| /* |
| * ARM mach-virt emulation |
| * |
| * Copyright (c) 2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * Emulate a virtual board which works by passing Linux all the information |
| * it needs about what devices are present via the device tree. |
| * There are some restrictions about what we can do here: |
| * + we can only present devices whose Linux drivers will work based |
| * purely on the device tree with no platform data at all |
| * + we want to present a very stripped-down minimalist platform, |
| * both because this reduces the security attack surface from the guest |
| * and also because it reduces our exposure to being broken when |
| * the kernel updates its device tree bindings and requires further |
| * information in a device binding that we aren't providing. |
| * This is essentially the same approach kvmtool uses. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/units.h" |
| #include "qemu/option.h" |
| #include "monitor/qdev.h" |
| #include "qapi/error.h" |
| #include "hw/sysbus.h" |
| #include "hw/boards.h" |
| #include "hw/arm/boot.h" |
| #include "hw/arm/primecell.h" |
| #include "hw/arm/virt.h" |
| #include "hw/block/flash.h" |
| #include "hw/vfio/vfio-calxeda-xgmac.h" |
| #include "hw/vfio/vfio-amd-xgbe.h" |
| #include "hw/display/ramfb.h" |
| #include "net/net.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/numa.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/tpm.h" |
| #include "sysemu/kvm.h" |
| #include "hw/loader.h" |
| #include "exec/address-spaces.h" |
| #include "qemu/bitops.h" |
| #include "qemu/error-report.h" |
| #include "qemu/module.h" |
| #include "hw/pci-host/gpex.h" |
| #include "hw/virtio/virtio-pci.h" |
| #include "hw/arm/sysbus-fdt.h" |
| #include "hw/platform-bus.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/arm/fdt.h" |
| #include "hw/intc/arm_gic.h" |
| #include "hw/intc/arm_gicv3_common.h" |
| #include "hw/irq.h" |
| #include "kvm_arm.h" |
| #include "hw/firmware/smbios.h" |
| #include "qapi/visitor.h" |
| #include "qapi/qapi-visit-common.h" |
| #include "standard-headers/linux/input.h" |
| #include "hw/arm/smmuv3.h" |
| #include "hw/acpi/acpi.h" |
| #include "target/arm/internals.h" |
| #include "hw/mem/pc-dimm.h" |
| #include "hw/mem/nvdimm.h" |
| #include "hw/acpi/generic_event_device.h" |
| #include "hw/virtio/virtio-iommu.h" |
| #include "hw/char/pl011.h" |
| #include "qemu/guest-random.h" |
| |
| #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ |
| static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ |
| void *data) \ |
| { \ |
| MachineClass *mc = MACHINE_CLASS(oc); \ |
| virt_machine_##major##_##minor##_options(mc); \ |
| mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ |
| if (latest) { \ |
| mc->alias = "virt"; \ |
| } \ |
| } \ |
| static const TypeInfo machvirt_##major##_##minor##_info = { \ |
| .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ |
| .parent = TYPE_VIRT_MACHINE, \ |
| .class_init = virt_##major##_##minor##_class_init, \ |
| }; \ |
| static void machvirt_machine_##major##_##minor##_init(void) \ |
| { \ |
| type_register_static(&machvirt_##major##_##minor##_info); \ |
| } \ |
| type_init(machvirt_machine_##major##_##minor##_init); |
| |
| #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ |
| DEFINE_VIRT_MACHINE_LATEST(major, minor, true) |
| #define DEFINE_VIRT_MACHINE(major, minor) \ |
| DEFINE_VIRT_MACHINE_LATEST(major, minor, false) |
| |
| |
| /* Number of external interrupt lines to configure the GIC with */ |
| #define NUM_IRQS 256 |
| |
| #define PLATFORM_BUS_NUM_IRQS 64 |
| |
| /* Legacy RAM limit in GB (< version 4.0) */ |
| #define LEGACY_RAMLIMIT_GB 255 |
| #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) |
| |
| /* Addresses and sizes of our components. |
| * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. |
| * 128MB..256MB is used for miscellaneous device I/O. |
| * 256MB..1GB is reserved for possible future PCI support (ie where the |
| * PCI memory window will go if we add a PCI host controller). |
| * 1GB and up is RAM (which may happily spill over into the |
| * high memory region beyond 4GB). |
| * This represents a compromise between how much RAM can be given to |
| * a 32 bit VM and leaving space for expansion and in particular for PCI. |
| * Note that devices should generally be placed at multiples of 0x10000, |
| * to accommodate guests using 64K pages. |
| */ |
| static const MemMapEntry base_memmap[] = { |
| /* Space up to 0x8000000 is reserved for a boot ROM */ |
| [VIRT_FLASH] = { 0, 0x08000000 }, |
| [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, |
| /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ |
| [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, |
| [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, |
| [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, |
| [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, |
| [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, |
| /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ |
| [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, |
| /* This redistributor space allows up to 2*64kB*123 CPUs */ |
| [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, |
| [VIRT_UART] = { 0x09000000, 0x00001000 }, |
| [VIRT_RTC] = { 0x09010000, 0x00001000 }, |
| [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, |
| [VIRT_GPIO] = { 0x09030000, 0x00001000 }, |
| [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, |
| [VIRT_SMMU] = { 0x09050000, 0x00020000 }, |
| [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, |
| [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, |
| [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, |
| [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, |
| [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, |
| /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ |
| [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, |
| [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, |
| [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, |
| [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, |
| [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, |
| /* Actual RAM size depends on initial RAM and device memory settings */ |
| [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, |
| }; |
| |
| /* |
| * Highmem IO Regions: This memory map is floating, located after the RAM. |
| * Each MemMapEntry base (GPA) will be dynamically computed, depending on the |
| * top of the RAM, so that its base get the same alignment as the size, |
| * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is |
| * less than 256GiB of RAM, the floating area starts at the 256GiB mark. |
| * Note the extended_memmap is sized so that it eventually also includes the |
| * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last |
| * index of base_memmap). |
| */ |
| static MemMapEntry extended_memmap[] = { |
| /* Additional 64 MB redist region (can contain up to 512 redistributors) */ |
| [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, |
| [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, |
| /* Second PCIe window */ |
| [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, |
| }; |
| |
| static const int a15irqmap[] = { |
| [VIRT_UART] = 1, |
| [VIRT_RTC] = 2, |
| [VIRT_PCIE] = 3, /* ... to 6 */ |
| [VIRT_GPIO] = 7, |
| [VIRT_SECURE_UART] = 8, |
| [VIRT_ACPI_GED] = 9, |
| [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ |
| [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ |
| [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ |
| [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ |
| }; |
| |
| static const char *valid_cpus[] = { |
| ARM_CPU_TYPE_NAME("cortex-a7"), |
| ARM_CPU_TYPE_NAME("cortex-a15"), |
| ARM_CPU_TYPE_NAME("cortex-a53"), |
| ARM_CPU_TYPE_NAME("cortex-a57"), |
| ARM_CPU_TYPE_NAME("cortex-a72"), |
| ARM_CPU_TYPE_NAME("host"), |
| ARM_CPU_TYPE_NAME("max"), |
| }; |
| |
| static bool cpu_type_valid(const char *cpu) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { |
| if (strcmp(cpu, valid_cpus[i]) == 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void create_kaslr_seed(VirtMachineState *vms, const char *node) |
| { |
| uint64_t seed; |
| |
| if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { |
| return; |
| } |
| qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed); |
| } |
| |
| static void create_fdt(VirtMachineState *vms) |
| { |
| MachineState *ms = MACHINE(vms); |
| int nb_numa_nodes = ms->numa_state->num_nodes; |
| void *fdt = create_device_tree(&vms->fdt_size); |
| |
| if (!fdt) { |
| error_report("create_device_tree() failed"); |
| exit(1); |
| } |
| |
| vms->fdt = fdt; |
