| /* |
| * ARM AdvSIMD / SVE Vector Helpers |
| * |
| * Copyright (c) 2020 Linaro |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #ifndef TARGET_ARM_VEC_INTERNAL_H |
| #define TARGET_ARM_VEC_INTERNAL_H |
| |
| /* |
| * Note that vector data is stored in host-endian 64-bit chunks, |
| * so addressing units smaller than that needs a host-endian fixup. |
| * |
| * The H<N> macros are used when indexing an array of elements of size N. |
| * |
| * The H1_<N> macros are used when performing byte arithmetic and then |
| * casting the final pointer to a type of size N. |
| */ |
| #if HOST_BIG_ENDIAN |
| #define H1(x) ((x) ^ 7) |
| #define H1_2(x) ((x) ^ 6) |
| #define H1_4(x) ((x) ^ 4) |
| #define H2(x) ((x) ^ 3) |
| #define H4(x) ((x) ^ 1) |
| #else |
| #define H1(x) (x) |
| #define H1_2(x) (x) |
| #define H1_4(x) (x) |
| #define H2(x) (x) |
| #define H4(x) (x) |
| #endif |
| /* |
| * Access to 64-bit elements isn't host-endian dependent; we provide H8 |
| * and H1_8 so that when a function is being generated from a macro we |
| * can pass these rather than an empty macro argument, for clarity. |
| */ |
| #define H8(x) (x) |
| #define H1_8(x) (x) |
| |
| /* |
| * Expand active predicate bits to bytes, for byte elements. |
| */ |
| extern const uint64_t expand_pred_b_data[256]; |
| static inline uint64_t expand_pred_b(uint8_t byte) |
| { |
| return expand_pred_b_data[byte]; |
| } |
| |
| /* Similarly for half-word elements. */ |
| extern const uint64_t expand_pred_h_data[0x55 + 1]; |
| static inline uint64_t expand_pred_h(uint8_t byte) |
| { |
| return expand_pred_h_data[byte & 0x55]; |
| } |
| |
| static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz) |
| { |
| uint64_t *d = vd + opr_sz; |
| uintptr_t i; |
| |
| for (i = opr_sz; i < max_sz; i += 8) { |
| *d++ = 0; |
| } |
| } |
| |
| static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits, |
| bool round, uint32_t *sat) |
| { |
| if (shift <= -bits) { |
| /* Rounding the sign bit always produces 0. */ |
| if (round) { |
| return 0; |
| } |
| return src >> 31; |
| } else if (shift < 0) { |
| if (round) { |
| src >>= -shift - 1; |
| return (src >> 1) + (src & 1); |
| } |
| return src >> -shift; |
| } else if (shift < bits) { |
| int32_t val = src << shift; |
| if (bits == 32) { |
| if (!sat || val >> shift == src) { |
| return val; |
| } |
| } else { |
| int32_t extval = sextract32(val, 0, bits); |
| if (!sat || val == extval) { |
| return extval; |
| } |
| } |
| } else if (!sat || src == 0) { |
| return 0; |
| } |
| |
| *sat = 1; |
| return (1u << (bits - 1)) - (src >= 0); |
| } |
| |
| static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits, |
| bool round, uint32_t *sat) |
| { |
| if (shift <= -(bits + round)) { |
| return 0; |
| } else if (shift < 0) { |
| if (round) { |
| src >>= -shift - 1; |
| return (src >> 1) + (src & 1); |
| } |
| return src >> -shift; |
| } else if (shift < bits) { |
| uint32_t val = src << shift; |
| if (bits == 32) { |
| if (!sat || val >> shift == src) { |
| return val; |
| } |
| } else { |
| uint32_t extval = extract32(val, 0, bits); |
| if (!sat || val == extval) { |
| return extval; |
| } |
| } |
| } else if (!sat || src == 0) { |
| return 0; |
| } |
| |
| *sat = 1; |
| return MAKE_64BIT_MASK(0, bits); |
| } |
| |
| static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits, |
| bool round, uint32_t *sat) |
| { |
| if (sat && src < 0) { |
| *sat = 1; |
| return 0; |
| } |
| return do_uqrshl_bhs(src, shift, bits, round, sat); |
