi_dma); */
}
if (val & SCSICSR_INTMASK) {
DPRINTF("SCSICSR INTMASK\n");
/*
* int_mask &= ~0x1000;
* s->scsi_csr_1 |= val;
* s->scsi_csr_1 &= ~SCSICSR_INTMASK;
* if (s->scsi_queued) {
* s->scsi_queued = 0;
* next_irq(s, NEXT_SCSI_I, level);
* }
*/
} else {
/* int_mask |= 0x1000; */
}
if (val & 0x80) {
/* int_mask |= 0x1000; */
/* s->scsi_csr_1 |= 0x80; */
}
DPRINTF("SCSICSR1 Write: %"PRIx64 "\n", val);
s->scsi_csr_1 = val;
break;
case 1:
DPRINTF("SCSICSR2 Write: %"PRIx64 "\n", val);
s->scsi_csr_2 = val;
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_scsi_csr_read(void *opaque, hwaddr addr, unsigned size)
{
NeXTSCSI *s = NEXT_SCSI(opaque);
uint64_t val;
switch (addr) {
case 0:
DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
val = s->scsi_csr_1;
break;
case 1:
DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
val = s->scsi_csr_2;
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_scsi_csr_ops = {
.read = next_scsi_csr_read,
.write = next_scsi_csr_write,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_scsi_init(Object *obj)
{
NeXTSCSI *s = NEXT_SCSI(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
object_initialize_child(obj, "esp", &s->sysbus_esp, TYPE_SYSBUS_ESP);
memory_region_init_io(&s->scsi_csr_mem, obj, &next_scsi_csr_ops,
s, "csrs", 2);
memory_region_init(&s->scsi_mem, obj, "next.scsi", 0x40);
sysbus_init_mmio(sbd, &s->scsi_mem);
}
static void next_scsi_realize(DeviceState *dev, Error **errp)
{
NeXTSCSI *s = NEXT_SCSI(dev);
SysBusESPState *sysbus_esp;
SysBusDevice *sbd;
ESPState *esp;
NeXTPC *pcdev;
pcdev = NEXT_PC(container_of(s, NeXTPC, next_scsi));
/* ESP */
sysbus_esp = SYSBUS_ESP(&s->sysbus_esp);
esp = &sysbus_esp->esp;
esp->dma_memory_read = nextscsi_read;
esp->dma_memory_write = nextscsi_write;
esp->dma_opaque = pcdev;
sysbus_esp->it_shift = 0;
esp->dma_enabled = 1;
sbd = SYS_BUS_DEVICE(sysbus_esp);
if (!sysbus_realize(sbd, errp)) {
return;
}
memory_region_add_subregion(&s->scsi_mem, 0x0,
sysbus_mmio_get_region(sbd, 0));
/* SCSI CSRs */
memory_region_add_subregion(&s->scsi_mem, 0x20, &s->scsi_csr_mem);
scsi_bus_legacy_handle_cmdline(&s->sysbus_esp.esp.bus);
}
static const VMStateDescription next_scsi_vmstate = {
.name = "next-scsi",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(scsi_csr_1, NeXTSCSI),
VMSTATE_UINT8(scsi_csr_2, NeXTSCSI),
VMSTATE_END_OF_LIST()
},
};
static void next_scsi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "NeXT SCSI Controller";
dc->realize = next_scsi_realize;
dc->vmsd = &next_scsi_vmstate;
}
static const TypeInfo next_scsi_info = {
.name = TYPE_NEXT_SCSI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_scsi_init,
.instance_size = sizeof(NeXTSCSI),
.class_init = next_scsi_class_init,
};
static void next_floppy_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
switch (addr) {
case 0:
DPRINTF("FDCSR Write: %"PRIx64 "\n", val);
if (val == 0x0) {
/* qemu_irq_raise(s->fd_irq[0]); */
}
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_floppy_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0:
DPRINTF("FD read @ %x\n", (unsigned int)addr);
val = 0x40 | 0x04 | 0x2 | 0x1;
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_floppy_ops = {
.read = next_floppy_read,
.write = next_floppy_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_timer_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
switch (addr) {
case 0 ... 3:
/* Hardware timer latch - not implemented yet */
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_timer_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0 ... 3:
/*
* These 4 registers are the hardware timer, not sure which register
* is the latch instead of data, but no problems so far.