| |
| /* Header */ |
| qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); |
| qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); |
| qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); |
| |
| /* /chosen must exist for load_dtb to fill in necessary properties later */ |
| qemu_fdt_add_subnode(fdt, "/chosen"); |
| create_kaslr_seed(vms, "/chosen"); |
| |
| if (vms->secure) { |
| qemu_fdt_add_subnode(fdt, "/secure-chosen"); |
| create_kaslr_seed(vms, "/secure-chosen"); |
| } |
| |
| /* Clock node, for the benefit of the UART. The kernel device tree |
| * binding documentation claims the PL011 node clock properties are |
| * optional but in practice if you omit them the kernel refuses to |
| * probe for the device. |
| */ |
| vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); |
| qemu_fdt_add_subnode(fdt, "/apb-pclk"); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", |
| "clk24mhz"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); |
| |
| if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { |
| int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); |
| uint32_t *matrix = g_malloc0(size); |
| int idx, i, j; |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| for (j = 0; j < nb_numa_nodes; j++) { |
| idx = (i * nb_numa_nodes + j) * 3; |
| matrix[idx + 0] = cpu_to_be32(i); |
| matrix[idx + 1] = cpu_to_be32(j); |
| matrix[idx + 2] = |
| cpu_to_be32(ms->numa_state->nodes[i].distance[j]); |
| } |
| } |
| |
| qemu_fdt_add_subnode(fdt, "/distance-map"); |
| qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", |
| "numa-distance-map-v1"); |
| qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", |
| matrix, size); |
| g_free(matrix); |
| } |
| } |
| |
| static void fdt_add_timer_nodes(const VirtMachineState *vms) |
| { |
| /* On real hardware these interrupts are level-triggered. |
| * On KVM they were edge-triggered before host kernel version 4.4, |
| * and level-triggered afterwards. |
| * On emulated QEMU they are level-triggered. |
| * |
| * Getting the DTB info about them wrong is awkward for some |
| * guest kernels: |
| * pre-4.8 ignore the DT and leave the interrupt configured |
| * with whatever the GIC reset value (or the bootloader) left it at |
| * 4.8 before rc6 honour the incorrect data by programming it back |
| * into the GIC, causing problems |
| * 4.8rc6 and later ignore the DT and always write "level triggered" |
| * into the GIC |
| * |
| * For backwards-compatibility, virt-2.8 and earlier will continue |
| * to say these are edge-triggered, but later machines will report |
| * the correct information. |
| */ |
| ARMCPU *armcpu; |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; |
| |
| if (vmc->claim_edge_triggered_timers) { |
| irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; |
| } |
| |
| if (vms->gic_version == VIRT_GIC_VERSION_2) { |
| irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, |
| GIC_FDT_IRQ_PPI_CPU_WIDTH, |
| (1 << vms->smp_cpus) - 1); |
| } |
| |
| qemu_fdt_add_subnode(vms->fdt, "/timer"); |
| |
| armcpu = ARM_CPU(qemu_get_cpu(0)); |
| if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { |
| const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; |
| qemu_fdt_setprop(vms->fdt, "/timer", "compatible", |
| compat, sizeof(compat)); |
| } else { |
| qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", |
| "arm,armv7-timer"); |
| } |
| qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); |
| qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); |
| } |
| |
| static void fdt_add_cpu_nodes(const VirtMachineState *vms) |
| { |
| int cpu; |
| int addr_cells = 1; |
| const MachineState *ms = MACHINE(vms); |
| |
| /* |
| * From Documentation/devicetree/bindings/arm/cpus.txt |
| * On ARM v8 64-bit systems value should be set to 2, |
| * that corresponds to the MPIDR_EL1 register size. |
| * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs |
| * in the system, #address-cells can be set to 1, since |
| * MPIDR_EL1[63:32] bits are not used for CPUs |
| * identification. |
| * |
| * Here we actually don't know whether our system is 32- or 64-bit one. |
| * The simplest way to go is to examine affinity IDs of all our CPUs. If |
| * at least one of them has Aff3 populated, we set #address-cells to 2. |
| */ |
| for (cpu = 0; cpu < vms->smp_cpus; cpu++) { |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); |
| |
| if (armcpu->mp_affinity & ARM_AFF3_MASK) { |
| addr_cells = 2; |
| break; |
| } |
| } |
| |
| qemu_fdt_add_subnode(vms->fdt, "/cpus"); |
| qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); |
| qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); |
| |
| for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { |
| char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); |
| CPUState *cs = CPU(armcpu); |
| |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", |
| armcpu->dtb_compatible); |
| |
| if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED |
| && vms->smp_cpus > 1) { |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "enable-method", "psci"); |
| } |
| |
| if (addr_cells == 2) { |
| qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", |
| armcpu->mp_affinity); |
| } else { |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", |
| armcpu->mp_affinity); |
| } |
| |
| if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", |
| ms->possible_cpus->cpus[cs->cpu_index].props.node_id); |
| } |
| |
| g_free(nodename); |
| } |
| } |
| |
| static void fdt_add_its_gic_node(VirtMachineState *vms) |
| { |
| char *nodename; |
| |
| vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| nodename = g_strdup_printf("/intc/its@%" PRIx64, |
| vms->memmap[VIRT_GIC_ITS].base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", |
| "arm,gic-v3-its"); |
| qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, vms->memmap[VIRT_GIC_ITS].base, |
| 2, vms->memmap[VIRT_GIC_ITS].size); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); |
| g_free(nodename); |
| } |
| |
| static void fdt_add_v2m_gic_node(VirtMachineState *vms) |
| { |
| char *nodename; |
| |
| nodename = g_strdup_printf("/intc/v2m@%" PRIx64, |
| vms->memmap[VIRT_GIC_V2M].base); |
| vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", |
| "arm,gic-v2m-frame"); |
| qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, vms->memmap[VIRT_GIC_V2M].base, |
| 2, vms->memmap[VIRT_GIC_V2M].size); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); |
| g_free(nodename); |
| } |
| |
| static void fdt_add_gic_node(VirtMachineState *vms) |
| { |
| char *nodename; |
| |
| vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); |
| |
| nodename = g_strdup_printf("/intc@%" PRIx64, |
| vms->memmap[VIRT_GIC_DIST].base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); |
| qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); |
| qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); |
| if (vms->gic_version == VIRT_GIC_VERSION_3) { |
| int nb_redist_regions = virt_gicv3_redist_region_count(vms); |
| |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", |
| "arm,gic-v3"); |
| |
| qemu_fdt_setprop_cell(vms->fdt, nodename, |
| "#redistributor-regions", nb_redist_regions); |
| |
| if (nb_redist_regions == 1) { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, vms->memmap[VIRT_GIC_DIST].base, |
| 2, vms->memmap[VIRT_GIC_DIST].size, |
| 2, vms->memmap[VIRT_GIC_REDIST].base, |
| 2, vms->memmap[VIRT_GIC_REDIST].size); |
| } else { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, vms->memmap[VIRT_GIC_DIST].base, |
| 2, vms->memmap[VIRT_GIC_DIST].size, |
| 2, vms->memmap[VIRT_GIC_REDIST].base, |
| 2, vms->memmap[VIRT_GIC_REDIST].size, |
| 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, |
| 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); |
| } |
| |
| if (vms->virt) { |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| } |
| } else { |
| /* 'cortex-a15-gic' means 'GIC v2' */ |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", |
| "arm,cortex-a15-gic"); |
| if (!vms->virt) { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, vms->memmap[VIRT_GIC_DIST].base, |
| 2, vms->memmap[VIRT_GIC_DIST].size, |
| 2, vms->memmap[VIRT_GIC_CPU].base, |
| 2, vms->memmap[VIRT_GIC_CPU].size); |
| } else { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, vms->memmap[VIRT_GIC_DIST].base, |
| 2, vms->memmap[VIRT_GIC_DIST].size, |
| 2, vms->memmap[VIRT_GIC_CPU].base, |
| 2, vms->memmap[VIRT_GIC_CPU].size, |
| 2, vms->memmap[VIRT_GIC_HYP].base, |
| 2, vms->memmap[VIRT_GIC_HYP].size, |
| 2, vms->memmap[VIRT_GIC_VCPU].base, |
| 2, vms->memmap[VIRT_GIC_VCPU].size); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| } |
| } |
