| /* | 
 |  * ARM Generic Interrupt Controller v3 (emulation) | 
 |  * | 
 |  * Copyright (c) 2016 Linaro Limited | 
 |  * Written by Peter Maydell | 
 |  * | 
 |  * This code is licensed under the GPL, version 2 or (at your option) | 
 |  * any later version. | 
 |  */ | 
 |  | 
 | /* This file contains the code for the system register interface | 
 |  * portions of the GICv3. | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "qemu/bitops.h" | 
 | #include "qemu/log.h" | 
 | #include "qemu/main-loop.h" | 
 | #include "trace.h" | 
 | #include "gicv3_internal.h" | 
 | #include "hw/irq.h" | 
 | #include "cpu.h" | 
 | #include "target/arm/cpregs.h" | 
 | #include "target/arm/cpu-features.h" | 
 | #include "sysemu/tcg.h" | 
 | #include "sysemu/qtest.h" | 
 |  | 
 | /* | 
 |  * Special case return value from hppvi_index(); must be larger than | 
 |  * the architecturally maximum possible list register index (which is 15) | 
 |  */ | 
 | #define HPPVI_INDEX_VLPI 16 | 
 |  | 
 | static GICv3CPUState *icc_cs_from_env(CPUARMState *env) | 
 | { | 
 |     return env->gicv3state; | 
 | } | 
 |  | 
 | static bool gicv3_use_ns_bank(CPUARMState *env) | 
 | { | 
 |     /* Return true if we should use the NonSecure bank for a banked GIC | 
 |      * CPU interface register. Note that this differs from the | 
 |      * access_secure_reg() function because GICv3 banked registers are | 
 |      * banked even for AArch64, unlike the other CPU system registers. | 
 |      */ | 
 |     return !arm_is_secure_below_el3(env); | 
 | } | 
 |  | 
 | /* The minimum BPR for the virtual interface is a configurable property */ | 
 | static inline int icv_min_vbpr(GICv3CPUState *cs) | 
 | { | 
 |     return 7 - cs->vprebits; | 
 | } | 
 |  | 
 | static inline int ich_num_aprs(GICv3CPUState *cs) | 
 | { | 
 |     /* Return the number of virtual APR registers (1, 2, or 4) */ | 
 |     int aprmax = 1 << (cs->vprebits - 5); | 
 |     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); | 
 |     return aprmax; | 
 | } | 
 |  | 
 | /* Simple accessor functions for LR fields */ | 
 | static uint32_t ich_lr_vintid(uint64_t lr) | 
 | { | 
 |     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); | 
 | } | 
 |  | 
 | static uint32_t ich_lr_pintid(uint64_t lr) | 
 | { | 
 |     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); | 
 | } | 
 |  | 
 | static uint32_t ich_lr_prio(uint64_t lr) | 
 | { | 
 |     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); | 
 | } | 
 |  | 
 | static int ich_lr_state(uint64_t lr) | 
 | { | 
 |     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); | 
 | } | 
 |  | 
 | static bool icv_access(CPUARMState *env, int hcr_flags) | 
 | { | 
 |     /* Return true if this ICC_ register access should really be | 
 |      * directed to an ICV_ access. hcr_flags is a mask of | 
 |      * HCR_EL2 bits to check: we treat this as an ICV_ access | 
 |      * if we are in NS EL1 and at least one of the specified | 
 |      * HCR_EL2 bits is set. | 
 |      * | 
 |      * ICV registers fall into four categories: | 
 |      *  * access if NS EL1 and HCR_EL2.FMO == 1: | 
 |      *    all ICV regs with '0' in their name | 
 |      *  * access if NS EL1 and HCR_EL2.IMO == 1: | 
 |      *    all ICV regs with '1' in their name | 
 |      *  * access if NS EL1 and either IMO or FMO == 1: | 
 |      *    CTLR, DIR, PMR, RPR | 
 |      */ | 
 |     uint64_t hcr_el2 = arm_hcr_el2_eff(env); | 
 |     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); | 
 |  | 
 |     return flagmatch && arm_current_el(env) == 1 | 
 |         && !arm_is_secure_below_el3(env); | 
 | } | 
 |  | 
 | static int read_vbpr(GICv3CPUState *cs, int grp) | 
 | { | 
 |     /* Read VBPR value out of the VMCR field (caller must handle | 
 |      * VCBPR effects if required) | 
 |      */ | 
 |     if (grp == GICV3_G0) { | 
 |         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | 
 |                      ICH_VMCR_EL2_VBPR0_LENGTH); | 
 |     } else { | 
 |         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | 
 |                          ICH_VMCR_EL2_VBPR1_LENGTH); | 
 |     } | 
 | } | 
 |  | 
 | static void write_vbpr(GICv3CPUState *cs, int grp, int value) | 
 | { | 
 |     /* Write new VBPR1 value, handling the "writing a value less than | 
 |      * the minimum sets it to the minimum" semantics. | 
 |      */ | 
 |     int min = icv_min_vbpr(cs); | 
 |  | 
 |     if (grp != GICV3_G0) { | 
 |         min++; | 
 |     } | 
 |  | 
 |     value = MAX(value, min); | 
 |  | 
 |     if (grp == GICV3_G0) { | 
 |         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, | 
 |                                      ICH_VMCR_EL2_VBPR0_LENGTH, value); | 
 |     } else { | 
 |         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, | 
 |                                      ICH_VMCR_EL2_VBPR1_LENGTH, value); | 
 |     } | 
 | } | 
 |  | 
 | static uint32_t icv_fullprio_mask(GICv3CPUState *cs) | 
 | { | 
 |     /* Return a mask word which clears the unimplemented priority bits | 
 |      * from a priority value for a virtual interrupt. (Not to be confused | 
 |      * with the group priority, whose mask depends on the value of VBPR | 
 |      * for the interrupt group.) | 
 |      */ | 
 |     return (~0U << (8 - cs->vpribits)) & 0xff; | 
 | } | 
 |  | 
 | static int ich_highest_active_virt_prio(GICv3CPUState *cs) | 
 | { | 
 |     /* Calculate the current running priority based on the set bits | 
 |      * in the ICH Active Priority Registers. | 
 |      */ | 
 |     int i; | 
 |     int aprmax = ich_num_aprs(cs); | 
 |  | 
 |     if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) { | 
 |         return 0x0; | 
 |     } | 
 |  | 
 |     for (i = 0; i < aprmax; i++) { | 
 |         uint32_t apr = cs->ich_apr[GICV3_G0][i] | | 
 |             cs->ich_apr[GICV3_G1NS][i]; | 
 |  | 
 |         if (!apr) { | 
 |             continue; | 
 |         } | 
 |         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); | 
 |     } | 
 |     /* No current active interrupts: return idle priority */ | 
 |     return 0xff; | 
 | } | 
 |  | 
 | static int hppvi_index(GICv3CPUState *cs) | 
 | { | 
 |     /* | 
 |      * Return the list register index of the highest priority pending | 
 |      * virtual interrupt, as per the HighestPriorityVirtualInterrupt | 
 |      * pseudocode. If no pending virtual interrupts, return -1. | 
 |      * If the highest priority pending virtual interrupt is a vLPI, | 
 |      * return HPPVI_INDEX_VLPI. | 
 |      * (The pseudocode handles checking whether the vLPI is higher | 
 |      * priority than the highest priority list register at every | 
 |      * callsite of HighestPriorityVirtualInterrupt; we check it here.) | 
 |      */ | 
 |     ARMCPU *cpu = ARM_CPU(cs->cpu); | 
 |     CPUARMState *env = &cpu->env; | 
 |     int idx = -1; | 
 |     int i; | 
 |     /* Note that a list register entry with a priority of 0xff will | 
 |      * never be reported by this function; this is the architecturally | 
 |      * correct behaviour. | 
 |      */ | 
 |     int prio = 0xff; | 
 |     bool nmi = false; | 
 |  | 
 |     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { | 
 |         /* Both groups disabled, definitely nothing to do */ | 
 |         return idx; | 
 |     } | 
 |  | 
 |     for (i = 0; i < cs->num_list_regs; i++) { | 
 |         uint64_t lr = cs->ich_lr_el2[i]; | 
 |         bool thisnmi; | 
 |         int thisprio; | 
 |  | 
 |         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { | 
 |             /* Not Pending */ | 
 |             continue; | 
 |         } | 
 |  | 
 |         /* Ignore interrupts if relevant group enable not set */ | 
 |         if (lr & ICH_LR_EL2_GROUP) { | 
 |             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
 |                 continue; | 
 |             } | 
 |         } else { | 
 |             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | 
 |                 continue; | 
 |             } | 
 |         } | 
 |  | 
 |         thisnmi = lr & ICH_LR_EL2_NMI; | 
 |         thisprio = ich_lr_prio(lr); | 
 |  | 
 |         if ((thisprio < prio) || ((thisprio == prio) && (thisnmi & (!nmi)))) { | 
 |             prio = thisprio; | 
 |             nmi = thisnmi; | 
 |             idx = i; | 
 |         } | 
 |     } | 
 |  | 
 |     /* | 
 |      * "no pending vLPI" is indicated with prio = 0xff, which always | 
 |      * fails the priority check here. vLPIs are only considered | 
 |      * when we are in Non-Secure state. | 
 |      */ | 
 |     if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { | 
 |         if (cs->hppvlpi.grp == GICV3_G0) { | 
 |             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { | 
 |                 return HPPVI_INDEX_VLPI; | 
 |             } | 
 |         } else { | 
 |             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { | 
 |                 return HPPVI_INDEX_VLPI; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return idx; | 
 | } | 
 |  | 
 | static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) | 
 | { | 
 |     /* Return a mask word which clears the subpriority bits from | 
 |      * a priority value for a virtual interrupt in the specified group. | 
 |      * This depends on the VBPR value. | 
 |      * If using VBPR0 then: | 
 |      *  a BPR of 0 means the group priority bits are [7:1]; | 
 |      *  a BPR of 1 means they are [7:2], and so on down to | 
 |      *  a BPR of 7 meaning no group priority bits at all. | 
 |      * If using VBPR1 then: | 
 |      *  a BPR of 0 is impossible (the minimum value is 1) | 
 |      *  a BPR of 1 means the group priority bits are [7:1]; | 
 |      *  a BPR of 2 means they are [7:2], and so on down to | 
 |      *  a BPR of 7 meaning the group priority is [7]. | 
 |      * | 
 |      * Which BPR to use depends on the group of the interrupt and | 
 |      * the current ICH_VMCR_EL2.VCBPR settings. | 
 |      * | 
 |      * This corresponds to the VGroupBits() pseudocode. | 
 |      */ | 
 |     int bpr; | 
 |  | 
 |     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | 
 |         group = GICV3_G0; | 
 |     } | 
 |  | 
 |     bpr = read_vbpr(cs, group); | 
 |     if (group == GICV3_G1NS) { | 
 |         assert(bpr > 0); | 
 |         bpr--; | 
 |     } | 
 |  | 
 |     return ~0U << (bpr + 1); | 
 | } | 
 |  | 
 | static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) | 
 | { | 
 |     /* Return true if we can signal this virtual interrupt defined by | 
 |      * the given list register value; see the pseudocode functions | 
 |      * CanSignalVirtualInterrupt and CanSignalVirtualInt. | 
 |      * Compare also icc_hppi_can_preempt() which is the non-virtual | 
 |      * equivalent of these checks. | 
 |      */ | 
 |     int grp; | 
 |     bool is_nmi; | 
 |     uint32_t mask, prio, rprio, vpmr; | 
 |  | 
 |     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { | 
 |         /* Virtual interface disabled */ | 
 |         return false; | 
 |     } | 
 |  | 
 |     /* We don't need to check that this LR is in Pending state because | 
 |      * that has already been done in hppvi_index(). | 
 |      */ | 
 |  | 
 |     prio = ich_lr_prio(lr); | 
 |     is_nmi = lr & ICH_LR_EL2_NMI; | 
 |     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
 |                      ICH_VMCR_EL2_VPMR_LENGTH); | 
 |  | 
 |     if (!is_nmi && prio >= vpmr) { | 
 |         /* Priority mask masks this interrupt */ | 
 |         return false; | 
 |     } | 
 |  | 
 |     rprio = ich_highest_active_virt_prio(cs); | 
 |     if (rprio == 0xff) { | 
 |         /* No running interrupt so we can preempt */ | 
 |         return true; | 
 |     } | 
 |  | 
 |     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
 |  | 
 |     mask = icv_gprio_mask(cs, grp); | 
 |  | 
 |     /* We only preempt a running interrupt if the pending interrupt's | 
 |      * group priority is sufficient (the subpriorities are not considered). | 
 |      */ | 
 |     if ((prio & mask) < (rprio & mask)) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     if ((prio & mask) == (rprio & mask) && is_nmi && | 
 |         !(cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI)) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     return false; | 
 | } | 
 |  | 
 | static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) | 
 | { | 
 |     /* | 
 |      * Return true if we can signal the highest priority pending vLPI. | 
 |      * We can assume we're Non-secure because hppvi_index() already | 
 |      * tested for that. | 
 |      */ | 
 |     uint32_t mask, rprio, vpmr; | 
 |  | 
 |     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { | 
 |         /* Virtual interface disabled */ | 
 |         return false; | 
 |     } | 
 |  | 
 |     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
