| /* |
| * M-profile MVE Operations |
| * |
| * Copyright (c) 2021 Linaro, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "vec_internal.h" |
| #include "exec/helper-proto.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| #include "fpu/softfloat.h" |
| #include "crypto/clmul.h" |
| |
| static uint16_t mve_eci_mask(CPUARMState *env) |
| { |
| /* |
| * Return the mask of which elements in the MVE vector correspond |
| * to beats being executed. The mask has 1 bits for executed lanes |
| * and 0 bits where ECI says this beat was already executed. |
| */ |
| int eci; |
| |
| if ((env->condexec_bits & 0xf) != 0) { |
| return 0xffff; |
| } |
| |
| eci = env->condexec_bits >> 4; |
| switch (eci) { |
| case ECI_NONE: |
| return 0xffff; |
| case ECI_A0: |
| return 0xfff0; |
| case ECI_A0A1: |
| return 0xff00; |
| case ECI_A0A1A2: |
| case ECI_A0A1A2B0: |
| return 0xf000; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static uint16_t mve_element_mask(CPUARMState *env) |
| { |
| /* |
| * Return the mask of which elements in the MVE vector should be |
| * updated. This is a combination of multiple things: |
| * (1) by default, we update every lane in the vector |
| * (2) VPT predication stores its state in the VPR register; |
| * (3) low-overhead-branch tail predication will mask out part |
| * the vector on the final iteration of the loop |
| * (4) if EPSR.ECI is set then we must execute only some beats |
| * of the insn |
| * We combine all these into a 16-bit result with the same semantics |
| * as VPR.P0: 0 to mask the lane, 1 if it is active. |
| * 8-bit vector ops will look at all bits of the result; |
| * 16-bit ops will look at bits 0, 2, 4, ...; |
| * 32-bit ops will look at bits 0, 4, 8 and 12. |
| * Compare pseudocode GetCurInstrBeat(), though that only returns |
| * the 4-bit slice of the mask corresponding to a single beat. |
| */ |
| uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0); |
| |
| if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) { |
| mask |= 0xff; |
| } |
| if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) { |
| mask |= 0xff00; |
| } |
| |
| if (env->v7m.ltpsize < 4 && |
| env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) { |
| /* |
| * Tail predication active, and this is the last loop iteration. |
| * The element size is (1 << ltpsize), and we only want to process |
| * loopcount elements, so we want to retain the least significant |
| * (loopcount * esize) predicate bits and zero out bits above that. |
| */ |
| int masklen = env->regs[14] << env->v7m.ltpsize; |
| assert(masklen <= 16); |
| uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0; |
| mask &= ltpmask; |
| } |
| |
| /* |
| * ECI bits indicate which beats are already executed; |
| * we handle this by effectively predicating them out. |
| */ |
| mask &= mve_eci_mask(env); |
| return mask; |
| } |
| |
| static void mve_advance_vpt(CPUARMState *env) |
| { |
| /* Advance the VPT and ECI state if necessary */ |
| uint32_t vpr = env->v7m.vpr; |
| unsigned mask01, mask23; |
| uint16_t inv_mask; |
| uint16_t eci_mask = mve_eci_mask(env); |
| |
| if ((env->condexec_bits & 0xf) == 0) { |
| env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ? |
| (ECI_A0 << 4) : (ECI_NONE << 4); |
| } |
| |
| if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) { |
| /* VPT not enabled, nothing to do */ |
| return; |
| } |
| |
| /* Invert P0 bits if needed, but only for beats we actually executed */ |
| mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01); |
| mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23); |
| /* Start by assuming we invert all bits corresponding to executed beats */ |
| inv_mask = eci_mask; |
| if (mask01 <= 8) { |
| /* MASK01 says don't invert low half of P0 */ |
| inv_mask &= ~0xff; |
| } |
| if (mask23 <= 8) { |
| /* MASK23 says don't invert high half of P0 */ |
| inv_mask &= ~0xff00; |
| } |
| vpr ^= inv_mask; |
| /* Only update MASK01 if beat 1 executed */ |
| if (eci_mask & 0xf0) { |
| vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1); |
| } |
| /* Beat 3 always executes, so update MASK23 */ |
| vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1); |
| env->v7m.vpr = vpr; |
| } |
| |
| /* For loads, predicated lanes are zeroed instead of keeping their old values */ |
| #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ |
| { \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| unsigned b, e; \ |
| /* \ |
| * R_SXTM allows the dest reg to become UNKNOWN for abandoned \ |
| * beats so we don't care if we update part of the dest and \ |
| * then take an exception. \ |
| */ \ |
| for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ |
| if (eci_mask & (1 << b)) { \ |
| d[H##ESIZE(e)] = (mask & (1 << b)) ? \ |
| cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \ |
| } \ |
| addr += MSIZE; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ |
| { \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned b, e; \ |
| for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ |
| if (mask & (1 << b)) { \ |
| cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \ |
| } \ |
| addr += MSIZE; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VLDR(vldrb, 1, ldub, 1, uint8_t) |
| DO_VLDR(vldrh, 2, lduw, 2, uint16_t) |
| DO_VLDR(vldrw, 4, ldl, 4, uint32_t) |
| |
| DO_VSTR(vstrb, 1, stb, 1, uint8_t) |
| DO_VSTR(vstrh, 2, stw, 2, uint16_t) |
| DO_VSTR(vstrw, 4, stl, 4, uint32_t) |
| |
| DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t) |
| DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t) |
| DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t) |
| DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t) |
| DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t) |
| DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t) |
| |
| DO_VSTR(vstrb_h, 1, stb, 2, int16_t) |
| DO_VSTR(vstrb_w, 1, stb, 4, int32_t) |
| DO_VSTR(vstrh_w, 2, stw, 4, int32_t) |
| |
| #undef DO_VLDR |
| #undef DO_VSTR |
| |
| /* |
| * Gather loads/scatter stores. Here each element of Qm specifies |
| * an offset to use from the base register Rm. In the _os_ versions |
| * that offset is scaled by the element size. |
| * For loads, predicated lanes are zeroed instead of retaining |
| * their previous values. |
| */ |
| #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ |
| uint32_t base) \ |
| { \ |
| TYPE *d = vd; \ |
| OFFTYPE *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| unsigned e; \ |
| uint32_t addr; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \ |
| if (!(eci_mask & 1)) { \ |
| continue; \ |
| } \ |
| addr = ADDRFN(base, m[H##ESIZE(e)]); \ |
| d[H##ESIZE(e)] = (mask & 1) ? \ |
| cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \ |
| if (WB) { \ |
| m[H##ESIZE(e)] = addr; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* We know here TYPE is unsigned so always the same as the offset type */ |
| #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ |
| uint32_t base) \ |
| { \ |
| TYPE *d = vd; \ |
| TYPE *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| unsigned e; \ |
| uint32_t addr; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \ |
| if (!(eci_mask & 1)) { \ |
| continue; \ |
| } \ |
| addr = ADDRFN(base, m[H##ESIZE(e)]); \ |
| if (mask & 1) { \ |
| cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \ |
| } \ |
| if (WB) { \ |
| m[H##ESIZE(e)] = addr; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* |
| * 64-bit accesses are slightly different: they are done as two 32-bit |
| * accesses, controlled by the predicate mask for the relevant beat, |
| * and with a single 32-bit offset in the first of the two Qm elements. |
| * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little). |
| * Address writeback happens on the odd beats and updates the address |
| * stored in the even-beat element. |
| */ |
| #define DO_VLDR64_SG(OP, ADDRFN, WB) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ |
| uint32_t base) \ |
| { \ |
| uint32_t *d = vd; \ |
| uint32_t *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| unsigned e; \ |
| uint32_t addr; \ |
| for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \ |
| if (!(eci_mask & 1)) { \ |
| continue; \ |
| } \ |
| addr = ADDRFN(base, m[H4(e & ~1)]); \ |
| addr += 4 * (e & 1); \ |
| d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \ |
| if (WB && (e & 1)) { \ |
| m[H4(e & ~1)] = addr - 4; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VSTR64_SG(OP, ADDRFN, WB) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \ |
| uint32_t base) \ |
| { \ |
| uint32_t *d = vd; \ |
| uint32_t *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| unsigned e; \ |
| uint32_t addr; \ |
| for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \ |
| if (!(eci_mask & 1)) { \ |
| continue; \ |
| } \ |
| addr = ADDRFN(base, m[H4(e & ~1)]); \ |
| addr += 4 * (e & 1); \ |
| if (mask & 1) { \ |
| cpu_stl_data_ra(env, addr, d[H4(e)], GETPC()); \ |
| } \ |
| if (WB && (e & 1)) { \ |
| m[H4(e & ~1)] = addr - 4; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET)) |
| #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1)) |
| #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2)) |
| #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3)) |
| |
| DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false) |
| DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false) |
| DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false) |
| |
| DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false) |
| DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false) |
| DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false) |
| DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false) |
| DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false) |
| DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false) |
| DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false) |
| |
| DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false) |
| DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false) |
| DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false) |
| DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false) |
| DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false) |
| |
| DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false) |
| DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false) |
| DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false) |
| DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false) |
| DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false) |
| DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false) |
| DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false) |
| |
| DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false) |
| DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false) |
| DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false) |
| DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false) |
| |
| DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true) |
| DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true) |
| DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true) |
| DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true) |
| |
| /* |
| * Deinterleaving loads/interleaving stores. |
| * |
| * For these helpers we are passed the index of the first Qreg |
| * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3) |
| * and the value of the base address register Rn. |
| * The helpers are specialized for pattern and element size, so |
| * for instance vld42h is VLD4 with pattern 2, element size MO_16. |
| * |
| * These insns are beatwise but not predicated, so we must honour ECI, |
| * but need not look at mve_element_mask(). |
| * |
| * The pseudocode implements these insns with multiple memory accesses |
| * of the element size, but rules R_VVVG and R_FXDM permit us to make |
| * one 32-bit memory access per beat. |
| */ |
| #define DO_VLD4B(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat, e; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 4; \ |