| |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); |
| g_free(nodename); |
| } |
| |
| static void fdt_add_pmu_nodes(const VirtMachineState *vms) |
| { |
| ARMCPU *armcpu = ARM_CPU(first_cpu); |
| uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; |
| |
| if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { |
| assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); |
| return; |
| } |
| |
| if (vms->gic_version == VIRT_GIC_VERSION_2) { |
| irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, |
| GIC_FDT_IRQ_PPI_CPU_WIDTH, |
| (1 << vms->smp_cpus) - 1); |
| } |
| |
| qemu_fdt_add_subnode(vms->fdt, "/pmu"); |
| if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { |
| const char compat[] = "arm,armv8-pmuv3"; |
| qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", |
| compat, sizeof(compat)); |
| qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); |
| } |
| } |
| |
| static inline DeviceState *create_acpi_ged(VirtMachineState *vms) |
| { |
| DeviceState *dev; |
| MachineState *ms = MACHINE(vms); |
| int irq = vms->irqmap[VIRT_ACPI_GED]; |
| uint32_t event = ACPI_GED_PWR_DOWN_EVT; |
| |
| if (ms->ram_slots) { |
| event |= ACPI_GED_MEM_HOTPLUG_EVT; |
| } |
| |
| if (ms->nvdimms_state->is_enabled) { |
| event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; |
| } |
| |
| dev = qdev_new(TYPE_ACPI_GED); |
| qdev_prop_set_uint32(dev, "ged-event", event); |
| |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); |
| |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| |
| return dev; |
| } |
| |
| static void create_its(VirtMachineState *vms) |
| { |
| const char *itsclass = its_class_name(); |
| DeviceState *dev; |
| |
| if (!itsclass) { |
| /* Do nothing if not supported */ |
| return; |
| } |
| |
| dev = qdev_new(itsclass); |
| |
| object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), |
| &error_abort); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); |
| |
| fdt_add_its_gic_node(vms); |
| vms->msi_controller = VIRT_MSI_CTRL_ITS; |
| } |
| |
| static void create_v2m(VirtMachineState *vms) |
| { |
| int i; |
| int irq = vms->irqmap[VIRT_GIC_V2M]; |
| DeviceState *dev; |
| |
| dev = qdev_new("arm-gicv2m"); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); |
| qdev_prop_set_uint32(dev, "base-spi", irq); |
| qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| |
| for (i = 0; i < NUM_GICV2M_SPIS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, |
| qdev_get_gpio_in(vms->gic, irq + i)); |
| } |
| |
| fdt_add_v2m_gic_node(vms); |
| vms->msi_controller = VIRT_MSI_CTRL_GICV2M; |
| } |
| |
| static void create_gic(VirtMachineState *vms) |
| { |
| MachineState *ms = MACHINE(vms); |
| /* We create a standalone GIC */ |
| SysBusDevice *gicbusdev; |
| const char *gictype; |
| int type = vms->gic_version, i; |
| unsigned int smp_cpus = ms->smp.cpus; |
| uint32_t nb_redist_regions = 0; |
| |
| gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); |
| |
| vms->gic = qdev_new(gictype); |
| qdev_prop_set_uint32(vms->gic, "revision", type); |
| qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); |
| /* Note that the num-irq property counts both internal and external |
| * interrupts; there are always 32 of the former (mandated by GIC spec). |
| */ |
| qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); |
| if (!kvm_irqchip_in_kernel()) { |
| qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); |
| } |
| |
| if (type == 3) { |
| uint32_t redist0_capacity = |
| vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; |
| uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); |
| |
| nb_redist_regions = virt_gicv3_redist_region_count(vms); |
| |
| qdev_prop_set_uint32(vms->gic, "len-redist-region-count", |
| nb_redist_regions); |
| qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); |
| |
| if (nb_redist_regions == 2) { |
| uint32_t redist1_capacity = |
| vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; |
| |
| qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", |
| MIN(smp_cpus - redist0_count, redist1_capacity)); |
| } |
| } else { |
| if (!kvm_irqchip_in_kernel()) { |
| qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", |
| vms->virt); |
| } |
| } |
| gicbusdev = SYS_BUS_DEVICE(vms->gic); |
| sysbus_realize_and_unref(gicbusdev, &error_fatal); |
| sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); |
| if (type == 3) { |
| sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); |
| if (nb_redist_regions == 2) { |
| sysbus_mmio_map(gicbusdev, 2, |
| vms->memmap[VIRT_HIGH_GIC_REDIST2].base); |
| } |
| } else { |
| sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); |
| if (vms->virt) { |
| sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); |
| sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); |
| } |
| } |
| |
| /* Wire the outputs from each CPU's generic timer and the GICv3 |
| * maintenance interrupt signal to the appropriate GIC PPI inputs, |
| * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. |
| */ |
| for (i = 0; i < smp_cpus; i++) { |
| DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); |
| int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; |
| int irq; |
| /* Mapping from the output timer irq lines from the CPU to the |
| * GIC PPI inputs we use for the virt board. |
| */ |
| const int timer_irq[] = { |
| [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, |
| [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, |
| [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, |
| [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, |
| }; |
| |
| for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { |
| qdev_connect_gpio_out(cpudev, irq, |
| qdev_get_gpio_in(vms->gic, |
| ppibase + timer_irq[irq])); |
| } |
| |
| if (type == 3) { |
| qemu_irq irq = qdev_get_gpio_in(vms->gic, |
| ppibase + ARCH_GIC_MAINT_IRQ); |
| qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", |
| 0, irq); |
| } else if (vms->virt) { |
| qemu_irq irq = qdev_get_gpio_in(vms->gic, |
| ppibase + ARCH_GIC_MAINT_IRQ); |
| sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); |
| } |
| |
| qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, |
| qdev_get_gpio_in(vms->gic, ppibase |
| + VIRTUAL_PMU_IRQ)); |
| |
| sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); |
| sysbus_connect_irq(gicbusdev, i + smp_cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); |
| sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); |
| sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); |
| } |
| |
| fdt_add_gic_node(vms); |
| |
| if (type == 3 && vms->its) { |
| create_its(vms); |
| } else if (type == 2) { |
| create_v2m(vms); |
| } |
| } |
| |
| static void create_uart(const VirtMachineState *vms, int uart, |
| MemoryRegion *mem, Chardev *chr) |
| { |
| char *nodename; |
| hwaddr base = vms->memmap[uart].base; |
| hwaddr size = vms->memmap[uart].size; |
| int irq = vms->irqmap[uart]; |
| const char compat[] = "arm,pl011\0arm,primecell"; |
| const char clocknames[] = "uartclk\0apb_pclk"; |
| DeviceState *dev = qdev_new(TYPE_PL011); |
| SysBusDevice *s = SYS_BUS_DEVICE(dev); |
| |
| qdev_prop_set_chr(dev, "chardev", chr); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| memory_region_add_subregion(mem, base, |
| sysbus_mmio_get_region(s, 0)); |
| sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); |
| |
| nodename = g_strdup_printf("/pl011@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| /* Note that we can't use setprop_string because of the embedded NUL */ |
| qemu_fdt_setprop(vms->fdt, nodename, "compatible", |
| compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", |
| vms->clock_phandle, vms->clock_phandle); |
| qemu_fdt_setprop(vms->fdt, nodename, "clock-names", |
| clocknames, sizeof(clocknames)); |
| |
| if (uart == VIRT_UART) { |
| qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); |
| } else { |
| /* Mark as not usable by the normal world */ |
| qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); |
| |
| qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", |
| nodename); |
| } |
| |
| g_free(nodename); |
| } |
| |
| static void create_rtc(const VirtMachineState *vms) |
| { |
| char *nodename; |
| hwaddr base = vms->memmap[VIRT_RTC].base; |
| hwaddr size = vms->memmap[VIRT_RTC].size; |
| int irq = vms->irqmap[VIRT_RTC]; |
| const char compat[] = "arm,pl031\0arm,primecell"; |
| |
| sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); |
| |
| nodename = g_strdup_printf("/pl031@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); |
| g_free(nodename); |
| } |
| |
| static DeviceState *gpio_key_dev; |
| static void virt_powerdown_req(Notifier *n, void *opaque) |
| { |
| VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); |
| |
| if (s->acpi_dev) { |
| acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); |
| } else { |
| /* use gpio Pin 3 for power button event */ |
| qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); |
| } |
| } |
| |
| static void create_gpio(const VirtMachineState *vms) |
| { |
| char *nodename; |
| DeviceState *pl061_dev; |
| hwaddr base = vms->memmap[VIRT_GPIO].base; |
| hwaddr size = vms->memmap[VIRT_GPIO].size; |
| int irq = vms->irqmap[VIRT_GPIO]; |
| const char compat[] = "arm,pl061\0arm,primecell"; |
| |
| pl061_dev = sysbus_create_simple("pl061", base, |
| qdev_get_gpio_in(vms->gic, irq)); |
| |
| uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| nodename = g_strdup_printf("/pl061@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); |
| qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); |
| |
| gpio_key_dev = sysbus_create_simple("gpio-key", -1, |
| qdev_get_gpio_in(pl061_dev, 3)); |
| qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); |
| qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); |
| qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); |
| qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); |
| |
| qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); |
| qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", |
| "label", "GPIO Key Poweroff"); |
| qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", |
| KEY_POWER); |
| qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", |
| "gpios", phandle, 3, 0); |
| g_free(nodename); |
| } |
| |
| static void create_virtio_devices(const VirtMachineState *vms) |
| { |
| int i; |
| hwaddr size = vms->memmap[VIRT_MMIO].size; |
| |
| /* We create the transports in forwards order. Since qbus_realize() |
| * prepends (not appends) new child buses, the incrementing loop below will |
| * create a list of virtio-mmio buses with decreasing base addresses. |
| * |
| * When a -device option is processed from the command line, |
| * qbus_find_recursive() picks the next free virtio-mmio bus in forwards |
| * order. The upshot is that -device options in increasing command line |
| * order are mapped to virtio-mmio buses with decreasing base addresses. |
| * |
| * When this code was originally written, that arrangement ensured that the |
| * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to |
| * the first -device on the command line. (The end-to-end order is a |
| * function of this loop, qbus_realize(), qbus_find_recursive(), and the |
| * guest kernel's name-to-address assignment strategy.) |
| * |
| * Meanwhile, the kernel's traversal seems to have been reversed; see eg. |
| * the message, if not necessarily the code, of commit 70161ff336. |
| * Therefore the loop now establishes the inverse of the original intent. |
| * |
| * Unfortunately, we can't counteract the kernel change by reversing the |
| * loop; it would break existing command lines. |
| * |
| * In any case, the kernel makes no guarantee about the stability of |
| * enumeration order of virtio devices (as demonstrated by it changing |
| * between kernel versions). For reliable and stable identification |
| * of disks users must use UUIDs or similar mechanisms. |
| */ |
| for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { |
| int irq = vms->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; |
| |
| sysbus_create_simple("virtio-mmio", base, |
| qdev_get_gpio_in(vms->gic, irq)); |
| } |
| |
| /* We add dtb nodes in reverse order so that they appear in the finished |
| * device tree lowest address first. |
| * |
| * Note that this mapping is independent of the loop above. The previous |
| * loop influences virtio device to virtio transport assignment, whereas |
| * this loop controls how virtio transports are laid out in the dtb. |
| */ |
| for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { |
| char *nodename; |
| int irq = vms->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; |
| |
| nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "compatible", "virtio,mmio"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); |
| qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); |
| g_free(nodename); |
| } |
| } |
| |
| #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) |
| |
| static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, |
| const char *name, |
| const char *alias_prop_name) |
| { |
| /* |
| * Create a single flash device. We use the same parameters as |
| * the flash devices on the Versatile Express board. |
| */ |
| DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); |
| |
| qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); |
| qdev_prop_set_uint8(dev, "width", 4); |
| qdev_prop_set_uint8(dev, "device-width", 2); |
| qdev_prop_set_bit(dev, "big-endian", false); |
| qdev_prop_set_uint16(dev, "id0", 0x89); |
| qdev_prop_set_uint16(dev, "id1", 0x18); |
| qdev_prop_set_uint16(dev, "id2", 0x00); |
| qdev_prop_set_uint16(dev, "id3", 0x00); |
| qdev_prop_set_string(dev, "name", name); |
| object_property_add_child(OBJECT(vms), name, OBJECT(dev)); |
| object_property_add_alias(OBJECT(vms), alias_prop_name, |
| OBJECT(dev), "drive"); |
| return PFLASH_CFI01(dev); |
| } |
| |
| static void virt_flash_create(VirtMachineState *vms) |
| { |
| vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); |
| vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); |
| } |
| |
| static void virt_flash_map1(PFlashCFI01 *flash, |
| hwaddr base, hwaddr size, |
| MemoryRegion *sysmem) |
| { |
| DeviceState *dev = DEVICE(flash); |
| |
| assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); |
| assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); |
| qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| |
| memory_region_add_subregion(sysmem, base, |
| sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), |
| 0)); |
| } |
| |
| static void virt_flash_map(VirtMachineState *vms, |
| MemoryRegion *sysmem, |
| MemoryRegion *secure_sysmem) |
| { |
| /* |
| * Map two flash devices to fill the VIRT_FLASH space in the memmap. |
| * sysmem is the system memory space. secure_sysmem is the secure view |
| * of the system, and the first flash device should be made visible only |
| * there. The second flash device is visible to both secure and nonsecure. |
| * If sysmem == secure_sysmem this means there is no separate Secure |
| * address space and both flash devices are generally visible. |
| */ |
| hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; |
| hwaddr flashbase = vms->memmap[VIRT_FLASH].base; |
| |
| virt_flash_map1(vms->flash[0], flashbase, flashsize, |
| secure_sysmem); |
| virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, |
| sysmem); |
| } |
| |
| static void virt_flash_fdt(VirtMachineState *vms, |
| MemoryRegion *sysmem, |
| MemoryRegion *secure_sysmem) |
| { |
| hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; |
| hwaddr flashbase = vms->memmap[VIRT_FLASH].base; |
| char *nodename; |
| |
| if (sysmem == secure_sysmem) { |
| /* Report both flash devices as a single node in the DT */ |
| nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, flashbase, 2, flashsize, |
| 2, flashbase + flashsize, 2, flashsize); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); |
| g_free(nodename); |
| } else { |
| /* |
| * Report the devices as separate nodes so we can mark one as |
| * only visible to the secure world. |
| */ |
| nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, flashbase, 2, flashsize); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); |
| g_free(nodename); |
| |
| nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, flashbase + flashsize, 2, flashsize); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); |
| g_free(nodename); |
| } |
| } |
| |
| static bool virt_firmware_init(VirtMachineState *vms, |
| MemoryRegion *sysmem, |
| MemoryRegion *secure_sysmem) |
| { |
| int i; |
| BlockBackend *pflash_blk0; |
| |
| /* Map legacy -drive if=pflash to machine properties */ |
| for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { |
| pflash_cfi01_legacy_drive(vms->flash[i], |
| drive_get(IF_PFLASH, 0, i)); |
| } |
| |
| virt_flash_map(vms, sysmem, secure_sysmem); |
| |
| pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); |
| |
| if (bios_name) { |
| char *fname; |
| MemoryRegion *mr; |
| int image_size; |
| |
| if (pflash_blk0) { |
| error_report("The contents of the first flash device may be " |
| "specified with -bios or with -drive if=pflash... " |
| "but you cannot use both options at once"); |
| exit(1); |
| } |
| |
| /* Fall back to -bios */ |
| |
| fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| if (!fname) { |