*
* Hack: We need to have the LSB change consistently to make it work
*/
val = extract32(clock(), (4 - addr - size) << 3,
size << 3);
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_timer_ops = {
.read = next_timer_read,
.write = next_timer_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_dummy_en_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
/* Do nothing */
return;
}
static uint64_t next_dummy_en_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0:
/* For now return dummy byte to allow the Ethernet test to timeout */
val = 0xff;
break;
default:
val = 0;
}
return val;
}
static const MemoryRegionOps next_dummy_en_ops = {
.read = next_dummy_en_read,
.write = next_dummy_en_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_pc_rtc_data_in_irq(void *opaque, int n, int level)
{
NeXTPC *s = NEXT_PC(opaque);
uint8_t scr2_2 = extract32(s->scr2, 8, 8);
if (level) {
scr2_2 |= SCR2_RTDATA;
} else {
scr2_2 &= ~SCR2_RTDATA;
}
s->scr2 = deposit32(s->scr2, 8, 8, scr2_2);
}
static void next_pc_reset_hold(Object *obj, ResetType type)
{
NeXTPC *s = NEXT_PC(obj);
/* Set internal registers to initial values */
/* 0x0000XX00 << vital bits */
s->scr1 = 0x00011102;
s->scr2 = 0x00ff0c80;
s->old_scr2 = s->scr2;
s->rtc.status = 0x90;
/* Load RTC RAM - TODO: provide possibility to load contents from file */
memcpy(s->rtc.ram, rtc_ram2, 32);
}
static void next_pc_realize(DeviceState *dev, Error **errp)
{
NeXTPC *s = NEXT_PC(dev);
SysBusDevice *sbd;
DeviceState *d;
/* SCSI */
sbd = SYS_BUS_DEVICE(&s->next_scsi);
if (!sysbus_realize(sbd, errp)) {
return;
}
d = DEVICE(object_resolve_path_component(OBJECT(&s->next_scsi), "esp"));
sysbus_connect_irq(SYS_BUS_DEVICE(d), 0,
qdev_get_gpio_in(DEVICE(s), NEXT_SCSI_I));
s->scsi_reset = qdev_get_gpio_in(d, 0);
s->scsi_dma = qdev_get_gpio_in(d, 1);
/* ESCC */
d = DEVICE(&s->escc);
qdev_prop_set_uint32(d, "disabled", 0);
qdev_prop_set_uint32(d, "frequency", 9600 * 384);
qdev_prop_set_uint32(d, "it_shift", 0);
qdev_prop_set_bit(d, "bit_swap", true);
qdev_prop_set_chr(d, "chrB", serial_hd(1));
qdev_prop_set_chr(d, "chrA", serial_hd(0));
qdev_prop_set_uint32(d, "chnBtype", escc_serial);
qdev_prop_set_uint32(d, "chnAtype", escc_serial);
sbd = SYS_BUS_DEVICE(d);
if (!sysbus_realize(sbd, errp)) {
return;
}
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(dev, NEXT_SCC_I));
sysbus_connect_irq(sbd, 1, qdev_get_gpio_in(dev, NEXT_SCC_DMA_I));
}
static void next_pc_init(Object *obj)
{
NeXTPC *s = NEXT_PC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
qdev_init_gpio_in(DEVICE(obj), next_irq, NEXT_NUM_IRQS);
memory_region_init_io(&s->mmiomem, OBJECT(s), &next_mmio_ops, s,
"next.mmio", 0x9000);
sysbus_init_mmio(sbd, &s->mmiomem);
memory_region_init_io(&s->dummyen_mem, OBJECT(s), &next_dummy_en_ops, s,
"next.en", 0x20);
sysbus_init_mmio(sbd, &s->dummyen_mem);
object_initialize_child(obj, "next-scsi", &s->next_scsi, TYPE_NEXT_SCSI);
sysbus_init_mmio(sbd,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->next_scsi), 0));
memory_region_init_io(&s->floppy_mem, OBJECT(s), &next_floppy_ops, s,
"next.floppy", 4);
sysbus_init_mmio(sbd, &s->floppy_mem);
object_initialize_child(obj, "escc", &s->escc, TYPE_ESCC);
sysbus_init_mmio(sbd,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->escc), 0));
memory_region_init_io(&s->timer_mem, OBJECT(s), &next_timer_ops, s,
"next.timer", 4);
sysbus_init_mmio(sbd, &s->timer_mem);
s->rtc_power_irq = qdev_get_gpio_in(DEVICE(obj), NEXT_PWR_I);
qdev_init_gpio_in_named(DEVICE(obj), next_pc_rtc_data_in_irq,
"pc-rtc-data-in", 1);
qdev_init_gpio_in_named(DEVICE(obj), next_rtc_data_in_irq,
"rtc-data-in", 1);
}
/*
* If the m68k CPU implemented its inbound irq lines as GPIO lines
* rather than via the m68k_set_irq_level() function we would not need
* this cpu link property and could instead provide outbound IRQ lines
* that the board could wire up to the CPU.