 |                      ICH_VMCR_EL2_VPMR_LENGTH); | 
 |  | 
 |     if (cs->hppvlpi.prio >= vpmr) { | 
 |         /* Priority mask masks this interrupt */ | 
 |         return false; | 
 |     } | 
 |  | 
 |     rprio = ich_highest_active_virt_prio(cs); | 
 |     if (rprio == 0xff) { | 
 |         /* No running interrupt so we can preempt */ | 
 |         return true; | 
 |     } | 
 |  | 
 |     mask = icv_gprio_mask(cs, cs->hppvlpi.grp); | 
 |  | 
 |     /* | 
 |      * We only preempt a running interrupt if the pending interrupt's | 
 |      * group priority is sufficient (the subpriorities are not considered). | 
 |      */ | 
 |     if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     return false; | 
 | } | 
 |  | 
 | static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, | 
 |                                                 uint32_t *misr) | 
 | { | 
 |     /* Return a set of bits indicating the EOI maintenance interrupt status | 
 |      * for each list register. The EOI maintenance interrupt status is | 
 |      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 | 
 |      * (see the GICv3 spec for the ICH_EISR_EL2 register). | 
 |      * If misr is not NULL then we should also collect the information | 
 |      * about the MISR.EOI, MISR.NP and MISR.U bits. | 
 |      */ | 
 |     uint32_t value = 0; | 
 |     int validcount = 0; | 
 |     bool seenpending = false; | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < cs->num_list_regs; i++) { | 
 |         uint64_t lr = cs->ich_lr_el2[i]; | 
 |  | 
 |         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) | 
 |             == ICH_LR_EL2_EOI) { | 
 |             value |= (1 << i); | 
 |         } | 
 |         if ((lr & ICH_LR_EL2_STATE_MASK)) { | 
 |             validcount++; | 
 |         } | 
 |         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { | 
 |             seenpending = true; | 
 |         } | 
 |     } | 
 |  | 
 |     if (misr) { | 
 |         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { | 
 |             *misr |= ICH_MISR_EL2_U; | 
 |         } | 
 |         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { | 
 |             *misr |= ICH_MISR_EL2_NP; | 
 |         } | 
 |         if (value) { | 
 |             *misr |= ICH_MISR_EL2_EOI; | 
 |         } | 
 |     } | 
 |     return value; | 
 | } | 
 |  | 
 | static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) | 
 | { | 
 |     /* Return a set of bits indicating the maintenance interrupt status | 
 |      * (as seen in the ICH_MISR_EL2 register). | 
 |      */ | 
 |     uint32_t value = 0; | 
 |  | 
 |     /* Scan list registers and fill in the U, NP and EOI bits */ | 
 |     eoi_maintenance_interrupt_state(cs, &value); | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && | 
 |         (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { | 
 |         value |= ICH_MISR_EL2_LRENP; | 
 |     } | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && | 
 |         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { | 
 |         value |= ICH_MISR_EL2_VGRP0E; | 
 |     } | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && | 
 |         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
 |         value |= ICH_MISR_EL2_VGRP0D; | 
 |     } | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && | 
 |         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
 |         value |= ICH_MISR_EL2_VGRP1E; | 
 |     } | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && | 
 |         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { | 
 |         value |= ICH_MISR_EL2_VGRP1D; | 
 |     } | 
 |  | 
 |     return value; | 
 | } | 
 |  | 
 | void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) | 
 | { | 
 |     /* | 
 |      * Tell the CPU about any pending virtual interrupts. | 
 |      * This should only be called for changes that affect the | 
 |      * vIRQ and vFIQ status and do not change the maintenance | 
 |      * interrupt status. This means that unlike gicv3_cpuif_virt_update() | 
 |      * this function won't recursively call back into the GIC code. | 
 |      * The main use of this is when the redistributor has changed the | 
 |      * highest priority pending virtual LPI. | 
 |      */ | 
 |     int idx; | 
 |     int irqlevel = 0; | 
 |     int fiqlevel = 0; | 
 |     int nmilevel = 0; | 
 |  | 
 |     idx = hppvi_index(cs); | 
 |     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, | 
 |                                   cs->hppvlpi.irq, cs->hppvlpi.grp, | 
 |                                   cs->hppvlpi.prio); | 
 |     if (idx == HPPVI_INDEX_VLPI) { | 
 |         if (icv_hppvlpi_can_preempt(cs)) { | 
 |             if (cs->hppvlpi.grp == GICV3_G0) { | 
 |                 fiqlevel = 1; | 
 |             } else { | 
 |                 irqlevel = 1; | 
 |             } | 
 |         } | 
 |     } else if (idx >= 0) { | 
 |         uint64_t lr = cs->ich_lr_el2[idx]; | 
 |  | 
 |         if (icv_hppi_can_preempt(cs, lr)) { | 
 |             /* | 
 |              * Virtual interrupts are simple: G0 are always FIQ, and G1 are | 
 |              * IRQ or NMI which depends on the ICH_LR<n>_EL2.NMI to have | 
 |              * non-maskable property. | 
 |              */ | 
 |             if (lr & ICH_LR_EL2_GROUP) { | 
 |                 if (lr & ICH_LR_EL2_NMI) { | 
 |                     nmilevel = 1; | 
 |                 } else { | 
 |                     irqlevel = 1; | 
 |                 } | 
 |             } else { | 
 |                 fiqlevel = 1; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); | 
 |     qemu_set_irq(cs->parent_vfiq, fiqlevel); | 
 |     qemu_set_irq(cs->parent_virq, irqlevel); | 
 |     qemu_set_irq(cs->parent_vnmi, nmilevel); | 
 | } | 
 |  | 
 | static void gicv3_cpuif_virt_update(GICv3CPUState *cs) | 
 | { | 
 |     /* | 
 |      * Tell the CPU about any pending virtual interrupts or | 
 |      * maintenance interrupts, following a change to the state | 
 |      * of the CPU interface relevant to virtual interrupts. | 
 |      * | 
 |      * CAUTION: this function will call qemu_set_irq() on the | 
 |      * CPU maintenance IRQ line, which is typically wired up | 
 |      * to the GIC as a per-CPU interrupt. This means that it | 
 |      * will recursively call back into the GIC code via | 
 |      * gicv3_redist_set_irq() and thus into the CPU interface code's | 
 |      * gicv3_cpuif_update(). It is therefore important that this | 
 |      * function is only called as the final action of a CPU interface | 
 |      * register write implementation, after all the GIC state | 
 |      * fields have been updated. gicv3_cpuif_update() also must | 
 |      * not cause this function to be called, but that happens | 
 |      * naturally as a result of there being no architectural | 
 |      * linkage between the physical and virtual GIC logic. | 
 |      */ | 
 |     ARMCPU *cpu = ARM_CPU(cs->cpu); | 
 |     int maintlevel = 0; | 
 |  | 
 |     gicv3_cpuif_virt_irq_fiq_update(cs); | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && | 
 |         maintenance_interrupt_state(cs) != 0) { | 
 |         maintlevel = 1; | 
 |     } | 
 |  | 
 |     trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); | 
 |     qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); | 
 | } | 
 |  | 
 | static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int regno = ri->opc2 & 3; | 
 |     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
 |     uint64_t value = cs->ich_apr[grp][regno]; | 
 |  | 
 |     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                          uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int regno = ri->opc2 & 3; | 
 |     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
 |  | 
 |     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (cs->nmi_support) { | 
 |         cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI); | 
 |     } else { | 
 |         cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | 
 |     } | 
 |  | 
 |     gicv3_cpuif_virt_irq_fiq_update(cs); | 
 |     return; | 
 | } | 
 |  | 
 | static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | 
 |     uint64_t bpr; | 
 |     bool satinc = false; | 
 |  | 
 |     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | 
 |         /* reads return bpr0 + 1 saturated to 7, writes ignored */ | 
 |         grp = GICV3_G0; | 
 |         satinc = true; | 
 |     } | 
 |  | 
 |     bpr = read_vbpr(cs, grp); | 
 |  | 
 |     if (satinc) { | 
 |         bpr++; | 
 |         bpr = MIN(bpr, 7); | 
 |     } | 
 |  | 
 |     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); | 
 |  | 
 |     return bpr; | 
 | } | 
 |  | 
 | static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                           uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; | 
 |  | 
 |     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, | 
 |                               gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { | 
 |         /* reads return bpr0 + 1 saturated to 7, writes ignored */ | 
 |         return; | 
 |     } | 
 |  | 
 |     write_vbpr(cs, grp, value); | 
 |  | 
 |     gicv3_cpuif_virt_irq_fiq_update(cs); | 
 | } | 
 |  | 
 | static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
 |                       ICH_VMCR_EL2_VPMR_LENGTH); | 
 |  | 
 |     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                           uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     value &= icv_fullprio_mask(cs); | 
 |  | 
 |     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, | 
 |                                  ICH_VMCR_EL2_VPMR_LENGTH, value); | 
 |  | 
 |     gicv3_cpuif_virt_irq_fiq_update(cs); | 
 | } | 
 |  | 
 | static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int enbit; | 
 |     uint64_t value; | 
 |  | 
 |     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | 
 |     value = extract64(cs->ich_vmcr_el2, enbit, 1); | 
 |  | 
 |     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, | 
 |                                 gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                              uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int enbit; | 
 |  | 
 |     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, | 
 |                                  gicv3_redist_affid(cs), value); | 
 |  | 
 |     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; | 
 |  | 
 |     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); | 
 |     gicv3_cpuif_virt_update(cs); | 
 | } | 
 |  | 
 | static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) | 
 |      * should match the ones reported in ich_vtr_read(). | 
 |      */ | 
 |     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | 
 |         ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); | 
 |  | 
 |     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { | 
 |         value |= ICC_CTLR_EL1_EOIMODE; | 
 |     } | 
 |  | 
 |     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { | 
 |         value |= ICC_CTLR_EL1_CBPR; | 
 |     } | 
 |  | 
 |     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                                uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, | 
 |                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); | 
 |     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, | 
 |                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); | 
 |  | 
 |     gicv3_cpuif_virt_irq_fiq_update(cs); | 
 | } | 
 |  | 
 | static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t prio = ich_highest_active_virt_prio(cs); | 
 |  | 
 |     if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) { | 
 |         prio |= ICV_RPR_EL1_NMI; | 
 |     } | 
 |  | 
 |     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); | 
 |     return prio; | 
 | } | 
 |  | 
 | static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | 
 |     int idx = hppvi_index(cs); | 
 |     uint64_t value = INTID_SPURIOUS; | 
 |  | 
 |     if (idx == HPPVI_INDEX_VLPI) { | 
 |         if (cs->hppvlpi.grp == grp) { | 
 |             value = cs->hppvlpi.irq; | 
 |         } | 
 |     } else if (idx >= 0) { | 
 |         uint64_t lr = cs->ich_lr_el2[idx]; | 
 |         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
 |  | 
 |         if (grp == thisgrp) { | 
 |             value = ich_lr_vintid(lr); | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, | 
 |                                gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) | 
 | { | 
 |     /* Activate the interrupt in the specified list register | 
 |      * by moving it from Pending to Active state, and update the | 
 |      * Active Priority Registers. | 
 |      */ | 
 |     uint32_t mask = icv_gprio_mask(cs, grp); | 
 |     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; | 