| error_report("Could not find ROM image '%s'", bios_name); |
| exit(1); |
| } |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); |
| image_size = load_image_mr(fname, mr); |
| g_free(fname); |
| if (image_size < 0) { |
| error_report("Could not load ROM image '%s'", bios_name); |
| exit(1); |
| } |
| } |
| |
| return pflash_blk0 || bios_name; |
| } |
| |
| static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) |
| { |
| MachineState *ms = MACHINE(vms); |
| hwaddr base = vms->memmap[VIRT_FW_CFG].base; |
| hwaddr size = vms->memmap[VIRT_FW_CFG].size; |
| FWCfgState *fw_cfg; |
| char *nodename; |
| |
| fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); |
| fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); |
| |
| nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "compatible", "qemu,fw-cfg-mmio"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); |
| g_free(nodename); |
| return fw_cfg; |
| } |
| |
| static void create_pcie_irq_map(const VirtMachineState *vms, |
| uint32_t gic_phandle, |
| int first_irq, const char *nodename) |
| { |
| int devfn, pin; |
| uint32_t full_irq_map[4 * 4 * 10] = { 0 }; |
| uint32_t *irq_map = full_irq_map; |
| |
| for (devfn = 0; devfn <= 0x18; devfn += 0x8) { |
| for (pin = 0; pin < 4; pin++) { |
| int irq_type = GIC_FDT_IRQ_TYPE_SPI; |
| int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); |
| int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; |
| int i; |
| |
| uint32_t map[] = { |
| devfn << 8, 0, 0, /* devfn */ |
| pin + 1, /* PCI pin */ |
| gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ |
| |
| /* Convert map to big endian */ |
| for (i = 0; i < 10; i++) { |
| irq_map[i] = cpu_to_be32(map[i]); |
| } |
| irq_map += 10; |
| } |
| } |
| |
| qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", |
| full_irq_map, sizeof(full_irq_map)); |
| |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", |
| 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ |
| 0x7 /* PCI irq */); |
| } |
| |
| static void create_smmu(const VirtMachineState *vms, |
| PCIBus *bus) |
| { |
| char *node; |
| const char compat[] = "arm,smmu-v3"; |
| int irq = vms->irqmap[VIRT_SMMU]; |
| int i; |
| hwaddr base = vms->memmap[VIRT_SMMU].base; |
| hwaddr size = vms->memmap[VIRT_SMMU].size; |
| const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; |
| DeviceState *dev; |
| |
| if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { |
| return; |
| } |
| |
| dev = qdev_new("arm-smmuv3"); |
| |
| object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), |
| &error_abort); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); |
| for (i = 0; i < NUM_SMMU_IRQS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, |
| qdev_get_gpio_in(vms->gic, irq + i)); |
| } |
| |
| node = g_strdup_printf("/smmuv3@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, node); |
| qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); |
| |
| qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, |
| GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, |
| GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, |
| GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); |
| |
| qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, |
| sizeof(irq_names)); |
| |
| qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); |
| qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); |
| qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); |
| |
| qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); |
| |
| qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); |
| g_free(node); |
| } |
| |
| static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) |
| { |
| const char compat[] = "virtio,pci-iommu"; |
| uint16_t bdf = vms->virtio_iommu_bdf; |
| char *node; |
| |
| vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| |
| node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); |
| qemu_fdt_add_subnode(vms->fdt, node); |
| qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", |
| 1, bdf << 8, 1, 0, 1, 0, |
| 1, 0, 1, 0); |
| |
| qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); |
| qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); |
| g_free(node); |
| |
| qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map", |
| 0x0, vms->iommu_phandle, 0x0, bdf, |
| bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); |
| } |
| |
| static void create_pcie(VirtMachineState *vms) |
| { |
| hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; |
| hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; |
| hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; |
| hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; |
| hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; |
| hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; |
| hwaddr base_ecam, size_ecam; |
| hwaddr base = base_mmio; |
| int nr_pcie_buses; |
| int irq = vms->irqmap[VIRT_PCIE]; |
| MemoryRegion *mmio_alias; |
| MemoryRegion *mmio_reg; |
| MemoryRegion *ecam_alias; |
| MemoryRegion *ecam_reg; |
| DeviceState *dev; |
| char *nodename; |
| int i, ecam_id; |
| PCIHostState *pci; |
| |
| dev = qdev_new(TYPE_GPEX_HOST); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| |
| ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); |
| base_ecam = vms->memmap[ecam_id].base; |
| size_ecam = vms->memmap[ecam_id].size; |
| nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; |
| /* Map only the first size_ecam bytes of ECAM space */ |
| ecam_alias = g_new0(MemoryRegion, 1); |
| ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); |
| memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", |
| ecam_reg, 0, size_ecam); |
| memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); |
| |
| /* Map the MMIO window into system address space so as to expose |
| * the section of PCI MMIO space which starts at the same base address |
| * (ie 1:1 mapping for that part of PCI MMIO space visible through |
| * the window). |
| */ |
| mmio_alias = g_new0(MemoryRegion, 1); |
| mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); |
| memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", |
| mmio_reg, base_mmio, size_mmio); |
| memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); |
| |
| if (vms->highmem) { |
| /* Map high MMIO space */ |
| MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); |
| |
| memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", |
| mmio_reg, base_mmio_high, size_mmio_high); |
| memory_region_add_subregion(get_system_memory(), base_mmio_high, |
| high_mmio_alias); |
| } |
| |
| /* Map IO port space */ |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); |
| |
| for (i = 0; i < GPEX_NUM_IRQS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, |
| qdev_get_gpio_in(vms->gic, irq + i)); |
| gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); |
| } |
| |
| pci = PCI_HOST_BRIDGE(dev); |
| if (pci->bus) { |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| |
| if (!nd->model) { |
| nd->model = g_strdup("virtio"); |
| } |
| |
| pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); |
| } |
| } |
| |
| nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "compatible", "pci-host-ecam-generic"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, |
| nr_pcie_buses - 1); |
| qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); |
| |
| if (vms->msi_phandle) { |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", |
| vms->msi_phandle); |
| } |
| |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base_ecam, 2, size_ecam); |
| |
| if (vms->highmem) { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", |
| 1, FDT_PCI_RANGE_IOPORT, 2, 0, |
| 2, base_pio, 2, size_pio, |
| 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, |
| 2, base_mmio, 2, size_mmio, |
| 1, FDT_PCI_RANGE_MMIO_64BIT, |
| 2, base_mmio_high, |
| 2, base_mmio_high, 2, size_mmio_high); |
| } else { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", |
| 1, FDT_PCI_RANGE_IOPORT, 2, 0, |
| 2, base_pio, 2, size_pio, |
| 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, |
| 2, base_mmio, 2, size_mmio); |
| } |
| |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); |
| create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); |
| |
| if (vms->iommu) { |
| vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| |
| switch (vms->iommu) { |
| case VIRT_IOMMU_SMMUV3: |
| create_smmu(vms, pci->bus); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", |
| 0x0, vms->iommu_phandle, 0x0, 0x10000); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| } |
| |
| static void create_platform_bus(VirtMachineState *vms) |
| { |
| DeviceState *dev; |
| SysBusDevice *s; |
| int i; |