| data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ |
| for (e = 0; e < 4; e++, data >>= 8) { \ |
| uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \ |
| qd[H1(off[beat])] = data; \ |
| } \ |
| } \ |
| } |
| |
| #define DO_VLD4H(OP, O1, O2) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O1, O2, O2 }; \ |
| uint32_t addr, data; \ |
| int y; /* y counts 0 2 0 2 */ \ |
| uint16_t *qd; \ |
| for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 8 + (beat & 1) * 4; \ |
| data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ |
| qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \ |
| qd[H2(off[beat])] = data; \ |
| data >>= 16; \ |
| qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \ |
| qd[H2(off[beat])] = data; \ |
| } \ |
| } |
| |
| #define DO_VLD4W(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| uint32_t *qd; \ |
| int y; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 4; \ |
| data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ |
| y = (beat + (O1 & 2)) & 3; \ |
| qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \ |
| qd[H4(off[beat] >> 2)] = data; \ |
| } \ |
| } |
| |
| DO_VLD4B(vld40b, 0, 1, 10, 11) |
| DO_VLD4B(vld41b, 2, 3, 12, 13) |
| DO_VLD4B(vld42b, 4, 5, 14, 15) |
| DO_VLD4B(vld43b, 6, 7, 8, 9) |
| |
| DO_VLD4H(vld40h, 0, 5) |
| DO_VLD4H(vld41h, 1, 6) |
| DO_VLD4H(vld42h, 2, 7) |
| DO_VLD4H(vld43h, 3, 4) |
| |
| DO_VLD4W(vld40w, 0, 1, 10, 11) |
| DO_VLD4W(vld41w, 2, 3, 12, 13) |
| DO_VLD4W(vld42w, 4, 5, 14, 15) |
| DO_VLD4W(vld43w, 6, 7, 8, 9) |
| |
| #define DO_VLD2B(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat, e; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| uint8_t *qd; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 2; \ |
| data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ |
| for (e = 0; e < 4; e++, data >>= 8) { \ |
| qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \ |
| qd[H1(off[beat] + (e >> 1))] = data; \ |
| } \ |
| } \ |
| } |
| |
| #define DO_VLD2H(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| int e; \ |
| uint16_t *qd; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 4; \ |
| data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ |
| for (e = 0; e < 2; e++, data >>= 16) { \ |
| qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \ |
| qd[H2(off[beat])] = data; \ |
| } \ |
| } \ |
| } |
| |
| #define DO_VLD2W(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| uint32_t *qd; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat]; \ |
| data = cpu_ldl_le_data_ra(env, addr, GETPC()); \ |
| qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \ |
| qd[H4(off[beat] >> 3)] = data; \ |
| } \ |
| } |
| |
| DO_VLD2B(vld20b, 0, 2, 12, 14) |
| DO_VLD2B(vld21b, 4, 6, 8, 10) |
| |
| DO_VLD2H(vld20h, 0, 1, 6, 7) |
| DO_VLD2H(vld21h, 2, 3, 4, 5) |
| |
| DO_VLD2W(vld20w, 0, 4, 24, 28) |
| DO_VLD2W(vld21w, 8, 12, 16, 20) |
| |
| #define DO_VST4B(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat, e; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 4; \ |
| data = 0; \ |
| for (e = 3; e >= 0; e--) { \ |
| uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \ |
| data = (data << 8) | qd[H1(off[beat])]; \ |
| } \ |
| cpu_stl_le_data_ra(env, addr, data, GETPC()); \ |
| } \ |
| } |
| |
| #define DO_VST4H(OP, O1, O2) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O1, O2, O2 }; \ |
| uint32_t addr, data; \ |
| int y; /* y counts 0 2 0 2 */ \ |
| uint16_t *qd; \ |
| for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 8 + (beat & 1) * 4; \ |
| qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \ |
| data = qd[H2(off[beat])]; \ |
| qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \ |
| data |= qd[H2(off[beat])] << 16; \ |
| cpu_stl_le_data_ra(env, addr, data, GETPC()); \ |
| } \ |
| } |
| |
| #define DO_VST4W(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| uint32_t *qd; \ |
| int y; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 4; \ |
| y = (beat + (O1 & 2)) & 3; \ |
| qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \ |
| data = qd[H4(off[beat] >> 2)]; \ |
| cpu_stl_le_data_ra(env, addr, data, GETPC()); \ |
| } \ |
| } |
| |
| DO_VST4B(vst40b, 0, 1, 10, 11) |
| DO_VST4B(vst41b, 2, 3, 12, 13) |
| DO_VST4B(vst42b, 4, 5, 14, 15) |
| DO_VST4B(vst43b, 6, 7, 8, 9) |
| |
| DO_VST4H(vst40h, 0, 5) |
| DO_VST4H(vst41h, 1, 6) |
| DO_VST4H(vst42h, 2, 7) |
| DO_VST4H(vst43h, 3, 4) |
| |
| DO_VST4W(vst40w, 0, 1, 10, 11) |
| DO_VST4W(vst41w, 2, 3, 12, 13) |
| DO_VST4W(vst42w, 4, 5, 14, 15) |
| DO_VST4W(vst43w, 6, 7, 8, 9) |
| |
| #define DO_VST2B(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat, e; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| uint8_t *qd; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 2; \ |
| data = 0; \ |
| for (e = 3; e >= 0; e--) { \ |
| qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \ |
| data = (data << 8) | qd[H1(off[beat] + (e >> 1))]; \ |
| } \ |
| cpu_stl_le_data_ra(env, addr, data, GETPC()); \ |
| } \ |
| } |
| |
| #define DO_VST2H(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| int e; \ |
| uint16_t *qd; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat] * 4; \ |
| data = 0; \ |
| for (e = 1; e >= 0; e--) { \ |
| qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \ |
| data = (data << 16) | qd[H2(off[beat])]; \ |
| } \ |
| cpu_stl_le_data_ra(env, addr, data, GETPC()); \ |
| } \ |
| } |
| |
| #define DO_VST2W(OP, O1, O2, O3, O4) \ |
| void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \ |
| uint32_t base) \ |
| { \ |
| int beat; \ |
| uint16_t mask = mve_eci_mask(env); \ |
| static const uint8_t off[4] = { O1, O2, O3, O4 }; \ |
| uint32_t addr, data; \ |
| uint32_t *qd; \ |
| for (beat = 0; beat < 4; beat++, mask >>= 4) { \ |
| if ((mask & 1) == 0) { \ |
| /* ECI says skip this beat */ \ |
| continue; \ |
| } \ |
| addr = base + off[beat]; \ |
| qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \ |
| data = qd[H4(off[beat] >> 3)]; \ |
| cpu_stl_le_data_ra(env, addr, data, GETPC()); \ |
| } \ |
| } |
| |
| DO_VST2B(vst20b, 0, 2, 12, 14) |
| DO_VST2B(vst21b, 4, 6, 8, 10) |
| |
| DO_VST2H(vst20h, 0, 1, 6, 7) |
| DO_VST2H(vst21h, 2, 3, 4, 5) |
| |
| DO_VST2W(vst20w, 0, 4, 24, 28) |
| DO_VST2W(vst21w, 8, 12, 16, 20) |
| |
| /* |
| * The mergemask(D, R, M) macro performs the operation "*D = R" but |
| * storing only the bytes which correspond to 1 bits in M, |
| * leaving other bytes in *D unchanged. We use _Generic |
| * to select the correct implementation based on the type of D. |
| */ |
| |
| static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask) |
| { |
| if (mask & 1) { |
| *d = r; |
| } |
| } |
| |
| static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask) |
| { |
| mergemask_ub((uint8_t *)d, r, mask); |
| } |
| |
| static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask) |
| { |
| uint16_t bmask = expand_pred_b(mask); |
| *d = (*d & ~bmask) | (r & bmask); |
| } |
| |
| static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask) |
| { |
| mergemask_uh((uint16_t *)d, r, mask); |
| } |
| |
| static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask) |
| { |
| uint32_t bmask = expand_pred_b(mask); |
| *d = (*d & ~bmask) | (r & bmask); |
| } |
| |
| static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask) |
| { |
| mergemask_uw((uint32_t *)d, r, mask); |
| } |
| |
| static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask) |
| { |
| uint64_t bmask = expand_pred_b(mask); |
| *d = (*d & ~bmask) | (r & bmask); |
| } |
| |
| static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask) |
| { |
| mergemask_uq((uint64_t *)d, r, mask); |
| } |
| |
| #define mergemask(D, R, M) \ |
| _Generic(D, \ |
| uint8_t *: mergemask_ub, \ |
| int8_t *: mergemask_sb, \ |
| uint16_t *: mergemask_uh, \ |
| int16_t *: mergemask_sh, \ |
| uint32_t *: mergemask_uw, \ |
| int32_t *: mergemask_sw, \ |
| uint64_t *: mergemask_uq, \ |
| int64_t *: mergemask_sq)(D, R, M) |
| |
| void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val) |
| { |
| /* |
| * The generated code already replicated an 8 or 16 bit constant |
| * into the 32-bit value, so we only need to write the 32-bit |
| * value to all elements of the Qreg, allowing for predication. |
| */ |
| uint32_t *d = vd; |
| uint16_t mask = mve_element_mask(env); |
| unsigned e; |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { |
| mergemask(&d[H4(e)], val, mask); |
| } |
| mve_advance_vpt(env); |
| } |
| |
| #define DO_1OP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_CLS_B(N) (clrsb32(N) - 24) |
| #define DO_CLS_H(N) (clrsb32(N) - 16) |
| |
| DO_1OP(vclsb, 1, int8_t, DO_CLS_B) |
| DO_1OP(vclsh, 2, int16_t, DO_CLS_H) |
| DO_1OP(vclsw, 4, int32_t, clrsb32) |
| |
| #define DO_CLZ_B(N) (clz32(N) - 24) |
| #define DO_CLZ_H(N) (clz32(N) - 16) |
| |
| DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B) |
| DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H) |
| DO_1OP(vclzw, 4, uint32_t, clz32) |
| |
| DO_1OP(vrev16b, 2, uint16_t, bswap16) |
| DO_1OP(vrev32b, 4, uint32_t, bswap32) |
| DO_1OP(vrev32h, 4, uint32_t, hswap32) |
| DO_1OP(vrev64b, 8, uint64_t, bswap64) |
| DO_1OP(vrev64h, 8, uint64_t, hswap64) |
| DO_1OP(vrev64w, 8, uint64_t, wswap64) |
| |
| #define DO_NOT(N) (~(N)) |
| |
| DO_1OP(vmvn, 8, uint64_t, DO_NOT) |
| |
| #define DO_ABS(N) ((N) < 0 ? -(N) : (N)) |
| #define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff)) |
| #define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff)) |
| |
| DO_1OP(vabsb, 1, int8_t, DO_ABS) |
| DO_1OP(vabsh, 2, int16_t, DO_ABS) |
| DO_1OP(vabsw, 4, int32_t, DO_ABS) |
| |
| /* We can do these 64 bits at a time */ |
| DO_1OP(vfabsh, 8, uint64_t, DO_FABSH) |
| DO_1OP(vfabss, 8, uint64_t, DO_FABSS) |
| |
| #define DO_NEG(N) (-(N)) |
| #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000)) |
| #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000)) |
| |
| DO_1OP(vnegb, 1, int8_t, DO_NEG) |
| DO_1OP(vnegh, 2, int16_t, DO_NEG) |
| DO_1OP(vnegw, 4, int32_t, DO_NEG) |
| |
| /* We can do these 64 bits at a time */ |
| DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH) |
| DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS) |
| |
| /* |
| * 1 operand immediates: Vda is destination and possibly also one source. |
| * All these insns work at 64-bit widths. |
| */ |
| #define DO_1OP_IMM(OP, FN) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm) \ |
| { \ |
| uint64_t *da = vda; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / 8; e++, mask >>= 8) { \ |
| mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_MOVI(N, I) (I) |
| #define DO_ANDI(N, I) ((N) & (I)) |
| #define DO_ORRI(N, I) ((N) | (I)) |
| |
| DO_1OP_IMM(vmovi, DO_MOVI) |
| DO_1OP_IMM(vandi, DO_ANDI) |
| DO_1OP_IMM(vorri, DO_ORRI) |
| |
| #define DO_2OP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], \ |
| FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* provide unsigned 2-op helpers for all sizes */ |
| #define DO_2OP_U(OP, FN) \ |
| DO_2OP(OP##b, 1, uint8_t, FN) \ |
| DO_2OP(OP##h, 2, uint16_t, FN) \ |
| DO_2OP(OP##w, 4, uint32_t, FN) |
| |
| /* provide signed 2-op helpers for all sizes */ |
| #define DO_2OP_S(OP, FN) \ |
| DO_2OP(OP##b, 1, int8_t, FN) \ |
| DO_2OP(OP##h, 2, int16_t, FN) \ |
| DO_2OP(OP##w, 4, int32_t, FN) |
| |
| /* |
| * "Long" operations where two half-sized inputs (taken from either the |
| * top or the bottom of the input vector) produce a double-width result. |
| * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output. |
| */ |
| #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ |
| { \ |
| LTYPE *d = vd; \ |
| TYPE *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \ |
| m[H##ESIZE(le * 2 + TOP)]); \ |
| mergemask(&d[H##LESIZE(le)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \ |
| mergemask(&d[H##ESIZE(e)], r_, mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* provide unsigned 2-op helpers for all sizes */ |
| #define DO_2OP_SAT_U(OP, FN) \ |
| DO_2OP_SAT(OP##b, 1, uint8_t, FN) \ |
| DO_2OP_SAT(OP##h, 2, uint16_t, FN) \ |