 |     bool nmi = cs->ich_lr_el2[idx] & ICH_LR_EL2_NMI; | 
 |     int aprbit = prio >> (8 - cs->vprebits); | 
 |     int regno = aprbit / 32; | 
 |     int regbit = aprbit % 32; | 
 |  | 
 |     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | 
 |     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; | 
 |  | 
 |     if (nmi) { | 
 |         cs->ich_apr[grp][regno] |= ICV_AP1R_EL1_NMI; | 
 |     } else { | 
 |         cs->ich_apr[grp][regno] |= (1 << regbit); | 
 |     } | 
 | } | 
 |  | 
 | static void icv_activate_vlpi(GICv3CPUState *cs) | 
 | { | 
 |     uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); | 
 |     int prio = cs->hppvlpi.prio & mask; | 
 |     int aprbit = prio >> (8 - cs->vprebits); | 
 |     int regno = aprbit / 32; | 
 |     int regbit = aprbit % 32; | 
 |  | 
 |     cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); | 
 |     gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); | 
 | } | 
 |  | 
 | static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | 
 |     int idx = hppvi_index(cs); | 
 |     uint64_t intid = INTID_SPURIOUS; | 
 |     int el = arm_current_el(env); | 
 |  | 
 |     if (idx == HPPVI_INDEX_VLPI) { | 
 |         if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { | 
 |             intid = cs->hppvlpi.irq; | 
 |             icv_activate_vlpi(cs); | 
 |         } | 
 |     } else if (idx >= 0) { | 
 |         uint64_t lr = cs->ich_lr_el2[idx]; | 
 |         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
 |         bool nmi = env->cp15.sctlr_el[el] & SCTLR_NMI && lr & ICH_LR_EL2_NMI; | 
 |  | 
 |         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { | 
 |             intid = ich_lr_vintid(lr); | 
 |             if (!gicv3_intid_is_special(intid)) { | 
 |                 if (!nmi) { | 
 |                     icv_activate_irq(cs, idx, grp); | 
 |                 } else { | 
 |                     intid = INTID_NMI; | 
 |                 } | 
 |             } else { | 
 |                 /* Interrupt goes from Pending to Invalid */ | 
 |                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | 
 |                 /* We will now return the (bogus) ID from the list register, | 
 |                  * as per the pseudocode. | 
 |                  */ | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, | 
 |                              gicv3_redist_affid(cs), intid); | 
 |  | 
 |     gicv3_cpuif_virt_update(cs); | 
 |  | 
 |     return intid; | 
 | } | 
 |  | 
 | static uint64_t icv_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int idx = hppvi_index(cs); | 
 |     uint64_t intid = INTID_SPURIOUS; | 
 |  | 
 |     if (idx >= 0 && idx != HPPVI_INDEX_VLPI) { | 
 |         uint64_t lr = cs->ich_lr_el2[idx]; | 
 |         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
 |  | 
 |         if ((thisgrp == GICV3_G1NS) && icv_hppi_can_preempt(cs, lr)) { | 
 |             intid = ich_lr_vintid(lr); | 
 |             if (!gicv3_intid_is_special(intid)) { | 
 |                 if (lr & ICH_LR_EL2_NMI) { | 
 |                     icv_activate_irq(cs, idx, GICV3_G1NS); | 
 |                 } else { | 
 |                     intid = INTID_SPURIOUS; | 
 |                 } | 
 |             } else { | 
 |                 /* Interrupt goes from Pending to Invalid */ | 
 |                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; | 
 |                 /* | 
 |                  * We will now return the (bogus) ID from the list register, | 
 |                  * as per the pseudocode. | 
 |                  */ | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_icv_nmiar1_read(gicv3_redist_affid(cs), intid); | 
 |  | 
 |     gicv3_cpuif_virt_update(cs); | 
 |  | 
 |     return intid; | 
 | } | 
 |  | 
 | static uint32_t icc_fullprio_mask(GICv3CPUState *cs) | 
 | { | 
 |     /* | 
 |      * Return a mask word which clears the unimplemented priority bits | 
 |      * from a priority value for a physical interrupt. (Not to be confused | 
 |      * with the group priority, whose mask depends on the value of BPR | 
 |      * for the interrupt group.) | 
 |      */ | 
 |     return (~0U << (8 - cs->pribits)) & 0xff; | 
 | } | 
 |  | 
 | static inline int icc_min_bpr(GICv3CPUState *cs) | 
 | { | 
 |     /* The minimum BPR for the physical interface. */ | 
 |     return 7 - cs->prebits; | 
 | } | 
 |  | 
 | static inline int icc_min_bpr_ns(GICv3CPUState *cs) | 
 | { | 
 |     return icc_min_bpr(cs) + 1; | 
 | } | 
 |  | 
 | static inline int icc_num_aprs(GICv3CPUState *cs) | 
 | { | 
 |     /* Return the number of APR registers (1, 2, or 4) */ | 
 |     int aprmax = 1 << MAX(cs->prebits - 5, 0); | 
 |     assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); | 
 |     return aprmax; | 
 | } | 
 |  | 
 | static int icc_highest_active_prio(GICv3CPUState *cs) | 
 | { | 
 |     /* Calculate the current running priority based on the set bits | 
 |      * in the Active Priority Registers. | 
 |      */ | 
 |     int i; | 
 |  | 
 |     if (cs->nmi_support) { | 
 |         /* | 
 |          * If an NMI is active this takes precedence over anything else | 
 |          * for priority purposes; the NMI bit is only in the AP1R0 bit. | 
 |          * We return here the effective priority of the NMI, which is | 
 |          * either 0x0 or 0x80. Callers will need to check NMI again for | 
 |          * purposes of either setting the RPR register bits or for | 
 |          * prioritization of NMI vs non-NMI. | 
 |          */ | 
 |         if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { | 
 |             return 0; | 
 |         } | 
 |         if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { | 
 |             return (cs->gic->gicd_ctlr & GICD_CTLR_DS) ? 0 : 0x80; | 
 |         } | 
 |     } | 
 |  | 
 |     for (i = 0; i < icc_num_aprs(cs); i++) { | 
 |         uint32_t apr = cs->icc_apr[GICV3_G0][i] | | 
 |             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; | 
 |  | 
 |         if (!apr) { | 
 |             continue; | 
 |         } | 
 |         return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); | 
 |     } | 
 |     /* No current active interrupts: return idle priority */ | 
 |     return 0xff; | 
 | } | 
 |  | 
 | static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) | 
 | { | 
 |     /* Return a mask word which clears the subpriority bits from | 
 |      * a priority value for an interrupt in the specified group. | 
 |      * This depends on the BPR value. For CBPR0 (S or NS): | 
 |      *  a BPR of 0 means the group priority bits are [7:1]; | 
 |      *  a BPR of 1 means they are [7:2], and so on down to | 
 |      *  a BPR of 7 meaning no group priority bits at all. | 
 |      * For CBPR1 NS: | 
 |      *  a BPR of 0 is impossible (the minimum value is 1) | 
 |      *  a BPR of 1 means the group priority bits are [7:1]; | 
 |      *  a BPR of 2 means they are [7:2], and so on down to | 
 |      *  a BPR of 7 meaning the group priority is [7]. | 
 |      * | 
 |      * Which BPR to use depends on the group of the interrupt and | 
 |      * the current ICC_CTLR.CBPR settings. | 
 |      * | 
 |      * This corresponds to the GroupBits() pseudocode. | 
 |      */ | 
 |     int bpr; | 
 |  | 
 |     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || | 
 |         (group == GICV3_G1NS && | 
 |          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | 
 |         group = GICV3_G0; | 
 |     } | 
 |  | 
 |     bpr = cs->icc_bpr[group] & 7; | 
 |  | 
 |     if (group == GICV3_G1NS) { | 
 |         assert(bpr > 0); | 
 |         bpr--; | 
 |     } | 
 |  | 
 |     return ~0U << (bpr + 1); | 
 | } | 
 |  | 
 | static bool icc_no_enabled_hppi(GICv3CPUState *cs) | 
 | { | 
 |     /* Return true if there is no pending interrupt, or the | 
 |      * highest priority pending interrupt is in a group which has been | 
 |      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. | 
 |      */ | 
 |     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); | 
 | } | 
 |  | 
 | static bool icc_hppi_can_preempt(GICv3CPUState *cs) | 
 | { | 
 |     /* Return true if we have a pending interrupt of sufficient | 
 |      * priority to preempt. | 
 |      */ | 
 |     int rprio; | 
 |     uint32_t mask; | 
 |     ARMCPU *cpu = ARM_CPU(cs->cpu); | 
 |     CPUARMState *env = &cpu->env; | 
 |  | 
 |     if (icc_no_enabled_hppi(cs)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (cs->hppi.nmi) { | 
 |         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | 
 |             cs->hppi.grp == GICV3_G1NS) { | 
 |             if (cs->icc_pmr_el1 < 0x80) { | 
 |                 return false; | 
 |             } | 
 |             if (arm_is_secure(env) && cs->icc_pmr_el1 == 0x80) { | 
 |                 return false; | 
 |             } | 
 |         } | 
 |     } else if (cs->hppi.prio >= cs->icc_pmr_el1) { | 
 |         /* Priority mask masks this interrupt */ | 
 |         return false; | 
 |     } | 
 |  | 
 |     rprio = icc_highest_active_prio(cs); | 
 |     if (rprio == 0xff) { | 
 |         /* No currently running interrupt so we can preempt */ | 
 |         return true; | 
 |     } | 
 |  | 
 |     mask = icc_gprio_mask(cs, cs->hppi.grp); | 
 |  | 
 |     /* We only preempt a running interrupt if the pending interrupt's | 
 |      * group priority is sufficient (the subpriorities are not considered). | 
 |      */ | 
 |     if ((cs->hppi.prio & mask) < (rprio & mask)) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     if (cs->hppi.nmi && (cs->hppi.prio & mask) == (rprio & mask)) { | 
 |         if (!(cs->icc_apr[cs->hppi.grp][0] & ICC_AP1R_EL1_NMI)) { | 
 |             return true; | 
 |         } | 
 |     } | 
 |  | 
 |     return false; | 
 | } | 
 |  | 
 | void gicv3_cpuif_update(GICv3CPUState *cs) | 
 | { | 
 |     /* Tell the CPU about its highest priority pending interrupt */ | 
 |     int irqlevel = 0; | 
 |     int fiqlevel = 0; | 
 |     int nmilevel = 0; | 
 |     ARMCPU *cpu = ARM_CPU(cs->cpu); | 
 |     CPUARMState *env = &cpu->env; | 
 |  | 
 |     g_assert(bql_locked()); | 
 |  | 
 |     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, | 
 |                              cs->hppi.grp, cs->hppi.prio); | 
 |  | 
 |     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { | 
 |         /* If a Security-enabled GIC sends a G1S interrupt to a | 
 |          * Security-disabled CPU, we must treat it as if it were G0. | 
 |          */ | 
 |         cs->hppi.grp = GICV3_G0; | 
 |     } | 
 |  | 
 |     if (icc_hppi_can_preempt(cs)) { | 
 |         /* We have an interrupt: should we signal it as IRQ or FIQ? | 
 |          * This is described in the GICv3 spec section 4.6.2. | 
 |          */ | 
 |         bool isfiq; | 
 |  | 
 |         switch (cs->hppi.grp) { | 
 |         case GICV3_G0: | 
 |             isfiq = true; | 
 |             break; | 
 |         case GICV3_G1: | 
 |             isfiq = (!arm_is_secure(env) || | 
 |                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); | 
 |             break; | 
 |         case GICV3_G1NS: | 
 |             isfiq = arm_is_secure(env); | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |  | 
 |         if (isfiq) { | 
 |             fiqlevel = 1; | 
 |         } else if (cs->hppi.nmi) { | 
 |             nmilevel = 1; | 
 |         } else { | 
 |             irqlevel = 1; | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); | 
 |  | 
 |     qemu_set_irq(cs->parent_fiq, fiqlevel); | 
 |     qemu_set_irq(cs->parent_irq, irqlevel); | 
 |     qemu_set_irq(cs->parent_nmi, nmilevel); | 
 | } | 
 |  | 
 | static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint32_t value = cs->icc_pmr_el1; | 
 |  | 
 |     if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
 |         return icv_pmr_read(env, ri); | 
 |     } | 
 |  | 
 |     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && | 
 |         (env->cp15.scr_el3 & SCR_FIQ)) { | 
 |         /* NS access and Group 0 is inaccessible to NS: return the | 
 |          * NS view of the current priority | 
 |          */ | 
 |         if ((value & 0x80) == 0) { | 
 |             /* Secure priorities not visible to NS */ | 
 |             value = 0; | 
 |         } else if (value != 0xff) { | 
 |             value = (value << 1) & 0xff; | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); | 
 |  | 
 |     return value; | 
 | } | 
 |  | 
 | static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                           uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
 |         return icv_pmr_write(env, ri, value); | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && | 
 |         (env->cp15.scr_el3 & SCR_FIQ)) { | 
 |         /* NS access and Group 0 is inaccessible to NS: return the | 
 |          * NS view of the current priority | 
 |          */ | 
 |         if (!(cs->icc_pmr_el1 & 0x80)) { | 
