|  | /* | 
|  | * CPU thread main loop - common bits for user and system mode emulation | 
|  | * | 
|  | *  Copyright (c) 2003-2005 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "exec/cpu-common.h" | 
|  | #include "hw/core/cpu.h" | 
|  | #include "qemu/lockable.h" | 
|  | #include "trace/trace-root.h" | 
|  |  | 
|  | QemuMutex qemu_cpu_list_lock; | 
|  | static QemuCond exclusive_cond; | 
|  | static QemuCond exclusive_resume; | 
|  | static QemuCond qemu_work_cond; | 
|  |  | 
|  | /* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written | 
|  | * under qemu_cpu_list_lock, read with atomic operations. | 
|  | */ | 
|  | static int pending_cpus; | 
|  |  | 
|  | void qemu_init_cpu_list(void) | 
|  | { | 
|  | /* This is needed because qemu_init_cpu_list is also called by the | 
|  | * child process in a fork.  */ | 
|  | pending_cpus = 0; | 
|  |  | 
|  | qemu_mutex_init(&qemu_cpu_list_lock); | 
|  | qemu_cond_init(&exclusive_cond); | 
|  | qemu_cond_init(&exclusive_resume); | 
|  | qemu_cond_init(&qemu_work_cond); | 
|  | } | 
|  |  | 
|  | void cpu_list_lock(void) | 
|  | { | 
|  | qemu_mutex_lock(&qemu_cpu_list_lock); | 
|  | } | 
|  |  | 
|  | void cpu_list_unlock(void) | 
|  | { | 
|  | qemu_mutex_unlock(&qemu_cpu_list_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpu_get_free_index(void) | 
|  | { | 
|  | CPUState *some_cpu; | 
|  | int max_cpu_index = 0; | 
|  |  | 
|  | CPU_FOREACH(some_cpu) { | 
|  | if (some_cpu->cpu_index >= max_cpu_index) { | 
|  | max_cpu_index = some_cpu->cpu_index + 1; | 
|  | } | 
|  | } | 
|  | return max_cpu_index; | 
|  | } | 
|  |  | 
|  | CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue); | 
|  | static unsigned int cpu_list_generation_id; | 
|  |  | 
|  | unsigned int cpu_list_generation_id_get(void) | 
|  | { | 
|  | return cpu_list_generation_id; | 
|  | } | 
|  |  | 
|  | void cpu_list_add(CPUState *cpu) | 
|  | { | 
|  | static bool cpu_index_auto_assigned; | 
|  |  | 
|  | QEMU_LOCK_GUARD(&qemu_cpu_list_lock); | 
|  | if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { | 
|  | cpu_index_auto_assigned = true; | 
|  | cpu->cpu_index = cpu_get_free_index(); | 
|  | assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); | 
|  | } else { | 
|  | assert(!cpu_index_auto_assigned); | 
|  | } | 
|  | QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node); | 
|  | cpu_list_generation_id++; | 
|  | } | 
|  |  | 
|  | void cpu_list_remove(CPUState *cpu) | 
|  | { | 
|  | QEMU_LOCK_GUARD(&qemu_cpu_list_lock); | 
|  | if (!QTAILQ_IN_USE(cpu, node)) { | 
|  | /* there is nothing to undo since cpu_exec_init() hasn't been called */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node); | 
|  | cpu->cpu_index = UNASSIGNED_CPU_INDEX; | 
|  | cpu_list_generation_id++; | 
|  | } | 
|  |  | 
|  | CPUState *qemu_get_cpu(int index) | 
|  | { | 
|  | CPUState *cpu; | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | if (cpu->cpu_index == index) { | 
|  | return cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* current CPU in the current thread. It is only valid inside cpu_exec() */ | 
|  | __thread CPUState *current_cpu; | 
|  |  | 
|  | struct qemu_work_item { | 
|  | QSIMPLEQ_ENTRY(qemu_work_item) node; | 
|  | run_on_cpu_func func; | 
|  | run_on_cpu_data data; | 
|  | bool free, exclusive, done; | 
|  | }; | 
|  |  | 
|  | static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) | 