| DO_2OP_SAT(OP##w, 4, uint32_t, FN) |
| |
| /* provide signed 2-op helpers for all sizes */ |
| #define DO_2OP_SAT_S(OP, FN) \ |
| DO_2OP_SAT(OP##b, 1, int8_t, FN) \ |
| DO_2OP_SAT(OP##h, 2, int16_t, FN) \ |
| DO_2OP_SAT(OP##w, 4, int32_t, FN) |
| |
| #define DO_AND(N, M) ((N) & (M)) |
| #define DO_BIC(N, M) ((N) & ~(M)) |
| #define DO_ORR(N, M) ((N) | (M)) |
| #define DO_ORN(N, M) ((N) | ~(M)) |
| #define DO_EOR(N, M) ((N) ^ (M)) |
| |
| DO_2OP(vand, 8, uint64_t, DO_AND) |
| DO_2OP(vbic, 8, uint64_t, DO_BIC) |
| DO_2OP(vorr, 8, uint64_t, DO_ORR) |
| DO_2OP(vorn, 8, uint64_t, DO_ORN) |
| DO_2OP(veor, 8, uint64_t, DO_EOR) |
| |
| #define DO_ADD(N, M) ((N) + (M)) |
| #define DO_SUB(N, M) ((N) - (M)) |
| #define DO_MUL(N, M) ((N) * (M)) |
| |
| DO_2OP_U(vadd, DO_ADD) |
| DO_2OP_U(vsub, DO_SUB) |
| DO_2OP_U(vmul, DO_MUL) |
| |
| DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL) |
| DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL) |
| DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL) |
| DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL) |
| DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL) |
| DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL) |
| |
| DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL) |
| DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL) |
| DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL) |
| DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL) |
| DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL) |
| DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL) |
| |
| /* |
| * Polynomial multiply. We can always do this generating 64 bits |
| * of the result at a time, so we don't need to use DO_2OP_L. |
| */ |
| DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even) |
| DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd) |
| DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even) |
| DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd) |
| |
| /* |
| * Because the computation type is at least twice as large as required, |
| * these work for both signed and unsigned source types. |
| */ |
| static inline uint8_t do_mulh_b(int32_t n, int32_t m) |
| { |
| return (n * m) >> 8; |
| } |
| |
| static inline uint16_t do_mulh_h(int32_t n, int32_t m) |
| { |
| return (n * m) >> 16; |
| } |
| |
| static inline uint32_t do_mulh_w(int64_t n, int64_t m) |
| { |
| return (n * m) >> 32; |
| } |
| |
| static inline uint8_t do_rmulh_b(int32_t n, int32_t m) |
| { |
| return (n * m + (1U << 7)) >> 8; |
| } |
| |
| static inline uint16_t do_rmulh_h(int32_t n, int32_t m) |
| { |
| return (n * m + (1U << 15)) >> 16; |
| } |
| |
| static inline uint32_t do_rmulh_w(int64_t n, int64_t m) |
| { |
| return (n * m + (1U << 31)) >> 32; |
| } |
| |
| DO_2OP(vmulhsb, 1, int8_t, do_mulh_b) |
| DO_2OP(vmulhsh, 2, int16_t, do_mulh_h) |
| DO_2OP(vmulhsw, 4, int32_t, do_mulh_w) |
| DO_2OP(vmulhub, 1, uint8_t, do_mulh_b) |
| DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h) |
| DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w) |
| |
| DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b) |
| DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h) |
| DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w) |
| DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b) |
| DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h) |
| DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w) |
| |
| #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) |
| #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) |
| |
| DO_2OP_S(vmaxs, DO_MAX) |
| DO_2OP_U(vmaxu, DO_MAX) |
| DO_2OP_S(vmins, DO_MIN) |
| DO_2OP_U(vminu, DO_MIN) |
| |
| #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) |
| |
| DO_2OP_S(vabds, DO_ABD) |
| DO_2OP_U(vabdu, DO_ABD) |
| |
| static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m) |
| { |
| return ((uint64_t)n + m) >> 1; |
| } |
| |
| static inline int32_t do_vhadd_s(int32_t n, int32_t m) |
| { |
| return ((int64_t)n + m) >> 1; |
| } |
| |
| static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m) |
| { |
| return ((uint64_t)n - m) >> 1; |
| } |
| |
| static inline int32_t do_vhsub_s(int32_t n, int32_t m) |
| { |
| return ((int64_t)n - m) >> 1; |
| } |
| |
| DO_2OP_S(vhadds, do_vhadd_s) |
| DO_2OP_U(vhaddu, do_vhadd_u) |
| DO_2OP_S(vhsubs, do_vhsub_s) |
| DO_2OP_U(vhsubu, do_vhsub_u) |
| |
| #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL) |
| #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL) |
| #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL) |
| #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL) |
| |
| DO_2OP_S(vshls, DO_VSHLS) |
| DO_2OP_U(vshlu, DO_VSHLU) |
| DO_2OP_S(vrshls, DO_VRSHLS) |
| DO_2OP_U(vrshlu, DO_VRSHLU) |
| |
| #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1) |
| #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1) |
| |
| DO_2OP_S(vrhadds, DO_RHADD_S) |
| DO_2OP_U(vrhaddu, DO_RHADD_U) |
| |
| static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m, |
| uint32_t inv, uint32_t carry_in, bool update_flags) |
| { |
| uint16_t mask = mve_element_mask(env); |
| unsigned e; |
| |
| /* If any additions trigger, we will update flags. */ |
| if (mask & 0x1111) { |
| update_flags = true; |
| } |
| |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { |
| uint64_t r = carry_in; |
| r += n[H4(e)]; |
| r += m[H4(e)] ^ inv; |
| if (mask & 1) { |
| carry_in = r >> 32; |
| } |
| mergemask(&d[H4(e)], r, mask); |
| } |
| |
| if (update_flags) { |
| /* Store C, clear NZV. */ |
| env->vfp.fpsr &= ~FPSR_NZCV_MASK; |
| env->vfp.fpsr |= carry_in * FPSR_C; |
| } |
| mve_advance_vpt(env); |
| } |
| |
| void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm) |
| { |
| bool carry_in = env->vfp.fpsr & FPSR_C; |
| do_vadc(env, vd, vn, vm, 0, carry_in, false); |
| } |
| |
| void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm) |
| { |
| bool carry_in = env->vfp.fpsr & FPSR_C; |
| do_vadc(env, vd, vn, vm, -1, carry_in, false); |
| } |
| |
| |
| void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm) |
| { |
| do_vadc(env, vd, vn, vm, 0, 0, true); |
| } |
| |
| void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm) |
| { |
| do_vadc(env, vd, vn, vm, -1, 1, true); |
| } |
| |
| #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE r[16 / ESIZE]; \ |
| /* Calculate all results first to avoid overwriting inputs */ \ |
| for (e = 0; e < 16 / ESIZE; e++) { \ |
| if (!(e & 1)) { \ |
| r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]); \ |
| } else { \ |
| r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]); \ |
| } \ |
| } \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], r[e], mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VCADD_ALL(OP, FN0, FN1) \ |
| DO_VCADD(OP##b, 1, int8_t, FN0, FN1) \ |
| DO_VCADD(OP##h, 2, int16_t, FN0, FN1) \ |
| DO_VCADD(OP##w, 4, int32_t, FN0, FN1) |
| |
| DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD) |
| DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB) |
| DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s) |
| DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s) |
| |
| static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s) |
| { |
| if (val > max) { |
| *s = true; |
| return max; |
| } else if (val < min) { |
| *s = true; |
| return min; |
| } |
| return val; |
| } |
| |
| #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s) |
| #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s) |
| #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s) |
| |
| #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s) |
| #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s) |
| #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s) |
| |
| #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s) |
| #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s) |
| #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s) |
| |
| #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s) |
| #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s) |
| #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s) |
| |
| /* |
| * For QDMULH and QRDMULH we simplify "double and shift by esize" into |
| * "shift by esize-1", adjusting the QRDMULH rounding constant to match. |
| */ |
| #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \ |
| INT8_MIN, INT8_MAX, s) |
| #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \ |
| INT16_MIN, INT16_MAX, s) |
| #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \ |
| INT32_MIN, INT32_MAX, s) |
| |
| #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \ |
| INT8_MIN, INT8_MAX, s) |
| #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \ |
| INT16_MIN, INT16_MAX, s) |
| #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \ |
| INT32_MIN, INT32_MAX, s) |
| |
| DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B) |
| DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H) |
| DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W) |
| |
| DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B) |
| DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H) |
| DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W) |
| |
| DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B) |
| DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H) |
| DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W) |
| DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B) |
| DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H) |
| DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W) |
| |
| DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B) |
| DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H) |
| DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W) |
| DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B) |
| DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H) |
| DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W) |
| |
| /* |
| * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs() |
| * and friends wanting a uint32_t* sat and our needing a bool*. |
| */ |
| #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp) \ |
| ({ \ |
| uint32_t su32 = 0; \ |
| typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \ |
| if (su32) { \ |
| *satp = true; \ |
| } \ |
| qrshl_ret; \ |
| }) |
| |
| #define DO_SQSHL_OP(N, M, satp) \ |
| WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp) |
| #define DO_UQSHL_OP(N, M, satp) \ |
| WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp) |
| #define DO_SQRSHL_OP(N, M, satp) \ |
| WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp) |
| #define DO_UQRSHL_OP(N, M, satp) \ |
| WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp) |
| #define DO_SUQSHL_OP(N, M, satp) \ |
| WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp) |
| |
| DO_2OP_SAT_S(vqshls, DO_SQSHL_OP) |
| DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP) |
| DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP) |
| DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP) |
| |
| /* |
| * Multiply add dual returning high half |
| * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of |
| * whether to add the rounding constant, and the pointer to the |
| * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant", |
| * saturate to twice the input size and return the high half; or |
| * (A * B - C * D) etc for VQDMLSDH. |
| */ |
| #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| if ((e & 1) == XCHG) { \ |
| TYPE vqdmladh_ret = FN(n[H##ESIZE(e)], \ |
| m[H##ESIZE(e - XCHG)], \ |
| n[H##ESIZE(e + (1 - 2 * XCHG))], \ |
| m[H##ESIZE(e + (1 - XCHG))], \ |
| ROUND, &sat); \ |
| mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d, |
| int round, bool *sat) |
| { |
| int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7); |
| return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8; |
| } |
| |
| static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d, |
| int round, bool *sat) |
| { |
| int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15); |