 |             /* Current PMR in the secure range, don't allow NS to change it */ | 
 |             return; | 
 |         } | 
 |         value = (value >> 1) | 0x80; | 
 |     } | 
 |     value &= icc_fullprio_mask(cs); | 
 |     cs->icc_pmr_el1 = value; | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 | static void icc_activate_irq(GICv3CPUState *cs, int irq) | 
 | { | 
 |     /* Move the interrupt from the Pending state to Active, and update | 
 |      * the Active Priority Registers | 
 |      */ | 
 |     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); | 
 |     int prio = cs->hppi.prio & mask; | 
 |     int aprbit = prio >> (8 - cs->prebits); | 
 |     int regno = aprbit / 32; | 
 |     int regbit = aprbit % 32; | 
 |     bool nmi = cs->hppi.nmi; | 
 |  | 
 |     if (nmi) { | 
 |         cs->icc_apr[cs->hppi.grp][regno] |= ICC_AP1R_EL1_NMI; | 
 |     } else { | 
 |         cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); | 
 |     } | 
 |  | 
 |     if (irq < GIC_INTERNAL) { | 
 |         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); | 
 |         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); | 
 |         gicv3_redist_update(cs); | 
 |     } else if (irq < GICV3_LPI_INTID_START) { | 
 |         gicv3_gicd_active_set(cs->gic, irq); | 
 |         gicv3_gicd_pending_clear(cs->gic, irq); | 
 |         gicv3_update(cs->gic, irq, 1); | 
 |     } else { | 
 |         gicv3_redist_lpi_pending(cs, irq, 0); | 
 |     } | 
 | } | 
 |  | 
 | static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) | 
 | { | 
 |     /* Return the highest priority pending interrupt register value | 
 |      * for group 0. | 
 |      */ | 
 |     bool irq_is_secure; | 
 |  | 
 |     if (icc_no_enabled_hppi(cs)) { | 
 |         return INTID_SPURIOUS; | 
 |     } | 
 |  | 
 |     /* Check whether we can return the interrupt or if we should return | 
 |      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers | 
 |      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | 
 |      * is always zero.) | 
 |      */ | 
 |     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | 
 |                      (cs->hppi.grp != GICV3_G1NS)); | 
 |  | 
 |     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { | 
 |         return INTID_SPURIOUS; | 
 |     } | 
 |     if (irq_is_secure && !arm_is_secure(env)) { | 
 |         /* Secure interrupts not visible to Nonsecure */ | 
 |         return INTID_SPURIOUS; | 
 |     } | 
 |  | 
 |     if (cs->hppi.grp != GICV3_G0) { | 
 |         /* Indicate to EL3 that there's a Group 1 interrupt for the other | 
 |          * state pending. | 
 |          */ | 
 |         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; | 
 |     } | 
 |  | 
 |     return cs->hppi.irq; | 
 | } | 
 |  | 
 | static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) | 
 | { | 
 |     /* Return the highest priority pending interrupt register value | 
 |      * for group 1. | 
 |      */ | 
 |     bool irq_is_secure; | 
 |  | 
 |     if (icc_no_enabled_hppi(cs)) { | 
 |         return INTID_SPURIOUS; | 
 |     } | 
 |  | 
 |     /* Check whether we can return the interrupt or if we should return | 
 |      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers | 
 |      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM | 
 |      * is always zero.) | 
 |      */ | 
 |     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && | 
 |                      (cs->hppi.grp != GICV3_G1NS)); | 
 |  | 
 |     if (cs->hppi.grp == GICV3_G0) { | 
 |         /* Group 0 interrupts not visible via HPPIR1 */ | 
 |         return INTID_SPURIOUS; | 
 |     } | 
 |     if (irq_is_secure) { | 
 |         if (!arm_is_secure(env)) { | 
 |             /* Secure interrupts not visible in Non-secure */ | 
 |             return INTID_SPURIOUS; | 
 |         } | 
 |     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { | 
 |         /* Group 1 non-secure interrupts not visible in Secure EL1 */ | 
 |         return INTID_SPURIOUS; | 
 |     } | 
 |  | 
 |     return cs->hppi.irq; | 
 | } | 
 |  | 
 | static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t intid; | 
 |  | 
 |     if (icv_access(env, HCR_FMO)) { | 
 |         return icv_iar_read(env, ri); | 
 |     } | 
 |  | 
 |     if (!icc_hppi_can_preempt(cs)) { | 
 |         intid = INTID_SPURIOUS; | 
 |     } else { | 
 |         intid = icc_hppir0_value(cs, env); | 
 |     } | 
 |  | 
 |     if (!gicv3_intid_is_special(intid)) { | 
 |         icc_activate_irq(cs, intid); | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); | 
 |     return intid; | 
 | } | 
 |  | 
 | static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int el = arm_current_el(env); | 
 |     uint64_t intid; | 
 |  | 
 |     if (icv_access(env, HCR_IMO)) { | 
 |         return icv_iar_read(env, ri); | 
 |     } | 
 |  | 
 |     if (!icc_hppi_can_preempt(cs)) { | 
 |         intid = INTID_SPURIOUS; | 
 |     } else { | 
 |         intid = icc_hppir1_value(cs, env); | 
 |     } | 
 |  | 
 |     if (!gicv3_intid_is_special(intid)) { | 
 |         if (cs->hppi.nmi && env->cp15.sctlr_el[el] & SCTLR_NMI) { | 
 |             intid = INTID_NMI; | 
 |         } else { | 
 |             icc_activate_irq(cs, intid); | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); | 
 |     return intid; | 
 | } | 
 |  | 
 | static uint64_t icc_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t intid; | 
 |  | 
 |     if (icv_access(env, HCR_IMO)) { | 
 |         return icv_nmiar1_read(env, ri); | 
 |     } | 
 |  | 
 |     if (!icc_hppi_can_preempt(cs)) { | 
 |         intid = INTID_SPURIOUS; | 
 |     } else { | 
 |         intid = icc_hppir1_value(cs, env); | 
 |     } | 
 |  | 
 |     if (!gicv3_intid_is_special(intid)) { | 
 |         if (!cs->hppi.nmi) { | 
 |             intid = INTID_SPURIOUS; | 
 |         } else { | 
 |             icc_activate_irq(cs, intid); | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_nmiar1_read(gicv3_redist_affid(cs), intid); | 
 |     return intid; | 
 | } | 
 |  | 
 | static void icc_drop_prio(GICv3CPUState *cs, int grp) | 
 | { | 
 |     /* Drop the priority of the currently active interrupt in | 
 |      * the specified group. | 
 |      * | 
 |      * Note that we can guarantee (because of the requirement to nest | 
 |      * ICC_IAR reads [which activate an interrupt and raise priority] | 
 |      * with ICC_EOIR writes [which drop the priority for the interrupt]) | 
 |      * that the interrupt we're being called for is the highest priority | 
 |      * active interrupt, meaning that it has the lowest set bit in the | 
 |      * APR registers. | 
 |      * | 
 |      * If the guest does not honour the ordering constraints then the | 
 |      * behaviour of the GIC is UNPREDICTABLE, which for us means that | 
 |      * the values of the APR registers might become incorrect and the | 
 |      * running priority will be wrong, so interrupts that should preempt | 
 |      * might not do so, and interrupts that should not preempt might do so. | 
 |      */ | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < icc_num_aprs(cs); i++) { | 
 |         uint64_t *papr = &cs->icc_apr[grp][i]; | 
 |  | 
 |         if (!*papr) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         if (i == 0 && cs->nmi_support && (*papr & ICC_AP1R_EL1_NMI)) { | 
 |             *papr &= (~ICC_AP1R_EL1_NMI); | 
 |             break; | 
 |         } | 
 |  | 
 |         /* Clear the lowest set bit */ | 
 |         *papr &= *papr - 1; | 
 |         break; | 
 |     } | 
 |  | 
 |     /* running priority change means we need an update for this cpu i/f */ | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 | static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) | 
 | { | 
 |     /* Return true if we should split priority drop and interrupt | 
 |      * deactivation, ie whether the relevant EOIMode bit is set. | 
 |      */ | 
 |     if (arm_is_el3_or_mon(env)) { | 
 |         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; | 
 |     } | 
 |     if (arm_is_secure_below_el3(env)) { | 
 |         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; | 
 |     } else { | 
 |         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; | 
 |     } | 
 | } | 
 |  | 
 | static int icc_highest_active_group(GICv3CPUState *cs) | 
 | { | 
 |     /* Return the group with the highest priority active interrupt. | 
 |      * We can do this by just comparing the APRs to see which one | 
 |      * has the lowest set bit. | 
 |      * (If more than one group is active at the same priority then | 
 |      * we're in UNPREDICTABLE territory.) | 
 |      */ | 
 |     int i; | 
 |  | 
 |     if (cs->nmi_support) { | 
 |         if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { | 
 |             return GICV3_G1; | 
 |         } | 
 |         if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { | 
 |             return GICV3_G1NS; | 
 |         } | 
 |     } | 
 |  | 
 |     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { | 
 |         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); | 
 |         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); | 
 |         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); | 
 |  | 
 |         if (g1nsctz < g0ctz && g1nsctz < g1ctz) { | 
 |             return GICV3_G1NS; | 
 |         } | 
 |         if (g1ctz < g0ctz) { | 
 |             return GICV3_G1; | 
 |         } | 
 |         if (g0ctz < 32) { | 
 |             return GICV3_G0; | 
 |         } | 
 |     } | 
 |     /* No set active bits? UNPREDICTABLE; return -1 so the caller | 
 |      * ignores the spurious EOI attempt. | 
 |      */ | 
 |     return -1; | 
 | } | 
 |  | 
 | static void icc_deactivate_irq(GICv3CPUState *cs, int irq) | 
 | { | 
 |     if (irq < GIC_INTERNAL) { | 
 |         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); | 
 |         gicv3_redist_update(cs); | 
 |     } else { | 
 |         gicv3_gicd_active_clear(cs->gic, irq); | 
 |         gicv3_update(cs->gic, irq, 1); | 
 |     } | 
 | } | 
 |  | 
 | static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) | 
 | { | 
 |     /* Return true if we should split priority drop and interrupt | 
 |      * deactivation, ie whether the virtual EOIMode bit is set. | 
 |      */ | 
 |     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; | 
 | } | 
 |  | 
 | static int icv_find_active(GICv3CPUState *cs, int irq) | 
 | { | 
 |     /* Given an interrupt number for an active interrupt, return the index | 
 |      * of the corresponding list register, or -1 if there is no match. | 
 |      * Corresponds to FindActiveVirtualInterrupt pseudocode. | 
 |      */ | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < cs->num_list_regs; i++) { | 
 |         uint64_t lr = cs->ich_lr_el2[i]; | 
 |  | 
 |         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { | 
 |             return i; | 
 |         } | 
 |     } | 
 |  | 
 |     return -1; | 
 | } | 
 |  | 
 | static void icv_deactivate_irq(GICv3CPUState *cs, int idx) | 
 | { | 
 |     /* Deactivate the interrupt in the specified list register index */ | 
 |     uint64_t lr = cs->ich_lr_el2[idx]; | 
 |  | 
 |     if (lr & ICH_LR_EL2_HW) { | 
 |         /* Deactivate the associated physical interrupt */ | 
 |         int pirq = ich_lr_pintid(lr); | 
 |  | 
 |         if (pirq < INTID_SECURE) { | 
 |             icc_deactivate_irq(cs, pirq); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Clear the 'active' part of the state, so ActivePending->Pending | 
 |      * and Active->Invalid. | 
 |      */ | 
 |     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; | 
 |     cs->ich_lr_el2[idx] = lr; | 
 | } | 
 |  | 
 | static void icv_increment_eoicount(GICv3CPUState *cs) | 
 | { | 
 |     /* Increment the EOICOUNT field in ICH_HCR_EL2 */ | 
 |     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | 
 |                              ICH_HCR_EL2_EOICOUNT_LENGTH); | 
 |  | 
 |     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, | 
 |                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); | 
 | } | 
 |  | 
 | static int icv_drop_prio(GICv3CPUState *cs, bool *nmi) | 
 | { | 
 |     /* Drop the priority of the currently active virtual interrupt | 
 |      * (favouring group 0 if there is a set active bit at | 
 |      * the same priority for both group 0 and group 1). | 
 |      * Return the priority value for the bit we just cleared, | 
 |      * or 0xff if no bits were set in the AP registers at all. | 
 |      * Note that though the ich_apr[] are uint64_t only the low | 
 |      * 32 bits are actually relevant. | 
 |      */ | 
 |     int i; | 
 |     int aprmax = ich_num_aprs(cs); | 
 |  | 
 |     for (i = 0; i < aprmax; i++) { | 
 |         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; | 