|  | { | 
|  | qemu_mutex_lock(&cpu->work_mutex); | 
|  | QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node); | 
|  | wi->done = false; | 
|  | qemu_mutex_unlock(&cpu->work_mutex); | 
|  |  | 
|  | qemu_cpu_kick(cpu); | 
|  | } | 
|  |  | 
|  | void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, | 
|  | QemuMutex *mutex) | 
|  | { | 
|  | struct qemu_work_item wi; | 
|  |  | 
|  | if (qemu_cpu_is_self(cpu)) { | 
|  | func(cpu, data); | 
|  | return; | 
|  | } | 
|  |  | 
|  | wi.func = func; | 
|  | wi.data = data; | 
|  | wi.done = false; | 
|  | wi.free = false; | 
|  | wi.exclusive = false; | 
|  |  | 
|  | queue_work_on_cpu(cpu, &wi); | 
|  | while (!qatomic_load_acquire(&wi.done)) { | 
|  | CPUState *self_cpu = current_cpu; | 
|  |  | 
|  | qemu_cond_wait(&qemu_work_cond, mutex); | 
|  | current_cpu = self_cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) | 
|  | { | 
|  | struct qemu_work_item *wi; | 
|  |  | 
|  | wi = g_new0(struct qemu_work_item, 1); | 
|  | wi->func = func; | 
|  | wi->data = data; | 
|  | wi->free = true; | 
|  |  | 
|  | queue_work_on_cpu(cpu, wi); | 
|  | } | 
|  |  | 
|  | /* Wait for pending exclusive operations to complete.  The CPU list lock | 
|  | must be held.  */ | 
|  | static inline void exclusive_idle(void) | 
|  | { | 
|  | while (pending_cpus) { | 
|  | qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Start an exclusive operation. | 
|  | Must only be called from outside cpu_exec.  */ | 
|  | void start_exclusive(void) | 
|  | { | 
|  | CPUState *other_cpu; | 
|  | int running_cpus; | 
|  |  | 
|  | /* Ensure we are not running, or start_exclusive will be blocked. */ | 
|  | g_assert(!current_cpu->running); | 
|  |  | 
|  | if (current_cpu->exclusive_context_count) { | 
|  | current_cpu->exclusive_context_count++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | qemu_mutex_lock(&qemu_cpu_list_lock); | 
|  | exclusive_idle(); | 
|  |  | 
|  | /* Make all other cpus stop executing.  */ | 
|  | qatomic_set(&pending_cpus, 1); | 
|  |  | 
|  | /* Write pending_cpus before reading other_cpu->running.  */ | 
|  | smp_mb(); | 
|  | running_cpus = 0; | 
|  | CPU_FOREACH(other_cpu) { | 
|  | if (qatomic_read(&other_cpu->running)) { | 
|  | other_cpu->has_waiter = true; | 
|  | running_cpus++; | 
|  | qemu_cpu_kick(other_cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | qatomic_set(&pending_cpus, running_cpus + 1); | 
|  | while (pending_cpus > 1) { | 
|  | qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); | 
|  | } | 
|  |  | 
|  | /* Can release mutex, no one will enter another exclusive | 
|  | * section until end_exclusive resets pending_cpus to 0. | 
|  | */ | 
|  | qemu_mutex_unlock(&qemu_cpu_list_lock); | 
|  |  | 
|  | current_cpu->exclusive_context_count = 1; | 
|  | } | 
|  |  | 
|  | /* Finish an exclusive operation.  */ | 
|  | void end_exclusive(void) | 
|  | { | 
|  | current_cpu->exclusive_context_count--; | 
|  | if (current_cpu->exclusive_context_count) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | qemu_mutex_lock(&qemu_cpu_list_lock); | 
|  | qatomic_set(&pending_cpus, 0); | 
|  | qemu_cond_broadcast(&exclusive_resume); | 
|  | qemu_mutex_unlock(&qemu_cpu_list_lock); | 
|  | } | 
|  |  | 
|  | /* Wait for exclusive ops to finish, and begin cpu execution.  */ | 
|  | void cpu_exec_start(CPUState *cpu) | 
|  | { | 