| MemoryRegion *sysmem = get_system_memory(); |
| |
| dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); |
| dev->id = TYPE_PLATFORM_BUS_DEVICE; |
| qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); |
| qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); |
| sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); |
| vms->platform_bus_dev = dev; |
| |
| s = SYS_BUS_DEVICE(dev); |
| for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { |
| int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; |
| sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); |
| } |
| |
| memory_region_add_subregion(sysmem, |
| vms->memmap[VIRT_PLATFORM_BUS].base, |
| sysbus_mmio_get_region(s, 0)); |
| } |
| |
| static void create_tag_ram(MemoryRegion *tag_sysmem, |
| hwaddr base, hwaddr size, |
| const char *name) |
| { |
| MemoryRegion *tagram = g_new(MemoryRegion, 1); |
| |
| memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); |
| memory_region_add_subregion(tag_sysmem, base / 32, tagram); |
| } |
| |
| static void create_secure_ram(VirtMachineState *vms, |
| MemoryRegion *secure_sysmem, |
| MemoryRegion *secure_tag_sysmem) |
| { |
| MemoryRegion *secram = g_new(MemoryRegion, 1); |
| char *nodename; |
| hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; |
| hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; |
| |
| memory_region_init_ram(secram, NULL, "virt.secure-ram", size, |
| &error_fatal); |
| memory_region_add_subregion(secure_sysmem, base, secram); |
| |
| nodename = g_strdup_printf("/secram@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); |
| |
| if (secure_tag_sysmem) { |
| create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); |
| } |
| |
| g_free(nodename); |
| } |
| |
| static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) |
| { |
| const VirtMachineState *board = container_of(binfo, VirtMachineState, |
| bootinfo); |
| |
| *fdt_size = board->fdt_size; |
| return board->fdt; |
| } |
| |
| static void virt_build_smbios(VirtMachineState *vms) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(vms); |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| uint8_t *smbios_tables, *smbios_anchor; |
| size_t smbios_tables_len, smbios_anchor_len; |
| const char *product = "QEMU Virtual Machine"; |
| |
| if (kvm_enabled()) { |
| product = "KVM Virtual Machine"; |
| } |
| |
| smbios_set_defaults("QEMU", product, |
| vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, |
| true, SMBIOS_ENTRY_POINT_30); |
| |
| smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len, |
| &smbios_anchor, &smbios_anchor_len); |
| |
| if (smbios_anchor) { |
| fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", |
| smbios_tables, smbios_tables_len); |
| fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", |
| smbios_anchor, smbios_anchor_len); |
| } |
| } |
| |
| static |
| void virt_machine_done(Notifier *notifier, void *data) |
| { |
| VirtMachineState *vms = container_of(notifier, VirtMachineState, |
| machine_done); |
| MachineState *ms = MACHINE(vms); |
| ARMCPU *cpu = ARM_CPU(first_cpu); |
| struct arm_boot_info *info = &vms->bootinfo; |
| AddressSpace *as = arm_boot_address_space(cpu, info); |
| |
| /* |
| * If the user provided a dtb, we assume the dynamic sysbus nodes |
| * already are integrated there. This corresponds to a use case where |
| * the dynamic sysbus nodes are complex and their generation is not yet |
| * supported. In that case the user can take charge of the guest dt |
| * while qemu takes charge of the qom stuff. |
| */ |
| if (info->dtb_filename == NULL) { |
| platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", |
| vms->memmap[VIRT_PLATFORM_BUS].base, |
| vms->memmap[VIRT_PLATFORM_BUS].size, |
| vms->irqmap[VIRT_PLATFORM_BUS]); |
| } |
| if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { |
| exit(1); |
| } |
| |
| virt_acpi_setup(vms); |
| virt_build_smbios(vms); |
| } |
| |
| static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) |
| { |
| uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| |
| if (!vmc->disallow_affinity_adjustment) { |
| /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the |
| * GIC's target-list limitations. 32-bit KVM hosts currently |
| * always create clusters of 4 CPUs, but that is expected to |
| * change when they gain support for gicv3. When KVM is enabled |
| * it will override the changes we make here, therefore our |
| * purposes are to make TCG consistent (with 64-bit KVM hosts) |
| * and to improve SGI efficiency. |
| */ |
| if (vms->gic_version == VIRT_GIC_VERSION_3) { |
| clustersz = GICV3_TARGETLIST_BITS; |
| } else { |
| clustersz = GIC_TARGETLIST_BITS; |
| } |
| } |
| return arm_cpu_mp_affinity(idx, clustersz); |
| } |
| |
| static void virt_set_memmap(VirtMachineState *vms) |
| { |
| MachineState *ms = MACHINE(vms); |
| hwaddr base, device_memory_base, device_memory_size; |
| int i; |
| |
| vms->memmap = extended_memmap; |
| |
| for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { |
| vms->memmap[i] = base_memmap[i]; |
| } |
| |
| if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { |
| error_report("unsupported number of memory slots: %"PRIu64, |
| ms->ram_slots); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* |
| * We compute the base of the high IO region depending on the |
| * amount of initial and device memory. The device memory start/size |
| * is aligned on 1GiB. We never put the high IO region below 256GiB |
| * so that if maxram_size is < 255GiB we keep the legacy memory map. |
| * The device region size assumes 1GiB page max alignment per slot. |
| */ |
| device_memory_base = |
| ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); |
| device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; |
| |
| /* Base address of the high IO region */ |
| base = device_memory_base + ROUND_UP(device_memory_size, GiB); |
| if (base < device_memory_base) { |
| error_report("maxmem/slots too huge"); |
| exit(EXIT_FAILURE); |
| } |
| if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { |
| base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; |
| } |
| |
| for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { |
| hwaddr size = extended_memmap[i].size; |
| |
| base = ROUND_UP(base, size); |
| vms->memmap[i].base = base; |
| vms->memmap[i].size = size; |
| base += size; |
| } |
| vms->highest_gpa = base - 1; |
| if (device_memory_size > 0) { |
| ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); |
| ms->device_memory->base = device_memory_base; |
| memory_region_init(&ms->device_memory->mr, OBJECT(vms), |
| "device-memory", device_memory_size); |
| } |
| } |
| |
| /* |
| * finalize_gic_version - Determines the final gic_version |
| * according to the gic-version property |
| * |
| * Default GIC type is v2 |
| */ |
| static void finalize_gic_version(VirtMachineState *vms) |
| { |
| unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; |
| |
| if (kvm_enabled()) { |
| int probe_bitmap; |
| |
| if (!kvm_irqchip_in_kernel()) { |
| switch (vms->gic_version) { |
| case VIRT_GIC_VERSION_HOST: |
| warn_report( |
| "gic-version=host not relevant with kernel-irqchip=off " |
| "as only userspace GICv2 is supported. Using v2 ..."); |
| return; |
| case VIRT_GIC_VERSION_MAX: |
| case VIRT_GIC_VERSION_NOSEL: |
| vms->gic_version = VIRT_GIC_VERSION_2; |
| return; |
| case VIRT_GIC_VERSION_2: |
| return; |
| case VIRT_GIC_VERSION_3: |
| error_report( |
| "gic-version=3 is not supported with kernel-irqchip=off"); |
| exit(1); |
| } |
| } |
| |
| probe_bitmap = kvm_arm_vgic_probe(); |
| if (!probe_bitmap) { |
| error_report("Unable to determine GIC version supported by host"); |
| exit(1); |
| } |
| |
| switch (vms->gic_version) { |
| case VIRT_GIC_VERSION_HOST: |
| case VIRT_GIC_VERSION_MAX: |
| if (probe_bitmap & KVM_ARM_VGIC_V3) { |
| vms->gic_version = VIRT_GIC_VERSION_3; |
| } else { |
| vms->gic_version = VIRT_GIC_VERSION_2; |
| } |
| return; |
| case VIRT_GIC_VERSION_NOSEL: |
| if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { |
| vms->gic_version = VIRT_GIC_VERSION_2; |
| } else if (probe_bitmap & KVM_ARM_VGIC_V3) { |
| /* |
| * in case the host does not support v2 in-kernel emulation or |
| * the end-user requested more than 8 VCPUs we now default |
| * to v3. In any case defaulting to v2 would be broken. |
| */ |
| vms->gic_version = VIRT_GIC_VERSION_3; |
| } else if (max_cpus > GIC_NCPU) { |
| error_report("host only supports in-kernel GICv2 emulation " |
| "but more than 8 vcpus are requested"); |
| exit(1); |
| } |
| break; |
| case VIRT_GIC_VERSION_2: |
| case VIRT_GIC_VERSION_3: |
| break; |
| } |
| |
| /* Check chosen version is effectively supported by the host */ |