 |         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; | 
 |         int apr0count, apr1count; | 
 |  | 
 |         if (!*papr0 && !*papr1) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         if (i == 0 && cs->nmi_support && (*papr1 & ICV_AP1R_EL1_NMI)) { | 
 |             *papr1 &= (~ICV_AP1R_EL1_NMI); | 
 |             *nmi = true; | 
 |             return 0xff; | 
 |         } | 
 |  | 
 |         /* We can't just use the bit-twiddling hack icc_drop_prio() does | 
 |          * because we need to return the bit number we cleared so | 
 |          * it can be compared against the list register's priority field. | 
 |          */ | 
 |         apr0count = ctz32(*papr0); | 
 |         apr1count = ctz32(*papr1); | 
 |  | 
 |         if (apr0count <= apr1count) { | 
 |             *papr0 &= *papr0 - 1; | 
 |             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); | 
 |         } else { | 
 |             *papr1 &= *papr1 - 1; | 
 |             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); | 
 |         } | 
 |     } | 
 |     return 0xff; | 
 | } | 
 |  | 
 | static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                           uint64_t value) | 
 | { | 
 |     /* Deactivate interrupt */ | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int idx; | 
 |     int irq = value & 0xffffff; | 
 |  | 
 |     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (irq >= GICV3_MAXIRQ) { | 
 |         /* Also catches special interrupt numbers and LPIs */ | 
 |         return; | 
 |     } | 
 |  | 
 |     if (!icv_eoi_split(env, cs)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     idx = icv_find_active(cs, irq); | 
 |  | 
 |     if (idx < 0) { | 
 |         /* No list register matching this, so increment the EOI count | 
 |          * (might trigger a maintenance interrupt) | 
 |          */ | 
 |         icv_increment_eoicount(cs); | 
 |     } else { | 
 |         icv_deactivate_irq(cs, idx); | 
 |     } | 
 |  | 
 |     gicv3_cpuif_virt_update(cs); | 
 | } | 
 |  | 
 | static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                            uint64_t value) | 
 | { | 
 |     /* End of Interrupt */ | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int irq = value & 0xffffff; | 
 |     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; | 
 |     int idx, dropprio; | 
 |     bool nmi = false; | 
 |  | 
 |     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, | 
 |                                gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (gicv3_intid_is_special(irq)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     /* We implement the IMPDEF choice of "drop priority before doing | 
 |      * error checks" (because that lets us avoid scanning the AP | 
 |      * registers twice). | 
 |      */ | 
 |     dropprio = icv_drop_prio(cs, &nmi); | 
 |     if (dropprio == 0xff && !nmi) { | 
 |         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE | 
 |          * whether the list registers are checked in this | 
 |          * situation; we choose not to. | 
 |          */ | 
 |         return; | 
 |     } | 
 |  | 
 |     idx = icv_find_active(cs, irq); | 
 |  | 
 |     if (idx < 0) { | 
 |         /* | 
 |          * No valid list register corresponding to EOI ID; if this is a vLPI | 
 |          * not in the list regs then do nothing; otherwise increment EOI count | 
 |          */ | 
 |         if (irq < GICV3_LPI_INTID_START) { | 
 |             icv_increment_eoicount(cs); | 
 |         } | 
 |     } else { | 
 |         uint64_t lr = cs->ich_lr_el2[idx]; | 
 |         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; | 
 |         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); | 
 |         bool thisnmi = lr & ICH_LR_EL2_NMI; | 
 |  | 
 |         if (thisgrp == grp && (lr_gprio == dropprio || (thisnmi & nmi))) { | 
 |             if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) { | 
 |                 /* | 
 |                  * Priority drop and deactivate not split: deactivate irq now. | 
 |                  * LPIs always get their active state cleared immediately | 
 |                  * because no separate deactivate is expected. | 
 |                  */ | 
 |                 icv_deactivate_irq(cs, idx); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     gicv3_cpuif_virt_update(cs); | 
 | } | 
 |  | 
 | static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                            uint64_t value) | 
 | { | 
 |     /* End of Interrupt */ | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int irq = value & 0xffffff; | 
 |     int grp; | 
 |     bool is_eoir0 = ri->crm == 8; | 
 |  | 
 |     if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { | 
 |         icv_eoir_write(env, ri, value); | 
 |         return; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, | 
 |                                gicv3_redist_affid(cs), value); | 
 |  | 
 |     if ((irq >= cs->gic->num_irq) && | 
 |         !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { | 
 |         /* This handles two cases: | 
 |          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] | 
 |          * to the GICC_EOIR, the GIC ignores that write. | 
 |          * 2. If software writes the number of a non-existent interrupt | 
 |          * this must be a subcase of "value written does not match the last | 
 |          * valid interrupt value read from the Interrupt Acknowledge | 
 |          * register" and so this is UNPREDICTABLE. We choose to ignore it. | 
 |          */ | 
 |         return; | 
 |     } | 
 |  | 
 |     grp = icc_highest_active_group(cs); | 
 |     switch (grp) { | 
 |     case GICV3_G0: | 
 |         if (!is_eoir0) { | 
 |             return; | 
 |         } | 
 |         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) | 
 |             && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { | 
 |             return; | 
 |         } | 
 |         break; | 
 |     case GICV3_G1: | 
 |         if (is_eoir0) { | 
 |             return; | 
 |         } | 
 |         if (!arm_is_secure(env)) { | 
 |             return; | 
 |         } | 
 |         break; | 
 |     case GICV3_G1NS: | 
 |         if (is_eoir0) { | 
 |             return; | 
 |         } | 
 |         if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { | 
 |             return; | 
 |         } | 
 |         break; | 
 |     default: | 
 |         qemu_log_mask(LOG_GUEST_ERROR, | 
 |                       "%s: IRQ %d isn't active\n", __func__, irq); | 
 |         return; | 
 |     } | 
 |  | 
 |     icc_drop_prio(cs, grp); | 
 |  | 
 |     if (!icc_eoi_split(env, cs)) { | 
 |         /* Priority drop and deactivate not split: deactivate irq now */ | 
 |         icc_deactivate_irq(cs, irq); | 
 |     } | 
 | } | 
 |  | 
 | static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     if (icv_access(env, HCR_FMO)) { | 
 |         return icv_hppir_read(env, ri); | 
 |     } | 
 |  | 
 |     value = icc_hppir0_value(cs, env); | 
 |     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     if (icv_access(env, HCR_IMO)) { | 
 |         return icv_hppir_read(env, ri); | 
 |     } | 
 |  | 
 |     value = icc_hppir1_value(cs, env); | 
 |     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | 
 |     bool satinc = false; | 
 |     uint64_t bpr; | 
 |  | 
 |     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
 |         return icv_bpr_read(env, ri); | 
 |     } | 
 |  | 
 |     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
 |         grp = GICV3_G1NS; | 
 |     } | 
 |  | 
 |     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | 
 |         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | 
 |         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | 
 |          * modify BPR0 | 
 |          */ | 
 |         grp = GICV3_G0; | 
 |     } | 
 |  | 
 |     if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | 
 |         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | 
 |         /* reads return bpr0 + 1 sat to 7, writes ignored */ | 
 |         grp = GICV3_G0; | 
 |         satinc = true; | 
 |     } | 
 |  | 
 |     bpr = cs->icc_bpr[grp]; | 
 |     if (satinc) { | 
 |         bpr++; | 
 |         bpr = MIN(bpr, 7); | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); | 
 |  | 
 |     return bpr; | 
 | } | 
 |  | 
 | static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                           uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; | 
 |     uint64_t minval; | 
 |  | 
 |     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
 |         icv_bpr_write(env, ri, value); | 
 |         return; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, | 
 |                               gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
 |         grp = GICV3_G1NS; | 
 |     } | 
 |  | 
 |     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && | 
 |         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { | 
 |         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses | 
 |          * modify BPR0 | 
 |          */ | 
 |         grp = GICV3_G0; | 
 |     } | 
 |  | 
 |     if (grp == GICV3_G1NS && arm_current_el(env) < 3 && | 
 |         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { | 
 |         /* reads return bpr0 + 1 sat to 7, writes ignored */ | 
 |         return; | 
 |     } | 
 |  | 
 |     minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); | 
 |     if (value < minval) { | 
 |         value = minval; | 
 |     } | 
 |  | 
 |     cs->icc_bpr[grp] = value & 7; | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 | static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     int regno = ri->opc2 & 3; | 
 |     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; | 
 |  | 
 |     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
 |         return icv_ap_read(env, ri); | 
 |     } | 
 |  | 
 |     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
 |         grp = GICV3_G1NS; | 
 |     } | 
 |  | 
 |     value = cs->icc_apr[grp][regno]; | 
 |  | 
 |     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                          uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     int regno = ri->opc2 & 3; | 
 |     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; | 
 |  | 
 |     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
 |         icv_ap_write(env, ri, value); | 
 |         return; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
 |         grp = GICV3_G1NS; | 
 |     } | 
 |  | 
 |     /* It's not possible to claim that a Non-secure interrupt is active | 
 |      * at a priority outside the Non-secure range (128..255), since this | 
 |      * would otherwise allow malicious NS code to block delivery of S interrupts | 
 |      * by writing a bad value to these registers. | 
 |      */ | 
 |     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (cs->nmi_support) { | 
 |         cs->icc_apr[grp][regno] = value & (0xFFFFFFFFU | ICC_AP1R_EL1_NMI); | 
 |     } else { | 
 |         cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; | 
 |     } | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 | static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                           uint64_t value) | 
 | { | 
 |     /* Deactivate interrupt */ | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int irq = value & 0xffffff; | 
 |     bool irq_is_secure, single_sec_state, irq_is_grp0; | 
 |     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; | 
 |  | 
 |     if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
 |         icv_dir_write(env, ri, value); | 
 |         return; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (irq >= cs->gic->num_irq) { | 
 |         /* Also catches special interrupt numbers and LPIs */ | 
 |         return; | 
 |     } | 
 |  | 
 |     if (!icc_eoi_split(env, cs)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     int grp = gicv3_irq_group(cs->gic, cs, irq); | 
 |  | 
 |     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; | 
 |     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); | 
 |     irq_is_grp0 = grp == GICV3_G0; | 
 |  | 
 |     /* Check whether we're allowed to deactivate this interrupt based | 
 |      * on its group and the current CPU state. | 
 |      * These checks are laid out to correspond to the spec's pseudocode. | 
 |      */ | 
 |     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; | 
 |     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; | 
 |     /* No need to include !IsSecure in route_*_to_el2 as it's only | 
 |      * tested in cases where we know !IsSecure is true. | 
 |      */ | 
 |     uint64_t hcr_el2 = arm_hcr_el2_eff(env); | 
 |     route_fiq_to_el2 = hcr_el2 & HCR_FMO; | 
 |     route_irq_to_el2 = hcr_el2 & HCR_IMO; | 
 |  | 
 |     switch (arm_current_el(env)) { | 