|  | qatomic_set(&cpu->running, true); | 
|  |  | 
|  | /* Write cpu->running before reading pending_cpus.  */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1. | 
|  | * After taking the lock we'll see cpu->has_waiter == true and run---not | 
|  | * for long because start_exclusive kicked us.  cpu_exec_end will | 
|  | * decrement pending_cpus and signal the waiter. | 
|  | * | 
|  | * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1. | 
|  | * This includes the case when an exclusive item is running now. | 
|  | * Then we'll see cpu->has_waiter == false and wait for the item to | 
|  | * complete. | 
|  | * | 
|  | * 3. pending_cpus == 0.  Then start_exclusive is definitely going to | 
|  | * see cpu->running == true, and it will kick the CPU. | 
|  | */ | 
|  | if (unlikely(qatomic_read(&pending_cpus))) { | 
|  | QEMU_LOCK_GUARD(&qemu_cpu_list_lock); | 
|  | if (!cpu->has_waiter) { | 
|  | /* Not counted in pending_cpus, let the exclusive item | 
|  | * run.  Since we have the lock, just set cpu->running to true | 
|  | * while holding it; no need to check pending_cpus again. | 
|  | */ | 
|  | qatomic_set(&cpu->running, false); | 
|  | exclusive_idle(); | 
|  | /* Now pending_cpus is zero.  */ | 
|  | qatomic_set(&cpu->running, true); | 
|  | } else { | 
|  | /* Counted in pending_cpus, go ahead and release the | 
|  | * waiter at cpu_exec_end. | 
|  | */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Mark cpu as not executing, and release pending exclusive ops.  */ | 
|  | void cpu_exec_end(CPUState *cpu) | 
|  | { | 
|  | qatomic_set(&cpu->running, false); | 
|  |  | 
|  | /* Write cpu->running before reading pending_cpus.  */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* 1. start_exclusive saw cpu->running == true.  Then it will increment | 
|  | * pending_cpus and wait for exclusive_cond.  After taking the lock | 
|  | * we'll see cpu->has_waiter == true. | 
|  | * | 
|  | * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1. | 
|  | * This includes the case when an exclusive item started after setting | 
|  | * cpu->running to false and before we read pending_cpus.  Then we'll see | 
|  | * cpu->has_waiter == false and not touch pending_cpus.  The next call to | 
|  | * cpu_exec_start will run exclusive_idle if still necessary, thus waiting | 
|  | * for the item to complete. | 
|  | * | 
|  | * 3. pending_cpus == 0.  Then start_exclusive is definitely going to | 
|  | * see cpu->running == false, and it can ignore this CPU until the | 
|  | * next cpu_exec_start. | 
|  | */ | 
|  | if (unlikely(qatomic_read(&pending_cpus))) { | 
|  | QEMU_LOCK_GUARD(&qemu_cpu_list_lock); | 
|  | if (cpu->has_waiter) { | 
|  | cpu->has_waiter = false; | 
|  | qatomic_set(&pending_cpus, pending_cpus - 1); | 
|  | if (pending_cpus == 1) { | 
|  | qemu_cond_signal(&exclusive_cond); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, | 
|  | run_on_cpu_data data) | 
|  | { | 
|  | struct qemu_work_item *wi; | 
|  |  | 
|  | wi = g_new0(struct qemu_work_item, 1); | 
|  | wi->func = func; | 
|  | wi->data = data; | 
|  | wi->free = true; | 
|  | wi->exclusive = true; | 
|  |  | 
|  | queue_work_on_cpu(cpu, wi); | 
|  | } | 
|  |  | 
|  | void free_queued_cpu_work(CPUState *cpu) | 
|  | { | 
|  | while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { | 
|  | struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list); | 