*/
static const Property next_pc_properties[] = {
DEFINE_PROP_LINK("cpu", NeXTPC, cpu, TYPE_M68K_CPU, M68kCPU *),
};
static const VMStateDescription next_rtc_vmstate = {
.name = "next-rtc",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_INT8(phase, NeXTRTC),
VMSTATE_UINT8_ARRAY(ram, NeXTRTC, 32),
VMSTATE_UINT8(command, NeXTRTC),
VMSTATE_UINT8(value, NeXTRTC),
VMSTATE_UINT8(status, NeXTRTC),
VMSTATE_UINT8(control, NeXTRTC),
VMSTATE_UINT8(retval, NeXTRTC),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription next_pc_vmstate = {
.name = "next-pc",
.version_id = 3,
.minimum_version_id = 3,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(scr1, NeXTPC),
VMSTATE_UINT32(scr2, NeXTPC),
VMSTATE_UINT32(old_scr2, NeXTPC),
VMSTATE_UINT32(int_mask, NeXTPC),
VMSTATE_UINT32(int_status, NeXTPC),
VMSTATE_UINT32(led, NeXTPC),
VMSTATE_STRUCT(rtc, NeXTPC, 0, next_rtc_vmstate, NeXTRTC),
VMSTATE_END_OF_LIST()
},
};
static void next_pc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->desc = "NeXT Peripheral Controller";
dc->realize = next_pc_realize;
device_class_set_props(dc, next_pc_properties);
dc->vmsd = &next_pc_vmstate;
rc->phases.hold = next_pc_reset_hold;
}
static const TypeInfo next_pc_info = {
.name = TYPE_NEXT_PC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_pc_init,
.instance_size = sizeof(NeXTPC),
.class_init = next_pc_class_init,
};
static void next_cube_init(MachineState *machine)
{
NeXTState *m = NEXT_MACHINE(machine);
M68kCPU *cpu;
CPUM68KState *env;
MemoryRegion *sysmem = get_system_memory();
const char *bios_name = machine->firmware ?: ROM_FILE;
DeviceState *pcdev;
/* Initialize the cpu core */
cpu = M68K_CPU(cpu_create(machine->cpu_type));
if (!cpu) {
error_report("Unable to find m68k CPU definition");
exit(1);
}
env = &cpu->env;
/* Initialize CPU registers. */
env->vbr = 0;
env->sr = 0x2700;
/* Peripheral Controller */
pcdev = qdev_new(TYPE_NEXT_PC);
object_property_set_link(OBJECT(pcdev), "cpu", OBJECT(cpu), &error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(pcdev), &error_fatal);
/* 64MB RAM starting at 0x04000000 */
memory_region_add_subregion(sysmem, 0x04000000, machine->ram);
/* Framebuffer */
sysbus_create_simple(TYPE_NEXTFB, 0x0B000000, NULL);
/* MMIO */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 0, 0x02005000);
/* BMAP IO - acts as a catch-all for now */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02100000);
/* en network (dummy) */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02106000);
/* unknown: Brightness control register? */
empty_slot_init("next.unknown.0", 0x02110000, 0x10);
/* unknown: Magneto-Optical drive controller? */
empty_slot_init("next.unknown.1", 0x02112000, 0x10);
/* SCSI */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 2, 0x02114000);
/* Floppy */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 3, 0x02114108);
/* ESCC */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 4, 0x02118000);
/* unknown: Serial clock configuration register? */
empty_slot_init("next.unknown.2", 0x02118004, 0x10);
/* Timer */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 5, 0x0211a000);
/* BMAP memory */
memory_region_init_ram_flags_nomigrate(&m->bmapm1, NULL, "next.bmapmem",
64, RAM_SHARED, &error_fatal);
memory_region_add_subregion(sysmem, 0x020c0000, &m->bmapm1);
/* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
memory_region_init_alias(&m->bmapm2, NULL, "next.bmapmem2", &m->bmapm1,
0x0, 64);
memory_region_add_subregion(sysmem, 0x820c0000, &m->bmapm2);
/* KBD */
sysbus_create_simple(TYPE_NEXTKBD, 0x0200e000, NULL);
/* Load ROM here */
memory_region_init_rom(&m->rom, NULL, "next.rom", 0x20000, &error_fatal);
memory_region_add_subregion(sysmem, 0x01000000, &m->rom);
memory_region_init_alias(&m->rom2, NULL, "next.rom2", &m->rom, 0x0,
0x20000);
memory_region_add_subregion(sysmem, 0x0, &m->rom2);
if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
if (!qtest_enabled()) {
error_report("Failed to load firmware '%s'.", bios_name);
}
} else {
uint8_t *ptr;
/* Initial PC is always at offset 4 in firmware binaries */
ptr = rom_ptr(0x01000004, 4);
g_assert(ptr != NULL);
env->pc = ldl_be_p(ptr);
if (env->pc >= 0x01020000) {
error_report("'%s' does not seem to be a valid firmware image.",
bios_name);
exit(1);
}
}
/* DMA */
memory_region_init_io(&m->dmamem, NULL, &next_dma_ops, machine,
"next.dma", 0x5000);
memory_region_add_subregion(sysmem, 0x02000000, &m->dmamem);
}
static void next_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "NeXT Cube";
mc->init = next_cube_init;
mc->block_default_type = IF_SCSI;
mc->default_ram_size = RAM_SIZE;
mc->default_ram_id = "next.ram";
mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
mc->no_cdrom = true;
}
static const TypeInfo next_typeinfo = {
.name = TYPE_NEXT_MACHINE,
.parent = TYPE_MACHINE,
.class_init = next_machine_class_init,
.instance_size = sizeof(NeXTState),
};
static void next_register_type(void)
{
type_register_static(&next_typeinfo);
type_register_static(&next_pc_info);
type_register_static(&next_scsi_info);
}
type_init(next_register_type)