| if (vms->gic_version == VIRT_GIC_VERSION_2 && |
| !(probe_bitmap & KVM_ARM_VGIC_V2)) { |
| error_report("host does not support in-kernel GICv2 emulation"); |
| exit(1); |
| } else if (vms->gic_version == VIRT_GIC_VERSION_3 && |
| !(probe_bitmap & KVM_ARM_VGIC_V3)) { |
| error_report("host does not support in-kernel GICv3 emulation"); |
| exit(1); |
| } |
| return; |
| } |
| |
| /* TCG mode */ |
| switch (vms->gic_version) { |
| case VIRT_GIC_VERSION_NOSEL: |
| vms->gic_version = VIRT_GIC_VERSION_2; |
| break; |
| case VIRT_GIC_VERSION_MAX: |
| vms->gic_version = VIRT_GIC_VERSION_3; |
| break; |
| case VIRT_GIC_VERSION_HOST: |
| error_report("gic-version=host requires KVM"); |
| exit(1); |
| case VIRT_GIC_VERSION_2: |
| case VIRT_GIC_VERSION_3: |
| break; |
| } |
| } |
| |
| /* |
| * virt_cpu_post_init() must be called after the CPUs have |
| * been realized and the GIC has been created. |
| */ |
| static void virt_cpu_post_init(VirtMachineState *vms, int max_cpus, |
| MemoryRegion *sysmem) |
| { |
| bool aarch64, pmu, steal_time; |
| CPUState *cpu; |
| |
| aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); |
| pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); |
| steal_time = object_property_get_bool(OBJECT(first_cpu), |
| "kvm-steal-time", NULL); |
| |
| if (kvm_enabled()) { |
| hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; |
| hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; |
| |
| if (steal_time) { |
| MemoryRegion *pvtime = g_new(MemoryRegion, 1); |
| hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; |
| |
| /* The memory region size must be a multiple of host page size. */ |
| pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); |
| |
| if (pvtime_size > pvtime_reg_size) { |
| error_report("pvtime requires a %" HWADDR_PRId |
| " byte memory region for %d CPUs," |
| " but only %" HWADDR_PRId " has been reserved", |
| pvtime_size, max_cpus, pvtime_reg_size); |
| exit(1); |
| } |
| |
| memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); |
| memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); |
| } |
| |
| CPU_FOREACH(cpu) { |
| if (pmu) { |
| assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); |
| if (kvm_irqchip_in_kernel()) { |
| kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); |
| } |
| kvm_arm_pmu_init(cpu); |
| } |
| if (steal_time) { |
| kvm_arm_pvtime_init(cpu, pvtime_reg_base + |
| cpu->cpu_index * PVTIME_SIZE_PER_CPU); |
| } |
| } |
| } else { |
| if (aarch64 && vms->highmem) { |
| int requested_pa_size = 64 - clz64(vms->highest_gpa); |
| int pamax = arm_pamax(ARM_CPU(first_cpu)); |
| |
| if (pamax < requested_pa_size) { |
| error_report("VCPU supports less PA bits (%d) than " |
| "requested by the memory map (%d)", |
| pamax, requested_pa_size); |
| exit(1); |
| } |
| } |
| } |
| } |
| |
| static void machvirt_init(MachineState *machine) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(machine); |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| const CPUArchIdList *possible_cpus; |
| MemoryRegion *sysmem = get_system_memory(); |
| MemoryRegion *secure_sysmem = NULL; |
| MemoryRegion *tag_sysmem = NULL; |
| MemoryRegion *secure_tag_sysmem = NULL; |
| int n, virt_max_cpus; |
| bool firmware_loaded; |
| bool aarch64 = true; |
| bool has_ged = !vmc->no_ged; |
| unsigned int smp_cpus = machine->smp.cpus; |
| unsigned int max_cpus = machine->smp.max_cpus; |
| |
| /* |
| * In accelerated mode, the memory map is computed earlier in kvm_type() |
| * to create a VM with the right number of IPA bits. |
| */ |
| if (!vms->memmap) { |
| virt_set_memmap(vms); |
| } |
| |
| /* We can probe only here because during property set |
| * KVM is not available yet |
| */ |
| finalize_gic_version(vms); |
| |
| if (!cpu_type_valid(machine->cpu_type)) { |
| error_report("mach-virt: CPU type %s not supported", machine->cpu_type); |
| exit(1); |
| } |
| |
| if (vms->secure) { |
| if (kvm_enabled()) { |
| error_report("mach-virt: KVM does not support Security extensions"); |
| exit(1); |
| } |
| |
| /* |
| * The Secure view of the world is the same as the NonSecure, |
| * but with a few extra devices. Create it as a container region |
| * containing the system memory at low priority; any secure-only |
| * devices go in at higher priority and take precedence. |
| */ |
| secure_sysmem = g_new(MemoryRegion, 1); |
| memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", |
| UINT64_MAX); |
| memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); |
| } |
| |
| firmware_loaded = virt_firmware_init(vms, sysmem, |
| secure_sysmem ?: sysmem); |
| |
| /* If we have an EL3 boot ROM then the assumption is that it will |
| * implement PSCI itself, so disable QEMU's internal implementation |
| * so it doesn't get in the way. Instead of starting secondary |
| * CPUs in PSCI powerdown state we will start them all running and |
| * let the boot ROM sort them out. |
| * The usual case is that we do use QEMU's PSCI implementation; |
| * if the guest has EL2 then we will use SMC as the conduit, |
| * and otherwise we will use HVC (for backwards compatibility and |
| * because if we're using KVM then we must use HVC). |
| */ |
| if (vms->secure && firmware_loaded) { |
| vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; |
| } else if (vms->virt) { |
| vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; |
| } else { |
| vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; |
| } |
| |
| /* The maximum number of CPUs depends on the GIC version, or on how |
| * many redistributors we can fit into the memory map. |
| */ |
| if (vms->gic_version == VIRT_GIC_VERSION_3) { |
| virt_max_cpus = |
| vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; |
| virt_max_cpus += |
| vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; |
| } else { |
| virt_max_cpus = GIC_NCPU; |
| } |
| |
| if (max_cpus > virt_max_cpus) { |
| error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " |
| "supported by machine 'mach-virt' (%d)", |
| max_cpus, virt_max_cpus); |
| exit(1); |
| } |
| |
| vms->smp_cpus = smp_cpus; |
| |
| if (vms->virt && kvm_enabled()) { |
| error_report("mach-virt: KVM does not support providing " |
| "Virtualization extensions to the guest CPU"); |
| exit(1); |
| } |
| |
| if (vms->mte && kvm_enabled()) { |
| error_report("mach-virt: KVM does not support providing " |
| "MTE to the guest CPU"); |
| exit(1); |
| } |
| |
| create_fdt(vms); |
| |
| possible_cpus = mc->possible_cpu_arch_ids(machine); |
| for (n = 0; n < possible_cpus->len; n++) { |
| Object *cpuobj; |
| CPUState *cs; |
| |
| if (n >= smp_cpus) { |
| break; |
| } |
| |
| cpuobj = object_new(possible_cpus->cpus[n].type); |
| object_property_set_int(cpuobj, "mp-affinity", |
| possible_cpus->cpus[n].arch_id, NULL); |
| |
| cs = CPU(cpuobj); |
| cs->cpu_index = n; |
| |
| numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), |
| &error_fatal); |
| |
| aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); |
| |
| if (!vms->secure) { |
| object_property_set_bool(cpuobj, "has_el3", false, NULL); |
| } |
| |
| if (!vms->virt && object_property_find(cpuobj, "has_el2")) { |
| object_property_set_bool(cpuobj, "has_el2", false, NULL); |
| } |
| |
| if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { |
| object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, |
| NULL); |
| |
| /* Secondary CPUs start in PSCI powered-down state */ |
| if (n > 0) { |
| object_property_set_bool(cpuobj, "start-powered-off", true, |
| NULL); |
| } |
| } |
| |
| if (vmc->kvm_no_adjvtime && |
| object_property_find(cpuobj, "kvm-no-adjvtime")) { |
| object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); |
| } |
| |
| if (vmc->no_kvm_steal_time && |
| object_property_find(cpuobj, "kvm-steal-time")) { |
| object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); |
| } |
| |
| if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { |
| object_property_set_bool(cpuobj, "pmu", false, NULL); |
| } |
| |
| if (object_property_find(cpuobj, "reset-cbar")) { |
| object_property_set_int(cpuobj, "reset-cbar", |
| vms->memmap[VIRT_CPUPERIPHS].base, |
| &error_abort); |
| } |
| |
| object_property_set_link(cpuobj, "memory", OBJECT(sysmem), |
| &error_abort); |
| if (vms->secure) { |
| object_property_set_link(cpuobj, "secure-memory", |
| OBJECT(secure_sysmem), &error_abort); |
| } |
| |
| if (vms->mte) { |
| /* Create the memory region only once, but link to all cpus. */ |
| if (!tag_sysmem) { |
| /* |
| * The property exists only if MemTag is supported. |
| * If it is, we must allocate the ram to back that up. |
| */ |
| if (!object_property_find(cpuobj, "tag-memory")) { |
| error_report("MTE requested, but not supported " |
| "by the guest CPU"); |