|  | QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); | 
|  | if (wi->free) { | 
|  | g_free(wi); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void process_queued_cpu_work(CPUState *cpu) | 
|  | { | 
|  | struct qemu_work_item *wi; | 
|  |  | 
|  | qemu_mutex_lock(&cpu->work_mutex); | 
|  | if (QSIMPLEQ_EMPTY(&cpu->work_list)) { | 
|  | qemu_mutex_unlock(&cpu->work_mutex); | 
|  | return; | 
|  | } | 
|  | while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { | 
|  | wi = QSIMPLEQ_FIRST(&cpu->work_list); | 
|  | QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); | 
|  | qemu_mutex_unlock(&cpu->work_mutex); | 
|  | if (wi->exclusive) { | 
|  | /* Running work items outside the BQL avoids the following deadlock: | 
|  | * 1) start_exclusive() is called with the BQL taken while another | 
|  | * CPU is running; 2) cpu_exec in the other CPU tries to takes the | 
|  | * BQL, so it goes to sleep; start_exclusive() is sleeping too, so | 
|  | * neither CPU can proceed. | 
|  | */ | 
|  | bql_unlock(); | 
|  | start_exclusive(); | 
|  | wi->func(cpu, wi->data); | 
|  | end_exclusive(); | 
|  | bql_lock(); | 
|  | } else { | 
|  | wi->func(cpu, wi->data); | 
|  | } | 
|  | qemu_mutex_lock(&cpu->work_mutex); | 
|  | if (wi->free) { | 
|  | g_free(wi); | 
|  | } else { | 
|  | qatomic_store_release(&wi->done, true); | 
|  | } | 
|  | } | 
|  | qemu_mutex_unlock(&cpu->work_mutex); | 
|  | qemu_cond_broadcast(&qemu_work_cond); | 
|  | } | 
|  |  | 
|  | /* Add a breakpoint.  */ | 
|  | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, | 
|  | CPUBreakpoint **breakpoint) | 
|  | { | 
|  | CPUBreakpoint *bp; | 
|  |  | 
|  | if (cpu->cc->gdb_adjust_breakpoint) { | 
|  | pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc); | 
|  | } | 
|  |  | 
|  | bp = g_malloc(sizeof(*bp)); | 
|  |  | 
|  | bp->pc = pc; | 
|  | bp->flags = flags; | 
|  |  | 
|  | /* keep all GDB-injected breakpoints in front */ | 
|  | if (flags & BP_GDB) { | 
|  | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); | 
|  | } else { | 
|  | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); | 
|  | } | 
|  |  | 
|  | if (breakpoint) { | 
|  | *breakpoint = bp; | 
|  | } | 
|  |  | 
|  | trace_breakpoint_insert(cpu->cpu_index, pc, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Remove a specific breakpoint.  */ | 
|  | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) | 
|  | { | 
|  | CPUBreakpoint *bp; | 
|  |  | 
|  | if (cpu->cc->gdb_adjust_breakpoint) { | 
|  | pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc); | 
|  | } | 
|  |  | 
|  | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | 
|  | if (bp->pc == pc && bp->flags == flags) { | 
|  | cpu_breakpoint_remove_by_ref(cpu, bp); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* Remove a specific breakpoint by reference.  */ | 
|  | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp) | 
|  | { | 
|  | QTAILQ_REMOVE(&cpu->breakpoints, bp, entry); | 
|  |  | 
|  | trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags); | 
|  | g_free(bp); | 
|  | } | 
|  |  | 
|  | /* Remove all matching breakpoints. */ | 
|  | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) | 
|  | { | 
|  | CPUBreakpoint *bp, *next; | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { | 
|  | if (bp->flags & mask) { | 
|  | cpu_breakpoint_remove_by_ref(cpu, bp); | 
|  | } | 
|  | } | 
|  | } |