 |     case 3: | 
 |         break; | 
 |     case 2: | 
 |         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { | 
 |             break; | 
 |         } | 
 |         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { | 
 |             break; | 
 |         } | 
 |         return; | 
 |     case 1: | 
 |         if (!arm_is_secure_below_el3(env)) { | 
 |             if (single_sec_state && irq_is_grp0 && | 
 |                 !route_fiq_to_el3 && !route_fiq_to_el2) { | 
 |                 break; | 
 |             } | 
 |             if (!irq_is_secure && !irq_is_grp0 && | 
 |                 !route_irq_to_el3 && !route_irq_to_el2) { | 
 |                 break; | 
 |             } | 
 |         } else { | 
 |             if (irq_is_grp0 && !route_fiq_to_el3) { | 
 |                 break; | 
 |             } | 
 |             if (!irq_is_grp0 && | 
 |                 (!irq_is_secure || !single_sec_state) && | 
 |                 !route_irq_to_el3) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |         return; | 
 |     default: | 
 |         g_assert_not_reached(); | 
 |     } | 
 |  | 
 |     icc_deactivate_irq(cs, irq); | 
 | } | 
 |  | 
 | static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t prio; | 
 |  | 
 |     if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
 |         return icv_rpr_read(env, ri); | 
 |     } | 
 |  | 
 |     prio = icc_highest_active_prio(cs); | 
 |  | 
 |     if (arm_feature(env, ARM_FEATURE_EL3) && | 
 |         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { | 
 |         /* NS GIC access and Group 0 is inaccessible to NS */ | 
 |         if ((prio & 0x80) == 0) { | 
 |             /* NS mustn't see priorities in the Secure half of the range */ | 
 |             prio = 0; | 
 |         } else if (prio != 0xff) { | 
 |             /* Non-idle priority: show the Non-secure view of it */ | 
 |             prio = (prio << 1) & 0xff; | 
 |         } | 
 |     } | 
 |  | 
 |     if (cs->nmi_support) { | 
 |         /* NMI info is reported in the high bits of RPR */ | 
 |         if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { | 
 |             if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { | 
 |                 prio |= ICC_RPR_EL1_NMI; | 
 |             } | 
 |         } else { | 
 |             if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { | 
 |                 prio |= ICC_RPR_EL1_NSNMI; | 
 |             } | 
 |             if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { | 
 |                 prio |= ICC_RPR_EL1_NMI; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); | 
 |     return prio; | 
 | } | 
 |  | 
 | static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, | 
 |                              uint64_t value, int grp, bool ns) | 
 | { | 
 |     GICv3State *s = cs->gic; | 
 |  | 
 |     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ | 
 |     uint64_t aff = extract64(value, 48, 8) << 16 | | 
 |         extract64(value, 32, 8) << 8 | | 
 |         extract64(value, 16, 8); | 
 |     uint32_t targetlist = extract64(value, 0, 16); | 
 |     uint32_t irq = extract64(value, 24, 4); | 
 |     bool irm = extract64(value, 40, 1); | 
 |     int i; | 
 |  | 
 |     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { | 
 |         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 | 
 |          * interrupts as Group 0 interrupts and must send Secure Group 0 | 
 |          * interrupts to the target CPUs. | 
 |          */ | 
 |         grp = GICV3_G0; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, | 
 |                                  aff, targetlist); | 
 |  | 
 |     for (i = 0; i < s->num_cpu; i++) { | 
 |         GICv3CPUState *ocs = &s->cpu[i]; | 
 |  | 
 |         if (irm) { | 
 |             /* IRM == 1 : route to all CPUs except self */ | 
 |             if (cs == ocs) { | 
 |                 continue; | 
 |             } | 
 |         } else { | 
 |             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] | 
 |              * where the corresponding bit is set in targetlist | 
 |              */ | 
 |             int aff0; | 
 |  | 
 |             if (ocs->gicr_typer >> 40 != aff) { | 
 |                 continue; | 
 |             } | 
 |             aff0 = extract64(ocs->gicr_typer, 32, 8); | 
 |             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { | 
 |                 continue; | 
 |             } | 
 |         } | 
 |  | 
 |         /* The redistributor will check against its own GICR_NSACR as needed */ | 
 |         gicv3_redist_send_sgi(ocs, grp, irq, ns); | 
 |     } | 
 | } | 
 |  | 
 | static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                            uint64_t value) | 
 | { | 
 |     /* Generate Secure Group 0 SGI. */ | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     bool ns = !arm_is_secure(env); | 
 |  | 
 |     icc_generate_sgi(env, cs, value, GICV3_G0, ns); | 
 | } | 
 |  | 
 | static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                            uint64_t value) | 
 | { | 
 |     /* Generate Group 1 SGI for the current Security state */ | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp; | 
 |     bool ns = !arm_is_secure(env); | 
 |  | 
 |     grp = ns ? GICV3_G1NS : GICV3_G1; | 
 |     icc_generate_sgi(env, cs, value, grp, ns); | 
 | } | 
 |  | 
 | static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                              uint64_t value) | 
 | { | 
 |     /* Generate Group 1 SGI for the Security state that is not | 
 |      * the current state | 
 |      */ | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp; | 
 |     bool ns = !arm_is_secure(env); | 
 |  | 
 |     grp = ns ? GICV3_G1 : GICV3_G1NS; | 
 |     icc_generate_sgi(env, cs, value, grp, ns); | 
 | } | 
 |  | 
 | static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | 
 |     uint64_t value; | 
 |  | 
 |     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
 |         return icv_igrpen_read(env, ri); | 
 |     } | 
 |  | 
 |     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
 |         grp = GICV3_G1NS; | 
 |     } | 
 |  | 
 |     value = cs->icc_igrpen[grp]; | 
 |     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, | 
 |                                 gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                              uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; | 
 |  | 
 |     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { | 
 |         icv_igrpen_write(env, ri, value); | 
 |         return; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, | 
 |                                  gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { | 
 |         grp = GICV3_G1NS; | 
 |     } | 
 |  | 
 |     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 | static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | 
 |     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); | 
 |     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                                   uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ | 
 |     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); | 
 |     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 | static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | 
 |     uint64_t value; | 
 |  | 
 |     if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
 |         return icv_ctlr_read(env, ri); | 
 |     } | 
 |  | 
 |     value = cs->icc_ctlr_el1[bank]; | 
 |     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                                uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; | 
 |     uint64_t mask; | 
 |  | 
 |     if (icv_access(env, HCR_FMO | HCR_IMO)) { | 
 |         icv_ctlr_write(env, ri, value); | 
 |         return; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     /* Only CBPR and EOIMODE can be RW; | 
 |      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or | 
 |      * the asseciated priority-based routing of them); | 
 |      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. | 
 |      */ | 
 |     if (arm_feature(env, ARM_FEATURE_EL3) && | 
 |         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { | 
 |         mask = ICC_CTLR_EL1_EOIMODE; | 
 |     } else { | 
 |         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; | 
 |     } | 
 |  | 
 |     cs->icc_ctlr_el1[bank] &= ~mask; | 
 |     cs->icc_ctlr_el1[bank] |= (value & mask); | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 |  | 
 | static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     value = cs->icc_ctlr_el3; | 
 |     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | 
 |         value |= ICC_CTLR_EL3_EOIMODE_EL1NS; | 
 |     } | 
 |     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | 
 |         value |= ICC_CTLR_EL3_CBPR_EL1NS; | 
 |     } | 
 |     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { | 
 |         value |= ICC_CTLR_EL3_EOIMODE_EL1S; | 
 |     } | 
 |     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { | 
 |         value |= ICC_CTLR_EL3_CBPR_EL1S; | 
 |     } | 
 |  | 
 |     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                                uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t mask; | 
 |  | 
 |     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ | 
 |     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | 
 |     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { | 
 |         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; | 
 |     } | 
 |     if (value & ICC_CTLR_EL3_CBPR_EL1NS) { | 
 |         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; | 
 |     } | 
 |  | 
 |     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); | 
 |     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { | 
 |         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; | 
 |     } | 
 |     if (value & ICC_CTLR_EL3_CBPR_EL1S) { | 
 |         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; | 
 |     } | 
 |  | 
 |     /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ | 
 |     mask = ICC_CTLR_EL3_EOIMODE_EL3; | 
 |  | 
 |     cs->icc_ctlr_el3 &= ~mask; | 
 |     cs->icc_ctlr_el3 |= (value & mask); | 
 |     gicv3_cpuif_update(cs); | 
 | } | 
 |  | 
 | static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, | 
 |                                           const ARMCPRegInfo *ri, bool isread) | 
 | { | 
 |     CPAccessResult r = CP_ACCESS_OK; | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int el = arm_current_el(env); | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && | 
 |         el == 1 && !arm_is_secure_below_el3(env)) { | 
 |         /* Takes priority over a possible EL3 trap */ | 
 |         return CP_ACCESS_TRAP_EL2; | 
 |     } | 
 |  | 
 |     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { | 
 |         switch (el) { | 
 |         case 1: | 
 |             /* Note that arm_hcr_el2_eff takes secure state into account.  */ | 
 |             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { | 
 |                 r = CP_ACCESS_TRAP_EL3; | 
 |             } | 
 |             break; | 
 |         case 2: | 
 |             r = CP_ACCESS_TRAP_EL3; | 
 |             break; | 
 |         case 3: | 
 |             if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | 
 |                 r = CP_ACCESS_TRAP_EL3; | 
 |             } | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |     } | 
 |  | 
 |     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | 
 |         r = CP_ACCESS_TRAP; | 
 |     } | 
 |     return r; | 
 | } | 
 |  | 
 | static CPAccessResult gicv3_dir_access(CPUARMState *env, | 
 |                                        const ARMCPRegInfo *ri, bool isread) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && | 
 |         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { | 
 |         /* Takes priority over a possible EL3 trap */ | 
 |         return CP_ACCESS_TRAP_EL2; | 
 |     } | 
 |  | 
 |     return gicv3_irqfiq_access(env, ri, isread); | 
 | } | 
 |  | 
 | static CPAccessResult gicv3_sgi_access(CPUARMState *env, | 
 |                                        const ARMCPRegInfo *ri, bool isread) | 
 | { | 
 |     if (arm_current_el(env) == 1 && | 
 |         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { | 
 |         /* Takes priority over a possible EL3 trap */ | 
 |         return CP_ACCESS_TRAP_EL2; | 
 |     } | 
 |  | 
 |     return gicv3_irqfiq_access(env, ri, isread); | 
 | } | 
 |  | 
 | static CPAccessResult gicv3_fiq_access(CPUARMState *env, | 
 |                                        const ARMCPRegInfo *ri, bool isread) | 
 | { | 
 |     CPAccessResult r = CP_ACCESS_OK; | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int el = arm_current_el(env); | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && | 