| return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16; |
| } |
| |
| static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d, |
| int round, bool *sat) |
| { |
| int64_t m1 = (int64_t)a * b; |
| int64_t m2 = (int64_t)c * d; |
| int64_t r; |
| /* |
| * Architecturally we should do the entire add, double, round |
| * and then check for saturation. We do three saturating adds, |
| * but we need to be careful about the order. If the first |
| * m1 + m2 saturates then it's impossible for the *2+rc to |
| * bring it back into the non-saturated range. However, if |
| * m1 + m2 is negative then it's possible that doing the doubling |
| * would take the intermediate result below INT64_MAX and the |
| * addition of the rounding constant then brings it back in range. |
| * So we add half the rounding constant before doubling rather |
| * than adding the rounding constant after the doubling. |
| */ |
| if (sadd64_overflow(m1, m2, &r) || |
| sadd64_overflow(r, (round << 30), &r) || |
| sadd64_overflow(r, r, &r)) { |
| *sat = true; |
| return r < 0 ? INT32_MAX : INT32_MIN; |
| } |
| return r >> 32; |
| } |
| |
| static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d, |
| int round, bool *sat) |
| { |
| int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7); |
| return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8; |
| } |
| |
| static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d, |
| int round, bool *sat) |
| { |
| int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15); |
| return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16; |
| } |
| |
| static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d, |
| int round, bool *sat) |
| { |
| int64_t m1 = (int64_t)a * b; |
| int64_t m2 = (int64_t)c * d; |
| int64_t r; |
| /* The same ordering issue as in do_vqdmladh_w applies here too */ |
| if (ssub64_overflow(m1, m2, &r) || |
| sadd64_overflow(r, (round << 30), &r) || |
| sadd64_overflow(r, r, &r)) { |
| *sat = true; |
| return r < 0 ? INT32_MAX : INT32_MIN; |
| } |
| return r >> 32; |
| } |
| |
| DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b) |
| DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h) |
| DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w) |
| DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b) |
| DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h) |
| DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w) |
| |
| DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b) |
| DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h) |
| DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w) |
| DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b) |
| DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h) |
| DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w) |
| |
| DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b) |
| DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h) |
| DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w) |
| DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b) |
| DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h) |
| DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w) |
| |
| DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b) |
| DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h) |
| DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w) |
| DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b) |
| DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h) |
| DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w) |
| |
| #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \ |
| mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* "accumulating" version where FN takes d as well as n and m */ |
| #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], \ |
| FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| mergemask(&d[H##ESIZE(e)], \ |
| FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat), \ |
| mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* provide unsigned 2-op scalar helpers for all sizes */ |
| #define DO_2OP_SCALAR_U(OP, FN) \ |
| DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \ |
| DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \ |
| DO_2OP_SCALAR(OP##w, 4, uint32_t, FN) |
| #define DO_2OP_SCALAR_S(OP, FN) \ |
| DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \ |
| DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \ |
| DO_2OP_SCALAR(OP##w, 4, int32_t, FN) |
| |
| #define DO_2OP_ACC_SCALAR_U(OP, FN) \ |
| DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN) \ |
| DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN) \ |
| DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN) |
| |
| DO_2OP_SCALAR_U(vadd_scalar, DO_ADD) |
| DO_2OP_SCALAR_U(vsub_scalar, DO_SUB) |
| DO_2OP_SCALAR_U(vmul_scalar, DO_MUL) |
| DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s) |
| DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u) |
| DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s) |
| DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u) |
| |
| DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B) |
| DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H) |
| DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W) |
| DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B) |
| DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H) |
| DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W) |
| |
| DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B) |
| DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H) |
| DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W) |
| DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B) |
| DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H) |
| DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W) |
| |
| DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B) |
| DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H) |
| DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W) |
| DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B) |
| DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H) |
| DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W) |
| |
| static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat) |
| { |
| int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7); |
| return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8; |
| } |
| |
| static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c, |
| int round, bool *sat) |
| { |
| int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15); |
| return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16; |
| } |
| |
| static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c, |
| int round, bool *sat) |
| { |
| /* |
| * Architecturally we should do the entire add, double, round |
| * and then check for saturation. We do three saturating adds, |
| * but we need to be careful about the order. If the first |
| * m1 + m2 saturates then it's impossible for the *2+rc to |
| * bring it back into the non-saturated range. However, if |
| * m1 + m2 is negative then it's possible that doing the doubling |
| * would take the intermediate result below INT64_MAX and the |
| * addition of the rounding constant then brings it back in range. |
| * So we add half the rounding constant and half the "c << esize" |
| * before doubling rather than adding the rounding constant after |
| * the doubling. |
| */ |
| int64_t m1 = (int64_t)a * b; |
| int64_t m2 = (int64_t)c << 31; |
| int64_t r; |
| if (sadd64_overflow(m1, m2, &r) || |
| sadd64_overflow(r, (round << 30), &r) || |
| sadd64_overflow(r, r, &r)) { |
| *sat = true; |
| return r < 0 ? INT32_MAX : INT32_MIN; |
| } |
| return r >> 32; |
| } |
| |
| /* |
| * The *MLAH insns are vector * scalar + vector; |
| * the *MLASH insns are vector * vector + scalar |
| */ |
| #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S) |
| #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S) |
| #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S) |
| #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S) |
| #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S) |
| #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S) |
| |
| #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S) |
| #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S) |
| #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S) |
| #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S) |
| #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S) |
| #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S) |
| |
| DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B) |
| DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H) |
| DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W) |
| DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B) |
| DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H) |
| DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W) |
| |
| DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B) |
| DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H) |
| DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W) |
| DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B) |
| DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H) |
| DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W) |
| |
| /* Vector by scalar plus vector */ |
| #define DO_VMLA(D, N, M) ((N) * (M) + (D)) |
| |
| DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA) |
| |
| /* Vector by vector plus scalar */ |
| #define DO_VMLAS(D, N, M) ((N) * (D) + (M)) |
| |
| DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS) |
| |
| /* |
| * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the |
| * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type. |
| * SATMASK specifies which bits of the predicate mask matter for determining |
| * whether to propagate a saturation indication into FPSCR.QC -- for |
| * the 16x16->32 case we must check only the bit corresponding to the T or B |
| * half that we used, but for the 32x32->64 case we propagate if the mask |
| * bit is set for either half. |
| */ |
| #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| LTYPE *d = vd; \ |
| TYPE *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| bool qc = false; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| bool sat = false; \ |
| LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \ |
| mergemask(&d[H##LESIZE(le)], r, mask); \ |
| qc |= sat && (mask & SATMASK); \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat) |
| { |
| int64_t r = ((int64_t)n * m) * 2; |
| return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat); |
| } |
| |
| static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat) |
| { |
| /* The multiply can't overflow, but the doubling might */ |
| int64_t r = (int64_t)n * m; |
| if (r > INT64_MAX / 2) { |
| *sat = true; |
| return INT64_MAX; |
| } else if (r < INT64_MIN / 2) { |
| *sat = true; |
| return INT64_MIN; |
| } else { |
| return r * 2; |
| } |
| } |
| |
| #define SATMASK16B 1 |
| #define SATMASK16T (1 << 2) |
| #define SATMASK32 ((1 << 4) | 1) |
| |
| DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \ |
| do_qdmullh, SATMASK16B) |
| DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \ |
| do_qdmullw, SATMASK32) |
| DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \ |
| do_qdmullh, SATMASK16T) |
| DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \ |
| do_qdmullw, SATMASK32) |
| |
| /* |
| * Long saturating ops |
| */ |
| #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| void *vm) \ |
| { \ |
| LTYPE *d = vd; \ |
| TYPE *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| bool qc = false; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| bool sat = false; \ |
| LTYPE op1 = n[H##ESIZE(le * 2 + TOP)]; \ |
| LTYPE op2 = m[H##ESIZE(le * 2 + TOP)]; \ |
| mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask); \ |
| qc |= sat && (mask & SATMASK); \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B) |
| DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32) |
| DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T) |
| DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32) |
| |
| static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m) |
| { |
| m &= 0xff; |
| if (m == 0) { |
| return 0; |
| } |
| n = revbit8(n); |
| if (m < 8) { |
| n >>= 8 - m; |
| } |
| return n; |
| } |
| |
| static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m) |
| { |
| m &= 0xff; |
| if (m == 0) { |
| return 0; |
| } |
| n = revbit16(n); |
| if (m < 16) { |
| n >>= 16 - m; |
| } |
| return n; |
| } |
| |
| static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m) |
| { |
| m &= 0xff; |
| if (m == 0) { |
| return 0; |
| } |
| n = revbit32(n); |
| if (m < 32) { |
| n >>= 32 - m; |
| } |
| return n; |
| } |
| |
| DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb) |
| DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh) |
| DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw) |
| |
| /* |
| * Multiply add long dual accumulate ops. |
| */ |
| #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \ |
| uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| void *vm, uint64_t a) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *n = vn, *m = vm; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| if (e & 1) { \ |
| a ODDACC \ |
| (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \ |
| } else { \ |
| a EVENACC \ |
| (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \ |
| } \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return a; \ |
| } |
| |
| DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=) |
| DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=) |
| DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=) |
| DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=) |
| |
| DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=) |
| DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=) |
| |
| DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=) |
| DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=) |
| DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=) |
| DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=) |
| |
| /* |
| * Multiply add dual accumulate ops |
| */ |
| #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \ |
| uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| void *vm, uint32_t a) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *n = vn, *m = vm; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| if (e & 1) { \ |
| a ODDACC \ |
| n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \ |
| } else { \ |
| a EVENACC \ |
| n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \ |
| } \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return a; \ |
| } |
| |
| #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC) \ |
| DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC) \ |
| DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC) \ |
| DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC) |
| |
| #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC) \ |
| DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC) \ |
| DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \ |
| DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC) |
| |
| DO_DAV_S(vmladavs, false, +=, +=) |
| DO_DAV_U(vmladavu, false, +=, +=) |
| DO_DAV_S(vmlsdav, false, +=, -=) |
| DO_DAV_S(vmladavsx, true, +=, +=) |
| DO_DAV_S(vmlsdavx, true, +=, -=) |
| |
| /* |
| * Rounding multiply add long dual accumulate high. In the pseudocode |
| * this is implemented with a 72-bit internal accumulator value of which |
| * the top 64 bits are returned. We optimize this to avoid having to |
| * use 128-bit arithmetic -- we can do this because the 74-bit accumulator |
| * is squashed back into 64-bits after each beat. |
| */ |
| #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB) \ |
| uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| void *vm, uint64_t a) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *n = vn, *m = vm; \ |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { \ |
| if (mask & 1) { \ |
| LTYPE mul; \ |
| if (e & 1) { \ |
| mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)]; \ |
| if (SUB) { \ |
| mul = -mul; \ |
| } \ |
| } else { \ |
| mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)]; \ |
| } \ |
| mul = (mul >> 8) + ((mul >> 7) & 1); \ |
| a += mul; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return a; \ |
| } |
| |
| DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false) |
| DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false) |
| |
| DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false) |
| |
| DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true) |
| DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true) |
| |
| /* Vector add across vector */ |
| #define DO_VADDV(OP, ESIZE, TYPE) \ |
| uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ |
| uint32_t ra) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *m = vm; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| ra += m[H##ESIZE(e)]; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return ra; \ |
| } \ |
| |
| DO_VADDV(vaddvsb, 1, int8_t) |
| DO_VADDV(vaddvsh, 2, int16_t) |
| DO_VADDV(vaddvsw, 4, int32_t) |
| DO_VADDV(vaddvub, 1, uint8_t) |
| DO_VADDV(vaddvuh, 2, uint16_t) |
| DO_VADDV(vaddvuw, 4, uint32_t) |
| |
| /* |
| * Vector max/min across vector. Unlike VADDV, we must |
| * read ra as the element size, not its full width. |
| * We work with int64_t internally for simplicity. |
| */ |
| #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN) \ |
| uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ |
| uint32_t ra_in) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *m = vm; \ |
| int64_t ra = (RATYPE)ra_in; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| ra = FN(ra, m[H##ESIZE(e)]); \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return ra; \ |
| } \ |
| |
| #define DO_VMAXMINV_U(INSN, FN) \ |
| DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN) \ |
| DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN) \ |
| DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN) |
| #define DO_VMAXMINV_S(INSN, FN) \ |
| DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN) \ |
| DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN) \ |
| DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN) |
| |
| /* |
| * Helpers for max and min of absolute values across vector: |
| * note that we only take the absolute value of 'm', not 'n' |
| */ |
| static int64_t do_maxa(int64_t n, int64_t m) |
| { |
| if (m < 0) { |
| m = -m; |
| } |
| return MAX(n, m); |
| } |
| |
| static int64_t do_mina(int64_t n, int64_t m) |
| { |
| if (m < 0) { |
| m = -m; |
| } |
| return MIN(n, m); |
| } |
| |
| DO_VMAXMINV_S(vmaxvs, DO_MAX) |
| DO_VMAXMINV_U(vmaxvu, DO_MAX) |
| DO_VMAXMINV_S(vminvs, DO_MIN) |
| DO_VMAXMINV_U(vminvu, DO_MIN) |
| /* |
| * VMAXAV, VMINAV treat the general purpose input as unsigned |
| * and the vector elements as signed. |
| */ |
| DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa) |
| DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa) |
| DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa) |
| DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina) |
| DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina) |
| DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina) |
| |
| #define DO_VABAV(OP, ESIZE, TYPE) \ |
| uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| void *vm, uint32_t ra) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *m = vm, *n = vn; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| int64_t n0 = n[H##ESIZE(e)]; \ |
| int64_t m0 = m[H##ESIZE(e)]; \ |
| uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0); \ |
| ra += r; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return ra; \ |
| } |
| |
| DO_VABAV(vabavsb, 1, int8_t) |
| DO_VABAV(vabavsh, 2, int16_t) |
| DO_VABAV(vabavsw, 4, int32_t) |
| DO_VABAV(vabavub, 1, uint8_t) |
| DO_VABAV(vabavuh, 2, uint16_t) |
| DO_VABAV(vabavuw, 4, uint32_t) |
| |
| #define DO_VADDLV(OP, TYPE, LTYPE) \ |
| uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ |
| uint64_t ra) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *m = vm; \ |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { \ |
| if (mask & 1) { \ |
| ra += (LTYPE)m[H4(e)]; \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return ra; \ |
| } \ |
| |
| DO_VADDLV(vaddlv_s, int32_t, int64_t) |
| DO_VADDLV(vaddlv_u, uint32_t, uint64_t) |
| |
| /* Shifts by immediate */ |
| #define DO_2SHIFT(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ |
| void *vm, uint32_t shift) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], \ |
| FN(m[H##ESIZE(e)], shift), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ |
| void *vm, uint32_t shift) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| mergemask(&d[H##ESIZE(e)], \ |
| FN(m[H##ESIZE(e)], shift, &sat), mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* provide unsigned 2-op shift helpers for all sizes */ |
| #define DO_2SHIFT_U(OP, FN) \ |
| DO_2SHIFT(OP##b, 1, uint8_t, FN) \ |
| DO_2SHIFT(OP##h, 2, uint16_t, FN) \ |
| DO_2SHIFT(OP##w, 4, uint32_t, FN) |
| #define DO_2SHIFT_S(OP, FN) \ |
| DO_2SHIFT(OP##b, 1, int8_t, FN) \ |
| DO_2SHIFT(OP##h, 2, int16_t, FN) \ |
| DO_2SHIFT(OP##w, 4, int32_t, FN) |
| |
| #define DO_2SHIFT_SAT_U(OP, FN) \ |
| DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN) \ |
| DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN) \ |
| DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN) |
| #define DO_2SHIFT_SAT_S(OP, FN) \ |
| DO_2SHIFT_SAT(OP##b, 1, int8_t, FN) \ |
| DO_2SHIFT_SAT(OP##h, 2, int16_t, FN) \ |
| DO_2SHIFT_SAT(OP##w, 4, int32_t, FN) |
| |
| DO_2SHIFT_U(vshli_u, DO_VSHLU) |
| DO_2SHIFT_S(vshli_s, DO_VSHLS) |
| DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP) |
| DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP) |
| DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP) |
| DO_2SHIFT_U(vrshli_u, DO_VRSHLU) |
| DO_2SHIFT_S(vrshli_s, DO_VRSHLS) |
| DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP) |
| DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP) |
| |
| /* Shift-and-insert; we always work with 64 bits at a time */ |
| #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ |
| void *vm, uint32_t shift) \ |
| { \ |
| uint64_t *d = vd, *m = vm; \ |
| uint16_t mask; \ |
| uint64_t shiftmask; \ |
| unsigned e; \ |
| if (shift == ESIZE * 8) { \ |
| /* \ |
| * Only VSRI can shift by <dt>; it should mean "don't \ |
| * update the destination". The generic logic can't handle \ |
| * this because it would try to shift by an out-of-range \ |
| * amount, so special case it here. \ |
| */ \ |
| goto done; \ |
| } \ |
| assert(shift < ESIZE * 8); \ |
| mask = mve_element_mask(env); \ |
| /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */ \ |
| shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift)); \ |
| for (e = 0; e < 16 / 8; e++, mask >>= 8) { \ |
| uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) | \ |
| (d[H8(e)] & ~shiftmask); \ |
| mergemask(&d[H8(e)], r, mask); \ |
| } \ |
| done: \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_SHL(N, SHIFT) ((N) << (SHIFT)) |
| #define DO_SHR(N, SHIFT) ((N) >> (SHIFT)) |
| #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT)) |
| #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT)) |
| |
| DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK) |
| DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK) |
| DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK) |
| DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK) |
| DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK) |
| DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK) |
| |
| /* |
| * Long shifts taking half-sized inputs from top or bottom of the input |
| * vector and producing a double-width result. ESIZE, TYPE are for |
| * the input, and LESIZE, LTYPE for the output. |
| * Unlike the normal shift helpers, we do not handle negative shift counts, |