| } |
| |
| static inline int64_t do_sqrshl_d(int64_t src, int64_t shift, |
| bool round, uint32_t *sat) |
| { |
| if (shift <= -64) { |
| /* Rounding the sign bit always produces 0. */ |
| if (round) { |
| return 0; |
| } |
| return src >> 63; |
| } else if (shift < 0) { |
| if (round) { |
| src >>= -shift - 1; |
| return (src >> 1) + (src & 1); |
| } |
| return src >> -shift; |
| } else if (shift < 64) { |
| int64_t val = src << shift; |
| if (!sat || val >> shift == src) { |
| return val; |
| } |
| } else if (!sat || src == 0) { |
| return 0; |
| } |
| |
| *sat = 1; |
| return src < 0 ? INT64_MIN : INT64_MAX; |
| } |
| |
| static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift, |
| bool round, uint32_t *sat) |
| { |
| if (shift <= -(64 + round)) { |
| return 0; |
| } else if (shift < 0) { |
| if (round) { |
| src >>= -shift - 1; |
| return (src >> 1) + (src & 1); |
| } |
| return src >> -shift; |
| } else if (shift < 64) { |
| uint64_t val = src << shift; |
| if (!sat || val >> shift == src) { |
| return val; |
| } |
| } else if (!sat || src == 0) { |
| return 0; |
| } |
| |
| *sat = 1; |
| return UINT64_MAX; |
| } |
| |
| static inline int64_t do_suqrshl_d(int64_t src, int64_t shift, |
| bool round, uint32_t *sat) |
| { |
| if (sat && src < 0) { |
| *sat = 1; |
| return 0; |
| } |
| return do_uqrshl_d(src, shift, round, sat); |
| } |
| |
| int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool); |
| int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *); |
| int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *); |
| int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool); |
| |
| /** |
| * bfdotadd: |
| * @sum: addend |
| * @e1, @e2: multiplicand vectors |
| * @fpst: floating-point status to use |
| * |
| * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum. |
| * The @e1 and @e2 operands correspond to the 32-bit source vector |
| * slots and contain two Bfloat16 values each. |
| * |
| * Corresponds to the ARM pseudocode function BFDotAdd, specialized |
| * for the FPCR.EBF == 0 case. |
| */ |
| float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst); |
| /** |
| * bfdotadd_ebf: |
| * @sum: addend |
| * @e1, @e2: multiplicand vectors |
| * @fpst: floating-point status to use |
| * @fpst_odd: floating-point status to use for round-to-odd operations |
| * |
| * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum. |
| * The @e1 and @e2 operands correspond to the 32-bit source vector |
| * slots and contain two Bfloat16 values each. |
| * |
| * Corresponds to the ARM pseudocode function BFDotAdd, specialized |
| * for the FPCR.EBF == 1 case. |
| */ |
| float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2, |
| float_status *fpst, float_status *fpst_odd); |
| |
| /** |
| * is_ebf: |
| * @env: CPU state |
| * @statusp: pointer to floating point status to fill in |
| * @oddstatusp: pointer to floating point status to fill in for round-to-odd |
| * |
| * Determine whether a BFDotAdd operation should use FPCR.EBF = 0 |
| * or FPCR.EBF = 1 semantics. On return, has initialized *statusp |
| * and *oddstatusp to suitable float_status arguments to use with either |
| * bfdotadd() or bfdotadd_ebf(). |
| * Returns true for EBF = 1, false for EBF = 0. (The caller should use this |
| * to decide whether to call bfdotadd() or bfdotadd_ebf().) |
| */ |
| bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp); |
| |
| #endif /* TARGET_ARM_VEC_INTERNAL_H */ |