 |         el == 1 && !arm_is_secure_below_el3(env)) { | 
 |         /* Takes priority over a possible EL3 trap */ | 
 |         return CP_ACCESS_TRAP_EL2; | 
 |     } | 
 |  | 
 |     if (env->cp15.scr_el3 & SCR_FIQ) { | 
 |         switch (el) { | 
 |         case 1: | 
 |             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { | 
 |                 r = CP_ACCESS_TRAP_EL3; | 
 |             } | 
 |             break; | 
 |         case 2: | 
 |             r = CP_ACCESS_TRAP_EL3; | 
 |             break; | 
 |         case 3: | 
 |             if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | 
 |                 r = CP_ACCESS_TRAP_EL3; | 
 |             } | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |     } | 
 |  | 
 |     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | 
 |         r = CP_ACCESS_TRAP; | 
 |     } | 
 |     return r; | 
 | } | 
 |  | 
 | static CPAccessResult gicv3_irq_access(CPUARMState *env, | 
 |                                        const ARMCPRegInfo *ri, bool isread) | 
 | { | 
 |     CPAccessResult r = CP_ACCESS_OK; | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int el = arm_current_el(env); | 
 |  | 
 |     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && | 
 |         el == 1 && !arm_is_secure_below_el3(env)) { | 
 |         /* Takes priority over a possible EL3 trap */ | 
 |         return CP_ACCESS_TRAP_EL2; | 
 |     } | 
 |  | 
 |     if (env->cp15.scr_el3 & SCR_IRQ) { | 
 |         switch (el) { | 
 |         case 1: | 
 |             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { | 
 |                 r = CP_ACCESS_TRAP_EL3; | 
 |             } | 
 |             break; | 
 |         case 2: | 
 |             r = CP_ACCESS_TRAP_EL3; | 
 |             break; | 
 |         case 3: | 
 |             if (!is_a64(env) && !arm_is_el3_or_mon(env)) { | 
 |                 r = CP_ACCESS_TRAP_EL3; | 
 |             } | 
 |             break; | 
 |         default: | 
 |             g_assert_not_reached(); | 
 |         } | 
 |     } | 
 |  | 
 |     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { | 
 |         r = CP_ACCESS_TRAP; | 
 |     } | 
 |     return r; | 
 | } | 
 |  | 
 | static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | | 
 |         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | 
 |         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); | 
 |     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | | 
 |         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | | 
 |         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); | 
 |     cs->icc_pmr_el1 = 0; | 
 |     cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); | 
 |     cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); | 
 |     cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); | 
 |     memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); | 
 |     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); | 
 |     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | | 
 |         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | | 
 |         ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); | 
 |  | 
 |     memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); | 
 |     cs->ich_hcr_el2 = 0; | 
 |     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); | 
 |     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | | 
 |         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | | 
 |         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); | 
 | } | 
 |  | 
 | static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { | 
 |     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | 
 |       .readfn = icc_pmr_read, | 
 |       .writefn = icc_pmr_write, | 
 |       /* We hang the whole cpu interface reset routine off here | 
 |        * rather than parcelling it out into one little function | 
 |        * per register | 
 |        */ | 
 |       .resetfn = icc_reset, | 
 |     }, | 
 |     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_R, .accessfn = gicv3_fiq_access, | 
 |       .readfn = icc_iar0_read, | 
 |     }, | 
 |     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_fiq_access, | 
 |       .writefn = icc_eoir_write, | 
 |     }, | 
 |     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_R, .accessfn = gicv3_fiq_access, | 
 |       .readfn = icc_hppir0_read, | 
 |     }, | 
 |     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
 |       .readfn = icc_bpr_read, | 
 |       .writefn = icc_bpr_write, | 
 |     }, | 
 |     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 |     /* All the ICC_AP1R*_EL1 registers are banked */ | 
 |     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 |     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_dir_access, | 
 |       .writefn = icc_dir_write, | 
 |     }, | 
 |     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_R, .accessfn = gicv3_irqfiq_access, | 
 |       .readfn = icc_rpr_read, | 
 |     }, | 
 |     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_sgi_access, | 
 |       .writefn = icc_sgi1r_write, | 
 |     }, | 
 |     { .name = "ICC_SGI1R", | 
 |       .cp = 15, .opc1 = 0, .crm = 12, | 
 |       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_sgi_access, | 
 |       .writefn = icc_sgi1r_write, | 
 |     }, | 
 |     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_sgi_access, | 
 |       .writefn = icc_asgi1r_write, | 
 |     }, | 
 |     { .name = "ICC_ASGI1R", | 
 |       .cp = 15, .opc1 = 1, .crm = 12, | 
 |       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_sgi_access, | 
 |       .writefn = icc_asgi1r_write, | 
 |     }, | 
 |     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_sgi_access, | 
 |       .writefn = icc_sgi0r_write, | 
 |     }, | 
 |     { .name = "ICC_SGI0R", | 
 |       .cp = 15, .opc1 = 2, .crm = 12, | 
 |       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_sgi_access, | 
 |       .writefn = icc_sgi0r_write, | 
 |     }, | 
 |     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_R, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_iar1_read, | 
 |     }, | 
 |     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_W, .accessfn = gicv3_irq_access, | 
 |       .writefn = icc_eoir_write, | 
 |     }, | 
 |     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_R, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_hppir1_read, | 
 |     }, | 
 |     /* This register is banked */ | 
 |     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_bpr_read, | 
 |       .writefn = icc_bpr_write, | 
 |     }, | 
 |     /* This register is banked */ | 
 |     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irqfiq_access, | 
 |       .readfn = icc_ctlr_el1_read, | 
 |       .writefn = icc_ctlr_el1_write, | 
 |     }, | 
 |     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, | 
 |       .type = ARM_CP_NO_RAW | ARM_CP_CONST, | 
 |       .access = PL1_RW, | 
 |       /* We don't support IRQ/FIQ bypass and system registers are | 
 |        * always enabled, so all our bits are RAZ/WI or RAO/WI. | 
 |        * This register is banked but since it's constant we don't | 
 |        * need to do anything special. | 
 |        */ | 
 |       .resetvalue = 0x7, | 
 |     }, | 
 |     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
 |       .fgt = FGT_ICC_IGRPENN_EL1, | 
 |       .readfn = icc_igrpen_read, | 
 |       .writefn = icc_igrpen_write, | 
 |     }, | 
 |     /* This register is banked */ | 
 |     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irq_access, | 
 |       .fgt = FGT_ICC_IGRPENN_EL1, | 
 |       .readfn = icc_igrpen_read, | 
 |       .writefn = icc_igrpen_write, | 
 |     }, | 
 |     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, | 
 |       .type = ARM_CP_NO_RAW | ARM_CP_CONST, | 
 |       .access = PL2_RW, | 
 |       /* We don't support IRQ/FIQ bypass and system registers are | 
 |        * always enabled, so all our bits are RAZ/WI or RAO/WI. | 
 |        */ | 
 |       .resetvalue = 0xf, | 
 |     }, | 
 |     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL3_RW, | 
 |       .readfn = icc_ctlr_el3_read, | 
 |       .writefn = icc_ctlr_el3_write, | 
 |     }, | 
 |     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, | 
 |       .type = ARM_CP_NO_RAW | ARM_CP_CONST, | 
 |       .access = PL3_RW, | 
 |       /* We don't support IRQ/FIQ bypass and system registers are | 
 |        * always enabled, so all our bits are RAZ/WI or RAO/WI. | 
 |        */ | 
 |       .resetvalue = 0xf, | 
 |     }, | 
 |     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL3_RW, | 
 |       .readfn = icc_igrpen1_el3_read, | 
 |       .writefn = icc_igrpen1_el3_write, | 
 |     }, | 
 | }; | 
 |  | 
 | static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { | 
 |     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 |     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 | }; | 
 |  | 
 | static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { | 
 |     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 |     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_fiq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 |     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 |     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_RW, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_ap_read, | 
 |       .writefn = icc_ap_write, | 
 |     }, | 
 | }; | 
 |  | 
 | static const ARMCPRegInfo gicv3_cpuif_gicv3_nmi_reginfo[] = { | 
 |     { .name = "ICC_NMIAR1_EL1", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 5, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL1_R, .accessfn = gicv3_irq_access, | 
 |       .readfn = icc_nmiar1_read, | 
 |     }, | 
 | }; | 
 |  | 
 | static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int regno = ri->opc2 & 3; | 
 |     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
 |     uint64_t value; | 
 |  | 
 |     value = cs->ich_apr[grp][regno]; | 
 |     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                          uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int regno = ri->opc2 & 3; | 
 |     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; | 
 |  | 
 |     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); | 
 |  | 
 |     if (cs->nmi_support) { | 
 |         cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI); | 
 |     } else { | 
 |         cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; | 
 |     } | 
 |     gicv3_cpuif_virt_irq_fiq_update(cs); | 
 | } | 
 |  | 
 | static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value = cs->ich_hcr_el2; | 
 |  | 
 |     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                           uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | | 
 |         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | | 
 |         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | | 
 |         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | | 
 |         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; | 
 |  | 
 |     cs->ich_hcr_el2 = value; | 
 |     gicv3_cpuif_virt_update(cs); | 
 | } | 
 |  | 
 | static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value = cs->ich_vmcr_el2; | 
 |  | 
 |     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                          uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |  | 
 |     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); | 
 |  | 
 |     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | | 
 |         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | | 
 |         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; | 
 |     value |= ICH_VMCR_EL2_VFIQEN; | 
 |  | 
 |     cs->ich_vmcr_el2 = value; | 
 |     /* Enforce "writing BPRs to less than minimum sets them to the minimum" | 
 |      * by reading and writing back the fields. | 
 |      */ | 
 |     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); | 
 |     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); | 
 |  | 
 |     gicv3_cpuif_virt_update(cs); | 
 | } | 
 |  | 
 | static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int regno = ri->opc2 | ((ri->crm & 1) << 3); | 
 |     uint64_t value; | 
 |  | 
 |     /* This read function handles all of: | 
 |      * 64-bit reads of the whole LR | 
 |      * 32-bit reads of the low half of the LR | 
 |      * 32-bit reads of the high half of the LR | 
 |      */ | 
 |     if (ri->state == ARM_CP_STATE_AA32) { | 
 |         if (ri->crm >= 14) { | 
 |             value = extract64(cs->ich_lr_el2[regno], 32, 32); | 
 |             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); | 
 |         } else { | 
 |             value = extract64(cs->ich_lr_el2[regno], 0, 32); | 
 |             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); | 