| * because the long shift is strictly left-only. |
| */ |
| #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ |
| void *vm, uint32_t shift) \ |
| { \ |
| LTYPE *d = vd; \ |
| TYPE *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| assert(shift <= 16); \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift; \ |
| mergemask(&d[H##LESIZE(le)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VSHLL_ALL(OP, TOP) \ |
| DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t) \ |
| DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t) \ |
| DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t) \ |
| DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t) \ |
| |
| DO_VSHLL_ALL(vshllb, false) |
| DO_VSHLL_ALL(vshllt, true) |
| |
| /* |
| * Narrowing right shifts, taking a double sized input, shifting it |
| * and putting the result in either the top or bottom half of the output. |
| * ESIZE, TYPE are the output, and LESIZE, LTYPE the input. |
| */ |
| #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ |
| void *vm, uint32_t shift) \ |
| { \ |
| LTYPE *m = vm; \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| mask >>= ESIZE * TOP; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| TYPE r = FN(m[H##LESIZE(le)], shift); \ |
| mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VSHRN_ALL(OP, FN) \ |
| DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN) \ |
| DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN) \ |
| DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN) \ |
| DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN) |
| |
| static inline uint64_t do_urshr(uint64_t x, unsigned sh) |
| { |
| if (likely(sh < 64)) { |
| return (x >> sh) + ((x >> (sh - 1)) & 1); |
| } else if (sh == 64) { |
| return x >> 63; |
| } else { |
| return 0; |
| } |
| } |
| |
| static inline int64_t do_srshr(int64_t x, unsigned sh) |
| { |
| if (likely(sh < 64)) { |
| return (x >> sh) + ((x >> (sh - 1)) & 1); |
| } else { |
| /* Rounding the sign bit always produces 0. */ |
| return 0; |
| } |
| } |
| |
| DO_VSHRN_ALL(vshrn, DO_SHR) |
| DO_VSHRN_ALL(vrshrn, do_urshr) |
| |
| static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max, |
| bool *satp) |
| { |
| if (val > max) { |
| *satp = true; |
| return max; |
| } else if (val < min) { |
| *satp = true; |
| return min; |
| } else { |
| return val; |
| } |
| } |
| |
| /* Saturating narrowing right shifts */ |
| #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ |
| void *vm, uint32_t shift) \ |
| { \ |
| LTYPE *m = vm; \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| bool qc = false; \ |
| unsigned le; \ |
| mask >>= ESIZE * TOP; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| bool sat = false; \ |
| TYPE r = FN(m[H##LESIZE(le)], shift, &sat); \ |
| mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VSHRN_SAT_UB(BOP, TOP, FN) \ |
| DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \ |
| DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN) |
| |
| #define DO_VSHRN_SAT_UH(BOP, TOP, FN) \ |
| DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \ |
| DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN) |
| |
| #define DO_VSHRN_SAT_SB(BOP, TOP, FN) \ |
| DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \ |
| DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN) |
| |
| #define DO_VSHRN_SAT_SH(BOP, TOP, FN) \ |
| DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \ |
| DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN) |
| |
| #define DO_SHRN_SB(N, M, SATP) \ |
| do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP) |
| #define DO_SHRN_UB(N, M, SATP) \ |
| do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP) |
| #define DO_SHRUN_B(N, M, SATP) \ |
| do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP) |
| |
| #define DO_SHRN_SH(N, M, SATP) \ |
| do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP) |
| #define DO_SHRN_UH(N, M, SATP) \ |
| do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP) |
| #define DO_SHRUN_H(N, M, SATP) \ |
| do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP) |
| |
| #define DO_RSHRN_SB(N, M, SATP) \ |
| do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP) |
| #define DO_RSHRN_UB(N, M, SATP) \ |
| do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP) |
| #define DO_RSHRUN_B(N, M, SATP) \ |
| do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP) |
| |
| #define DO_RSHRN_SH(N, M, SATP) \ |
| do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP) |
| #define DO_RSHRN_UH(N, M, SATP) \ |
| do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP) |
| #define DO_RSHRUN_H(N, M, SATP) \ |
| do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP) |
| |
| DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB) |
| DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH) |
| DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB) |
| DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH) |
| DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B) |
| DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H) |
| |
| DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB) |
| DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH) |
| DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB) |
| DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH) |
| DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B) |
| DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H) |
| |
| #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ |
| { \ |
| LTYPE *m = vm; \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| mask >>= ESIZE * TOP; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| mergemask(&d[H##ESIZE(le * 2 + TOP)], \ |
| m[H##LESIZE(le)], mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t) |
| DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t) |
| DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t) |
| DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t) |
| |
| #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ |
| { \ |
| LTYPE *m = vm; \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| bool qc = false; \ |
| unsigned le; \ |
| mask >>= ESIZE * TOP; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| bool sat = false; \ |
| TYPE r = FN(m[H##LESIZE(le)], &sat); \ |
| mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VMOVN_SAT_UB(BOP, TOP, FN) \ |
| DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \ |
| DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN) |
| |
| #define DO_VMOVN_SAT_UH(BOP, TOP, FN) \ |
| DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \ |
| DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN) |
| |
| #define DO_VMOVN_SAT_SB(BOP, TOP, FN) \ |
| DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \ |
| DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN) |
| |
| #define DO_VMOVN_SAT_SH(BOP, TOP, FN) \ |
| DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \ |
| DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN) |
| |
| #define DO_VQMOVN_SB(N, SATP) \ |
| do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP) |
| #define DO_VQMOVN_UB(N, SATP) \ |
| do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP) |
| #define DO_VQMOVUN_B(N, SATP) \ |
| do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP) |
| |
| #define DO_VQMOVN_SH(N, SATP) \ |
| do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP) |
| #define DO_VQMOVN_UH(N, SATP) \ |
| do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP) |
| #define DO_VQMOVUN_H(N, SATP) \ |
| do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP) |
| |
| DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB) |
| DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH) |
| DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB) |
| DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH) |
| DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B) |
| DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H) |
| |
| uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm, |
| uint32_t shift) |
| { |
| uint32_t *d = vd; |
| uint16_t mask = mve_element_mask(env); |
| unsigned e; |
| uint32_t r; |
| |
| /* |
| * For each 32-bit element, we shift it left, bringing in the |
| * low 'shift' bits of rdm at the bottom. Bits shifted out at |
| * the top become the new rdm, if the predicate mask permits. |
| * The final rdm value is returned to update the register. |
| * shift == 0 here means "shift by 32 bits". |
| */ |
| if (shift == 0) { |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { |
| r = rdm; |
| if (mask & 1) { |
| rdm = d[H4(e)]; |
| } |
| mergemask(&d[H4(e)], r, mask); |
| } |
| } else { |
| uint32_t shiftmask = MAKE_64BIT_MASK(0, shift); |
| |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { |
| r = (d[H4(e)] << shift) | (rdm & shiftmask); |
| if (mask & 1) { |
| rdm = d[H4(e)] >> (32 - shift); |
| } |
| mergemask(&d[H4(e)], r, mask); |
| } |
| } |
| mve_advance_vpt(env); |
| return rdm; |
| } |
| |
| uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_sqrshl_d(n, -(int8_t)shift, false, NULL); |
| } |
| |
| uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_uqrshl_d(n, (int8_t)shift, false, NULL); |
| } |
| |
| uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_sqrshl_d(n, (int8_t)shift, false, &env->QF); |
| } |
| |
| uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_uqrshl_d(n, (int8_t)shift, false, &env->QF); |
| } |
| |
| uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF); |
| } |
| |
| uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_uqrshl_d(n, (int8_t)shift, true, &env->QF); |
| } |
| |
| /* Operate on 64-bit values, but saturate at 48 bits */ |
| static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift, |
| bool round, uint32_t *sat) |
| { |
| int64_t val, extval; |
| |
| if (shift <= -48) { |
| /* Rounding the sign bit always produces 0. */ |
| if (round) { |
| return 0; |
| } |
| return src >> 63; |
| } else if (shift < 0) { |
| if (round) { |
| src >>= -shift - 1; |
| val = (src >> 1) + (src & 1); |
| } else { |
| val = src >> -shift; |
| } |
| extval = sextract64(val, 0, 48); |
| if (!sat || val == extval) { |
| return extval; |
| } |
| } else if (shift < 48) { |
| extval = sextract64(src << shift, 0, 48); |
| if (!sat || src == (extval >> shift)) { |
| return extval; |
| } |
| } else if (!sat || src == 0) { |
| return 0; |
| } |
| |
| *sat = 1; |
| return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17); |
| } |
| |
| /* Operate on 64-bit values, but saturate at 48 bits */ |
| static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift, |
| bool round, uint32_t *sat) |
| { |
| uint64_t val, extval; |
| |
| if (shift <= -(48 + round)) { |
| return 0; |
| } else if (shift < 0) { |
| if (round) { |
| val = src >> (-shift - 1); |
| val = (val >> 1) + (val & 1); |
| } else { |
| val = src >> -shift; |
| } |
| extval = extract64(val, 0, 48); |
| if (!sat || val == extval) { |
| return extval; |
| } |
| } else if (shift < 48) { |
| extval = extract64(src << shift, 0, 48); |
| if (!sat || src == (extval >> shift)) { |
| return extval; |
| } |
| } else if (!sat || src == 0) { |
| return 0; |
| } |
| |
| *sat = 1; |
| return MAKE_64BIT_MASK(0, 48); |
| } |
| |
| uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF); |
| } |
| |
| uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift) |
| { |
| return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF); |
| } |
| |
| uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift) |
| { |
| return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF); |
| } |
| |
| uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift) |
| { |
| return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF); |
| } |
| |
| uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift) |
| { |
| return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF); |
| } |
| |
| uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift) |
| { |
| return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF); |
| } |
| |
| #define DO_VIDUP(OP, ESIZE, TYPE, FN) \ |
| uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \ |
| uint32_t offset, uint32_t imm) \ |
| { \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], offset, mask); \ |
| offset = FN(offset, imm); \ |
| } \ |
| mve_advance_vpt(env); \ |
| return offset; \ |
| } |
| |
| #define DO_VIWDUP(OP, ESIZE, TYPE, FN) \ |
| uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \ |
| uint32_t offset, uint32_t wrap, \ |
| uint32_t imm) \ |
| { \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], offset, mask); \ |
| offset = FN(offset, wrap, imm); \ |
| } \ |
| mve_advance_vpt(env); \ |
| return offset; \ |
| } |
| |
| #define DO_VIDUP_ALL(OP, FN) \ |
| DO_VIDUP(OP##b, 1, int8_t, FN) \ |
| DO_VIDUP(OP##h, 2, int16_t, FN) \ |
| DO_VIDUP(OP##w, 4, int32_t, FN) |
| |
| #define DO_VIWDUP_ALL(OP, FN) \ |
| DO_VIWDUP(OP##b, 1, int8_t, FN) \ |
| DO_VIWDUP(OP##h, 2, int16_t, FN) \ |
| DO_VIWDUP(OP##w, 4, int32_t, FN) |
| |
| static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm) |
| { |
| offset += imm; |
| if (offset == wrap) { |
| offset = 0; |
| } |
| return offset; |
| } |
| |
| static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm) |
| { |
| if (offset == 0) { |
| offset = wrap; |
| } |
| offset -= imm; |
| return offset; |
| } |
| |
| DO_VIDUP_ALL(vidup, DO_ADD) |
| DO_VIWDUP_ALL(viwdup, do_add_wrap) |
| DO_VIWDUP_ALL(vdwdup, do_sub_wrap) |
| |
| /* |
| * Vector comparison. |
| * P0 bits for non-executed beats (where eci_mask is 0) are unchanged. |
| * P0 bits for predicated lanes in executed beats (where mask is 0) are 0. |
| * P0 bits otherwise are updated with the results of the comparisons. |
| * We must also keep unchanged the MASK fields at the top of v7m.vpr. |
| */ |
| #define DO_VCMP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \ |
| { \ |
| TYPE *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| uint16_t beatpred = 0; \ |
| uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++) { \ |
| bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]); \ |
| /* Comparison sets 0/1 bits for each byte in the element */ \ |
| beatpred |= r * emask; \ |
| emask <<= ESIZE; \ |
| } \ |
| beatpred &= mask; \ |
| env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ |
| (beatpred & eci_mask); \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *n = vn; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| uint16_t beatpred = 0; \ |
| uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++) { \ |
| bool r = FN(n[H##ESIZE(e)], (TYPE)rm); \ |
| /* Comparison sets 0/1 bits for each byte in the element */ \ |
| beatpred |= r * emask; \ |
| emask <<= ESIZE; \ |
| } \ |
| beatpred &= mask; \ |
| env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ |
| (beatpred & eci_mask); \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VCMP_S(OP, FN) \ |
| DO_VCMP(OP##b, 1, int8_t, FN) \ |
| DO_VCMP(OP##h, 2, int16_t, FN) \ |
| DO_VCMP(OP##w, 4, int32_t, FN) \ |
| DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN) \ |
| DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN) \ |
| DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN) |
| |
| #define DO_VCMP_U(OP, FN) \ |
| DO_VCMP(OP##b, 1, uint8_t, FN) \ |
| DO_VCMP(OP##h, 2, uint16_t, FN) \ |
| DO_VCMP(OP##w, 4, uint32_t, FN) \ |
| DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN) \ |
| DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN) \ |
| DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN) |
| |
| #define DO_EQ(N, M) ((N) == (M)) |
| #define DO_NE(N, M) ((N) != (M)) |
| #define DO_EQ(N, M) ((N) == (M)) |
| #define DO_EQ(N, M) ((N) == (M)) |
| #define DO_GE(N, M) ((N) >= (M)) |
| #define DO_LT(N, M) ((N) < (M)) |
| #define DO_GT(N, M) ((N) > (M)) |
| #define DO_LE(N, M) ((N) <= (M)) |
| |
| DO_VCMP_U(vcmpeq, DO_EQ) |
| DO_VCMP_U(vcmpne, DO_NE) |
| DO_VCMP_U(vcmpcs, DO_GE) |
| DO_VCMP_U(vcmphi, DO_GT) |
| DO_VCMP_S(vcmpge, DO_GE) |
| DO_VCMP_S(vcmplt, DO_LT) |
| DO_VCMP_S(vcmpgt, DO_GT) |
| DO_VCMP_S(vcmple, DO_LE) |
| |
| void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm) |
| { |
| /* |
| * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n] |
| * but note that whether bytes are written to Qd is still subject |
| * to (all forms of) predication in the usual way. |
| */ |
| uint64_t *d = vd, *n = vn, *m = vm; |
| uint16_t mask = mve_element_mask(env); |
| uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0); |
| unsigned e; |
| for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) { |
| uint64_t r = m[H8(e)]; |
| mergemask(&r, n[H8(e)], p0); |
| mergemask(&d[H8(e)], r, mask); |
| } |
| mve_advance_vpt(env); |
| } |
| |
| void HELPER(mve_vpnot)(CPUARMState *env) |
| { |
| /* |
| * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged. |
| * P0 bits for predicated lanes in executed bits (where mask is 0) are 0. |
| * P0 bits otherwise are inverted. |
| * (This is the same logic as VCMP.) |
| * This insn is itself subject to predication and to beat-wise execution, |
| * and after it executes VPT state advances in the usual way. |
| */ |
| uint16_t mask = mve_element_mask(env); |
| uint16_t eci_mask = mve_eci_mask(env); |
| uint16_t beatpred = ~env->v7m.vpr & mask; |
| env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask); |
| mve_advance_vpt(env); |
| } |
| |
| /* |
| * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed, |
| * otherwise set according to value of Rn. The calculation of |
| * newmask here works in the same way as the calculation of the |
| * ltpmask in mve_element_mask(), but we have pre-calculated |
| * the masklen in the generated code. |
| */ |
| void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen) |
| { |
| uint16_t mask = mve_element_mask(env); |
| uint16_t eci_mask = mve_eci_mask(env); |
| uint16_t newmask; |
| |
| assert(masklen <= 16); |
| newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0; |
| newmask &= mask; |
| env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask); |
| mve_advance_vpt(env); |
| } |
| |
| #define DO_1OP_SAT(OP, ESIZE, TYPE, FN) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VQABS_B(N, SATP) \ |
| do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP) |
| #define DO_VQABS_H(N, SATP) \ |
| do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP) |
| #define DO_VQABS_W(N, SATP) \ |
| do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP) |
| |
| #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP) |
| #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP) |
| #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP) |
| |
| DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B) |
| DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H) |
| DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W) |
| |
| DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B) |
| DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H) |
| DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W) |
| |
| /* |
| * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its |
| * absolute value; we then do an unsigned comparison. |
| */ |
| #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ |
| { \ |
| UTYPE *d = vd; \ |
| STYPE *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| UTYPE r = DO_ABS(m[H##ESIZE(e)]); \ |
| r = FN(d[H##ESIZE(e)], r); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX) |
| DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX) |
| DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX) |
| DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN) |
| DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN) |
| DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN) |
| |
| /* |
| * 2-operand floating point. Note that if an element is partially |
| * predicated we must do the FP operation to update the non-predicated |
| * bytes, but we must be careful to avoid updating the FP exception |
| * state unless byte 0 of the element was unpredicated. |
| */ |
| #define DO_2OP_FP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| TYPE r; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2OP_FP_ALL(OP, FN) \ |
| DO_2OP_FP(OP##h, 2, float16, float16_##FN) \ |
| DO_2OP_FP(OP##s, 4, float32, float32_##FN) |
| |
| DO_2OP_FP_ALL(vfadd, add) |
| DO_2OP_FP_ALL(vfsub, sub) |
| DO_2OP_FP_ALL(vfmul, mul) |
| |
| static inline float16 float16_abd(float16 a, float16 b, float_status *s) |
| { |
| return float16_abs(float16_sub(a, b, s)); |
| } |
| |
| static inline float32 float32_abd(float32 a, float32 b, float_status *s) |
| { |
| return float32_abs(float32_sub(a, b, s)); |
| } |
| |
| DO_2OP_FP_ALL(vfabd, abd) |
| DO_2OP_FP_ALL(vmaxnm, maxnum) |
| DO_2OP_FP_ALL(vminnm, minnum) |
| |
| static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s) |
| { |
| return float16_maxnum(float16_abs(a), float16_abs(b), s); |
| } |
| |
| static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s) |
| { |
| return float32_maxnum(float32_abs(a), float32_abs(b), s); |
| } |
| |
| static inline float16 float16_minnuma(float16 a, float16 b, float_status *s) |
| { |
| return float16_minnum(float16_abs(a), float16_abs(b), s); |
| } |
| |
| static inline float32 float32_minnuma(float32 a, float32 b, float_status *s) |
| { |
| return float32_minnum(float32_abs(a), float32_abs(b), s); |
| } |
| |
| DO_2OP_FP_ALL(vmaxnma, maxnuma) |
| DO_2OP_FP_ALL(vminnma, minnuma) |
| |
| #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| TYPE r[16 / ESIZE]; \ |
| uint16_t tm, mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| /* Calculate all results first to avoid overwriting inputs */ \ |
| for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) { \ |
| if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| r[e] = 0; \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(tm & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| if (!(e & 1)) { \ |
| r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst); \ |
| } else { \ |
| r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst); \ |
| } \ |
| } \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], r[e], mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add) |
| DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add) |
| DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub) |
| DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub) |
| |
| #define DO_VFMA(OP, ESIZE, TYPE, CHS) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| TYPE r; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = n[H##ESIZE(e)]; \ |
| if (CHS) { \ |
| r = TYPE##_chs(r); \ |
| } \ |
| r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)], \ |
| 0, fpst); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VFMA(vfmah, 2, float16, false) |
| DO_VFMA(vfmas, 4, float32, false) |
| DO_VFMA(vfmsh, 2, float16, true) |
| DO_VFMA(vfmss, 4, float32, true) |
| |
| #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| TYPE r0, r1, e1, e2, e3, e4; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst0, *fpst1; \ |
| float_status scratch_fpst; \ |
| /* We loop through pairs of elements at a time */ \ |
| for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) { \ |
| continue; \ |
| } \ |
| fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| fpst1 = fpst0; \ |
| if (!(mask & 1)) { \ |
| scratch_fpst = *fpst0; \ |
| fpst0 = &scratch_fpst; \ |
| } \ |
| if (!(mask & (1 << ESIZE))) { \ |
| scratch_fpst = *fpst1; \ |
| fpst1 = &scratch_fpst; \ |
| } \ |
| switch (ROT) { \ |
| case 0: \ |
| e1 = m[H##ESIZE(e)]; \ |
| e2 = n[H##ESIZE(e)]; \ |
| e3 = m[H##ESIZE(e + 1)]; \ |
| e4 = n[H##ESIZE(e)]; \ |
| break; \ |
| case 1: \ |
| e1 = TYPE##_chs(m[H##ESIZE(e + 1)]); \ |
| e2 = n[H##ESIZE(e + 1)]; \ |
| e3 = m[H##ESIZE(e)]; \ |
| e4 = n[H##ESIZE(e + 1)]; \ |
| break; \ |
| case 2: \ |
| e1 = TYPE##_chs(m[H##ESIZE(e)]); \ |
| e2 = n[H##ESIZE(e)]; \ |
| e3 = TYPE##_chs(m[H##ESIZE(e + 1)]); \ |
| e4 = n[H##ESIZE(e)]; \ |
| break; \ |
| case 3: \ |
| e1 = m[H##ESIZE(e + 1)]; \ |
| e2 = n[H##ESIZE(e + 1)]; \ |
| e3 = TYPE##_chs(m[H##ESIZE(e)]); \ |