 |         } | 
 |     } else { | 
 |         value = cs->ich_lr_el2[regno]; | 
 |         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); | 
 |     } | 
 |  | 
 |     return value; | 
 | } | 
 |  | 
 | static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, | 
 |                          uint64_t value) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     int regno = ri->opc2 | ((ri->crm & 1) << 3); | 
 |  | 
 |     /* This write function handles all of: | 
 |      * 64-bit writes to the whole LR | 
 |      * 32-bit writes to the low half of the LR | 
 |      * 32-bit writes to the high half of the LR | 
 |      */ | 
 |     if (ri->state == ARM_CP_STATE_AA32) { | 
 |         if (ri->crm >= 14) { | 
 |             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); | 
 |             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); | 
 |         } else { | 
 |             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); | 
 |             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); | 
 |         } | 
 |     } else { | 
 |         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); | 
 |     } | 
 |  | 
 |     /* Enforce RES0 bits in priority field */ | 
 |     if (cs->vpribits < 8) { | 
 |         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, | 
 |                           8 - cs->vpribits, 0); | 
 |     } | 
 |  | 
 |     /* Enforce RES0 bit in NMI field when FEAT_GICv3_NMI is not implemented */ | 
 |     if (!cs->nmi_support) { | 
 |         value &= ~ICH_LR_EL2_NMI; | 
 |     } | 
 |  | 
 |     cs->ich_lr_el2[regno] = value; | 
 |     gicv3_cpuif_virt_update(cs); | 
 | } | 
 |  | 
 | static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value; | 
 |  | 
 |     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) | 
 |         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V | 
 |         | (1 << ICH_VTR_EL2_IDBITS_SHIFT) | 
 |         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) | 
 |         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); | 
 |  | 
 |     if (cs->gic->revision < 4) { | 
 |         value |= ICH_VTR_EL2_NV4; | 
 |     } | 
 |  | 
 |     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value = maintenance_interrupt_state(cs); | 
 |  | 
 |     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); | 
 |  | 
 |     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) | 
 | { | 
 |     GICv3CPUState *cs = icc_cs_from_env(env); | 
 |     uint64_t value = 0; | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < cs->num_list_regs; i++) { | 
 |         uint64_t lr = cs->ich_lr_el2[i]; | 
 |  | 
 |         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && | 
 |             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { | 
 |             value |= (1 << i); | 
 |         } | 
 |     } | 
 |  | 
 |     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); | 
 |     return value; | 
 | } | 
 |  | 
 | static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { | 
 |     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x480, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 |     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x4a0, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 |     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x4c0, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_hcr_read, | 
 |       .writefn = ich_hcr_write, | 
 |     }, | 
 |     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL2_R, | 
 |       .readfn = ich_vtr_read, | 
 |     }, | 
 |     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL2_R, | 
 |       .readfn = ich_misr_read, | 
 |     }, | 
 |     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL2_R, | 
 |       .readfn = ich_eisr_read, | 
 |     }, | 
 |     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .access = PL2_R, | 
 |       .readfn = ich_elrsr_read, | 
 |     }, | 
 |     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x4c8, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_vmcr_read, | 
 |       .writefn = ich_vmcr_write, | 
 |     }, | 
 | }; | 
 |  | 
 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { | 
 |     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x488, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 |     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x4a8, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 | }; | 
 |  | 
 | static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { | 
 |     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x490, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 |     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x498, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 |     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x4b0, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 |     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, | 
 |       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, | 
 |       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |       .nv2_redirect_offset = 0x4b8, | 
 |       .access = PL2_RW, | 
 |       .readfn = ich_ap_read, | 
 |       .writefn = ich_ap_write, | 
 |     }, | 
 | }; | 
 |  | 
 | static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) | 
 | { | 
 |     GICv3CPUState *cs = opaque; | 
 |  | 
 |     gicv3_cpuif_update(cs); | 
 |     /* | 
 |      * Because vLPIs are only pending in NonSecure state, | 
 |      * an EL change can change the VIRQ/VFIQ status (but | 
 |      * cannot affect the maintenance interrupt state) | 
 |      */ | 
 |     gicv3_cpuif_virt_irq_fiq_update(cs); | 
 | } | 
 |  | 
 | void gicv3_init_cpuif(GICv3State *s) | 
 | { | 
 |     /* Called from the GICv3 realize function; register our system | 
 |      * registers with the CPU | 
 |      */ | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < s->num_cpu; i++) { | 
 |         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); | 
 |         GICv3CPUState *cs = &s->cpu[i]; | 
 |  | 
 |         /* | 
 |          * If the CPU doesn't define a GICv3 configuration, probably because | 
 |          * in real hardware it doesn't have one, then we use default values | 
 |          * matching the one used by most Arm CPUs. This applies to: | 
 |          *  cpu->gic_num_lrs | 
 |          *  cpu->gic_vpribits | 
 |          *  cpu->gic_vprebits | 
 |          *  cpu->gic_pribits | 
 |          */ | 
 |  | 
 |         /* Note that we can't just use the GICv3CPUState as an opaque pointer | 
 |          * in define_arm_cp_regs_with_opaque(), because when we're called back | 
 |          * it might be with code translated by CPU 0 but run by CPU 1, in | 
 |          * which case we'd get the wrong value. | 
 |          * So instead we define the regs with no ri->opaque info, and | 
 |          * get back to the GICv3CPUState from the CPUARMState. | 
 |          * | 
 |          * These CP regs callbacks can be called from either TCG or HVF code. | 
 |          */ | 
 |         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); | 
 |  | 
 |         /* | 
 |          * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also | 
 |          * implement FEAT_GICv3_NMI, which is the CPU interface part | 
 |          * of NMI support. This is distinct from whether the GIC proper | 
 |          * (redistributors and distributor) have NMI support. In QEMU | 
 |          * that is a property of the GIC device in s->nmi_support; | 
 |          * cs->nmi_support indicates the CPU interface's support. | 
 |          */ | 
 |         if (cpu_isar_feature(aa64_nmi, cpu)) { | 
 |             cs->nmi_support = true; | 
 |             define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); | 
 |         } | 
 |  | 
 |         /* | 
 |          * The CPU implementation specifies the number of supported | 
 |          * bits of physical priority. For backwards compatibility | 
 |          * of migration, we have a compat property that forces use | 
 |          * of 8 priority bits regardless of what the CPU really has. | 
 |          */ | 
 |         if (s->force_8bit_prio) { | 
 |             cs->pribits = 8; | 
 |         } else { | 
 |             cs->pribits = cpu->gic_pribits ?: 5; | 
 |         } | 
 |  | 
 |         /* | 
 |          * The GICv3 has separate ID register fields for virtual priority | 
 |          * and preemption bit values, but only a single ID register field | 
 |          * for the physical priority bits. The preemption bit count is | 
 |          * always the same as the priority bit count, except that 8 bits | 
 |          * of priority means 7 preemption bits. We precalculate the | 
 |          * preemption bits because it simplifies the code and makes the | 
 |          * parallels between the virtual and physical bits of the GIC | 
 |          * a bit clearer. | 
 |          */ | 
 |         cs->prebits = cs->pribits; | 
 |         if (cs->prebits == 8) { | 
 |             cs->prebits--; | 
 |         } | 
 |         /* | 
 |          * Check that CPU code defining pribits didn't violate | 
 |          * architectural constraints our implementation relies on. | 
 |          */ | 
 |         g_assert(cs->pribits >= 4 && cs->pribits <= 8); | 
 |  | 
 |         /* | 
 |          * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions | 
 |          * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. | 
 |          */ | 
 |         if (cs->prebits >= 6) { | 
 |             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); | 
 |         } | 
 |         if (cs->prebits == 7) { | 
 |             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); | 
 |         } | 
 |  | 
 |         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { | 
 |             int j; | 
 |  | 
 |             cs->num_list_regs = cpu->gic_num_lrs ?: 4; | 
 |             cs->vpribits = cpu->gic_vpribits ?: 5; | 
 |             cs->vprebits = cpu->gic_vprebits ?: 5; | 
 |  | 
 |             /* Check against architectural constraints: getting these | 
 |              * wrong would be a bug in the CPU code defining these, | 
 |              * and the implementation relies on them holding. | 
 |              */ | 
 |             g_assert(cs->vprebits <= cs->vpribits); | 
 |             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); | 
 |             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); | 
 |  | 
 |             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); | 
 |  | 
 |             for (j = 0; j < cs->num_list_regs; j++) { | 
 |                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs | 
 |                  * are split into two cp15 regs, LR (the low part, with the | 
 |                  * same encoding as the AArch64 LR) and LRC (the high part). | 
 |                  */ | 
 |                 ARMCPRegInfo lr_regset[] = { | 
 |                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, | 
 |                       .opc0 = 3, .opc1 = 4, .crn = 12, | 
 |                       .crm = 12 + (j >> 3), .opc2 = j & 7, | 
 |                       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |                       .nv2_redirect_offset = 0x400 + 8 * j, | 
 |                       .access = PL2_RW, | 
 |                       .readfn = ich_lr_read, | 
 |                       .writefn = ich_lr_write, | 
 |                     }, | 
 |                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, | 
 |                       .cp = 15, .opc1 = 4, .crn = 12, | 
 |                       .crm = 14 + (j >> 3), .opc2 = j & 7, | 
 |                       .type = ARM_CP_IO | ARM_CP_NO_RAW, | 
 |                       .access = PL2_RW, | 
 |                       .readfn = ich_lr_read, | 
 |                       .writefn = ich_lr_write, | 
 |                     }, | 
 |                 }; | 
 |                 define_arm_cp_regs(cpu, lr_regset); | 
 |             } | 
 |             if (cs->vprebits >= 6) { | 
 |                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); | 
 |             } | 
 |             if (cs->vprebits == 7) { | 
 |                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); | 
 |             } | 
 |         } | 
 |         if (tcg_enabled() || qtest_enabled()) { | 
 |             /* | 
 |              * We can only trap EL changes with TCG. However the GIC interrupt | 
 |              * state only changes on EL changes involving EL2 or EL3, so for | 
 |              * the non-TCG case this is OK, as EL2 and EL3 can't exist. | 
 |              */ | 
 |             arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); | 
 |         } else { | 
 |             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); | 
 |             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); | 
 |         } | 
 |     } | 
 | } |