| e4 = n[H##ESIZE(e + 1)]; \ |
| break; \ |
| default: \ |
| g_assert_not_reached(); \ |
| } \ |
| r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0); \ |
| r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1); \ |
| mergemask(&d[H##ESIZE(e)], r0, mask); \ |
| mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S) |
| #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S) |
| |
| #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S) |
| #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S) |
| |
| DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH) |
| DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS) |
| DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH) |
| DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS) |
| DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH) |
| DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS) |
| DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH) |
| DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS) |
| |
| DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH) |
| DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS) |
| DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH) |
| DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS) |
| DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH) |
| DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS) |
| DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH) |
| DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS) |
| |
| #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE r, m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(n[H##ESIZE(e)], m, fpst); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2OP_FP_SCALAR_ALL(OP, FN) \ |
| DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN) \ |
| DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN) |
| |
| DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add) |
| DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub) |
| DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul) |
| |
| #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE r, m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* VFMAS is vector * vector + scalar, so swap op2 and op3 */ |
| #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S) |
| #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S) |
| |
| /* VFMA is vector * scalar + vector */ |
| DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd) |
| DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd) |
| DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH) |
| DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS) |
| |
| /* Floating point max/min across vector. */ |
| #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN) \ |
| uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ |
| uint32_t ra_in) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *m = vm; \ |
| TYPE ra = (TYPE)ra_in; \ |
| float_status *fpst = (ESIZE == 2) ? \ |
| &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| TYPE v = m[H##ESIZE(e)]; \ |
| if (TYPE##_is_signaling_nan(ra, fpst)) { \ |
| ra = TYPE##_silence_nan(ra, fpst); \ |
| float_raise(float_flag_invalid, fpst); \ |
| } \ |
| if (TYPE##_is_signaling_nan(v, fpst)) { \ |
| v = TYPE##_silence_nan(v, fpst); \ |
| float_raise(float_flag_invalid, fpst); \ |
| } \ |
| if (ABS) { \ |
| v = TYPE##_abs(v); \ |
| } \ |
| ra = FN(ra, v, fpst); \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return ra; \ |
| } \ |
| |
| #define NOP(X) (X) |
| |
| DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum) |
| DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum) |
| DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum) |
| DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum) |
| DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum) |
| DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum) |
| DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum) |
| DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum) |
| |
| /* FP compares; note that all comparisons signal InvalidOp for QNaNs */ |
| #define DO_VCMP_FP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \ |
| { \ |
| TYPE *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| uint16_t beatpred = 0; \ |
| uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| bool r; \ |
| for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \ |
| if ((mask & emask) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & (1 << (e * ESIZE)))) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \ |
| /* Comparison sets 0/1 bits for each byte in the element */ \ |
| beatpred |= r * emask; \ |
| } \ |
| beatpred &= mask; \ |
| env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ |
| (beatpred & eci_mask); \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *n = vn; \ |
| uint16_t mask = mve_element_mask(env); \ |
| uint16_t eci_mask = mve_eci_mask(env); \ |
| uint16_t beatpred = 0; \ |
| uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| bool r; \ |
| for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \ |
| if ((mask & emask) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & (1 << (e * ESIZE)))) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst); \ |
| /* Comparison sets 0/1 bits for each byte in the element */ \ |
| beatpred |= r * emask; \ |
| } \ |
| beatpred &= mask; \ |
| env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \ |
| (beatpred & eci_mask); \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN) \ |
| DO_VCMP_FP(VOP, ESIZE, TYPE, FN) \ |
| DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN) |
| |
| /* |
| * Some care is needed here to get the correct result for the unordered case. |
| * Architecturally EQ, GE and GT are defined to be false for unordered, but |
| * the NE, LT and LE comparisons are defined as simple logical inverses of |
| * EQ, GE and GT and so they must return true for unordered. The softfloat |
| * comparison functions float*_{eq,le,lt} all return false for unordered. |
| */ |
| #define DO_GE16(X, Y, S) float16_le(Y, X, S) |
| #define DO_GE32(X, Y, S) float32_le(Y, X, S) |
| #define DO_GT16(X, Y, S) float16_lt(Y, X, S) |
| #define DO_GT32(X, Y, S) float32_lt(Y, X, S) |
| |
| DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq) |
| DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq) |
| |
| DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq) |
| DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq) |
| |
| DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16) |
| DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32) |
| |
| DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16) |
| DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32) |
| |
| DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16) |
| DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32) |
| |
| DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16) |
| DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32) |
| |
| #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm, \ |
| uint32_t shift) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| TYPE r; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(m[H##ESIZE(e)], shift, fpst); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh) |
| DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh) |
| DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero) |
| DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero) |
| DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos) |
| DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos) |
| DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero) |
| DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero) |
| |
| /* VCVT with specified rmode */ |
| #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vm, uint32_t rmode) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| TYPE r; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| float_status *base_fpst = (ESIZE == 2) ? \ |
| &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| uint32_t prev_rmode = get_float_rounding_mode(base_fpst); \ |
| set_float_rounding_mode(rmode, base_fpst); \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| continue; \ |
| } \ |
| fpst = base_fpst; \ |
| if (!(mask & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(m[H##ESIZE(e)], 0, fpst); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| set_float_rounding_mode(prev_rmode, base_fpst); \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh) |
| DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh) |
| DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls) |
| DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls) |
| |
| #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S) |
| #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S) |
| |
| DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H) |
| DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S) |
| |
| /* |
| * VCVT between halfprec and singleprec. As usual for halfprec |
| * conversions, FZ16 is ignored and AHP is observed. |
| */ |
| static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top) |
| { |
| uint16_t *d = vd; |
| uint32_t *m = vm; |
| uint16_t r; |
| uint16_t mask = mve_element_mask(env); |
| bool ieee = !(env->vfp.fpcr & FPCR_AHP); |
| unsigned e; |
| float_status *fpst; |
| float_status scratch_fpst; |
| float_status *base_fpst = &env->vfp.standard_fp_status; |
| bool old_fz = get_flush_to_zero(base_fpst); |
| set_flush_to_zero(false, base_fpst); |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { |
| if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) { |
| continue; |
| } |
| fpst = base_fpst; |
| if (!(mask & 1)) { |
| /* We need the result but without updating flags */ |
| scratch_fpst = *fpst; |
| fpst = &scratch_fpst; |
| } |
| r = float32_to_float16(m[H4(e)], ieee, fpst); |
| mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2)); |
| } |
| set_flush_to_zero(old_fz, base_fpst); |
| mve_advance_vpt(env); |
| } |
| |
| static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top) |
| { |
| uint32_t *d = vd; |
| uint16_t *m = vm; |
| uint32_t r; |
| uint16_t mask = mve_element_mask(env); |
| bool ieee = !(env->vfp.fpcr & FPCR_AHP); |
| unsigned e; |
| float_status *fpst; |
| float_status scratch_fpst; |
| float_status *base_fpst = &env->vfp.standard_fp_status; |
| bool old_fiz = get_flush_inputs_to_zero(base_fpst); |
| set_flush_inputs_to_zero(false, base_fpst); |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { |
| if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) { |
| continue; |
| } |
| fpst = base_fpst; |
| if (!(mask & (1 << (top * 2)))) { |
| /* We need the result but without updating flags */ |
| scratch_fpst = *fpst; |
| fpst = &scratch_fpst; |
| } |
| r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst); |
| mergemask(&d[H4(e)], r, mask); |
| } |
| set_flush_inputs_to_zero(old_fiz, base_fpst); |
| mve_advance_vpt(env); |
| } |
| |
| void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm) |
| { |
| do_vcvt_sh(env, vd, vm, 0); |
| } |
| void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm) |
| { |
| do_vcvt_sh(env, vd, vm, 1); |
| } |
| void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm) |
| { |
| do_vcvt_hs(env, vd, vm, 0); |
| } |
| void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm) |
| { |
| do_vcvt_hs(env, vd, vm, 1); |
| } |
| |
| #define DO_1OP_FP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| TYPE r; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| float_status *fpst; \ |
| float_status scratch_fpst; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \ |
| continue; \ |
| } \ |
| fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \ |
| &env->vfp.standard_fp_status; \ |
| if (!(mask & 1)) { \ |
| /* We need the result but without updating flags */ \ |
| scratch_fpst = *fpst; \ |
| fpst = &scratch_fpst; \ |
| } \ |
| r = FN(m[H##ESIZE(e)], fpst); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int) |
| DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int) |