| exit(1); |
| } |
| |
| tag_sysmem = g_new(MemoryRegion, 1); |
| memory_region_init(tag_sysmem, OBJECT(machine), |
| "tag-memory", UINT64_MAX / 32); |
| |
| if (vms->secure) { |
| secure_tag_sysmem = g_new(MemoryRegion, 1); |
| memory_region_init(secure_tag_sysmem, OBJECT(machine), |
| "secure-tag-memory", UINT64_MAX / 32); |
| |
| /* As with ram, secure-tag takes precedence over tag. */ |
| memory_region_add_subregion_overlap(secure_tag_sysmem, 0, |
| tag_sysmem, -1); |
| } |
| } |
| |
| object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), |
| &error_abort); |
| if (vms->secure) { |
| object_property_set_link(cpuobj, "secure-tag-memory", |
| OBJECT(secure_tag_sysmem), |
| &error_abort); |
| } |
| } |
| |
| qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); |
| object_unref(cpuobj); |
| } |
| fdt_add_timer_nodes(vms); |
| fdt_add_cpu_nodes(vms); |
| |
| memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, |
| machine->ram); |
| if (machine->device_memory) { |
| memory_region_add_subregion(sysmem, machine->device_memory->base, |
| &machine->device_memory->mr); |
| } |
| |
| virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); |
| |
| create_gic(vms); |
| |
| virt_cpu_post_init(vms, possible_cpus->len, sysmem); |
| |
| fdt_add_pmu_nodes(vms); |
| |
| create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); |
| |
| if (vms->secure) { |
| create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); |
| create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); |
| } |
| |
| if (tag_sysmem) { |
| create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, |
| machine->ram_size, "mach-virt.tag"); |
| } |
| |
| vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); |
| |
| create_rtc(vms); |
| |
| create_pcie(vms); |
| |
| if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { |
| vms->acpi_dev = create_acpi_ged(vms); |
| } else { |
| create_gpio(vms); |
| } |
| |
| /* connect powerdown request */ |
| vms->powerdown_notifier.notify = virt_powerdown_req; |
| qemu_register_powerdown_notifier(&vms->powerdown_notifier); |
| |
| /* Create mmio transports, so the user can create virtio backends |
| * (which will be automatically plugged in to the transports). If |
| * no backend is created the transport will just sit harmlessly idle. |
| */ |
| create_virtio_devices(vms); |
| |
| vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); |
| rom_set_fw(vms->fw_cfg); |
| |
| create_platform_bus(vms); |
| |
| if (machine->nvdimms_state->is_enabled) { |
| const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { |
| .space_id = AML_AS_SYSTEM_MEMORY, |
| .address = vms->memmap[VIRT_NVDIMM_ACPI].base, |
| .bit_width = NVDIMM_ACPI_IO_LEN << 3 |
| }; |
| |
| nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, |
| arm_virt_nvdimm_acpi_dsmio, |
| vms->fw_cfg, OBJECT(vms)); |
| } |
| |
| vms->bootinfo.ram_size = machine->ram_size; |
| vms->bootinfo.nb_cpus = smp_cpus; |
| vms->bootinfo.board_id = -1; |
| vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; |
| vms->bootinfo.get_dtb = machvirt_dtb; |
| vms->bootinfo.skip_dtb_autoload = true; |
| vms->bootinfo.firmware_loaded = firmware_loaded; |
| arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); |
| |
| vms->machine_done.notify = virt_machine_done; |
| qemu_add_machine_init_done_notifier(&vms->machine_done); |
| } |
| |
| static bool virt_get_secure(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->secure; |
| } |
| |
| static void virt_set_secure(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->secure = value; |
| } |
| |
| static bool virt_get_virt(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->virt; |
| } |
| |
| static void virt_set_virt(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->virt = value; |
| } |
| |
| static bool virt_get_highmem(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->highmem; |
| } |
| |
| static void virt_set_highmem(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->highmem = value; |
| } |
| |
| static bool virt_get_its(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->its; |
| } |
| |
| static void virt_set_its(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->its = value; |
| } |
| |
| bool virt_is_acpi_enabled(VirtMachineState *vms) |
| { |
| if (vms->acpi == ON_OFF_AUTO_OFF) { |
| return false; |
| } |
| return true; |
| } |
| |
| static void virt_get_acpi(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| OnOffAuto acpi = vms->acpi; |
| |
| visit_type_OnOffAuto(v, name, &acpi, errp); |
| } |
| |
| static void virt_set_acpi(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| visit_type_OnOffAuto(v, name, &vms->acpi, errp); |
| } |
| |
| static bool virt_get_ras(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->ras; |
| } |
| |
| static void virt_set_ras(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->ras = value; |
| } |
| |
| static bool virt_get_mte(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->mte; |
| } |
| |
| static void virt_set_mte(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->mte = value; |
| } |
| |
| static char *virt_get_gic_version(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; |
| |
| return g_strdup(val); |
| } |
| |
| static void virt_set_gic_version(Object *obj, const char *value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| if (!strcmp(value, "3")) { |
| vms->gic_version = VIRT_GIC_VERSION_3; |
| } else if (!strcmp(value, "2")) { |
| vms->gic_version = VIRT_GIC_VERSION_2; |
| } else if (!strcmp(value, "host")) { |
| vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ |
| } else if (!strcmp(value, "max")) { |
| vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ |
| } else { |
| error_setg(errp, "Invalid gic-version value"); |
| error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); |
| } |
| } |
| |
| static char *virt_get_iommu(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| switch (vms->iommu) { |
| case VIRT_IOMMU_NONE: |
| return g_strdup("none"); |
| case VIRT_IOMMU_SMMUV3: |
| return g_strdup("smmuv3"); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void virt_set_iommu(Object *obj, const char *value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| if (!strcmp(value, "smmuv3")) { |
| vms->iommu = VIRT_IOMMU_SMMUV3; |
| } else if (!strcmp(value, "none")) { |
| vms->iommu = VIRT_IOMMU_NONE; |
| } else { |
| error_setg(errp, "Invalid iommu value"); |
| error_append_hint(errp, "Valid values are none, smmuv3.\n"); |
| } |
| } |
| |
| static CpuInstanceProperties |
| virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(ms); |
| const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); |
| |
| assert(cpu_index < possible_cpus->len); |
| return possible_cpus->cpus[cpu_index].props; |
| } |
| |
| static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) |
| { |
| return idx % ms->numa_state->num_nodes; |
| } |
| |
| static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) |
| { |
| int n; |
| unsigned int max_cpus = ms->smp.max_cpus; |
| VirtMachineState *vms = VIRT_MACHINE(ms); |
| |
| if (ms->possible_cpus) { |
| assert(ms->possible_cpus->len == max_cpus); |
| return ms->possible_cpus; |
| } |
| |
| ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + |
| sizeof(CPUArchId) * max_cpus); |
| ms->possible_cpus->len = max_cpus; |
| for (n = 0; n < ms->possible_cpus->len; n++) { |
| ms->possible_cpus->cpus[n].type = ms->cpu_type; |
| ms->possible_cpus->cpus[n].arch_id = |
| virt_cpu_mp_affinity(vms, n); |
| ms->possible_cpus->cpus[n].props.has_thread_id = true; |
| ms->possible_cpus->cpus[n].props.thread_id = n; |
| } |
| return ms->possible_cpus; |
| } |
| |
| static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, |
| Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); |
| const MachineState *ms = MACHINE(hotplug_dev); |
| const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); |
| |
| if (!vms->acpi_dev) { |
| error_setg(errp, |
| "memory hotplug is not enabled: missing acpi-ged device"); |
| return; |
| } |
| |
| if (vms->mte) { |
| error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); |
| return; |
| } |
| |
| if (is_nvdimm && !ms->nvdimms_state->is_enabled) { |
| error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); |
| return; |
| } |
| |
| pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); |
| } |
| |
| static void virt_memory_plug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); |
| MachineState *ms = MACHINE(hotplug_dev); |
| bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); |
| Error *local_err = NULL; |
| |
| pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| if (is_nvdimm) { |
| nvdimm_plug(ms->nvdimms_state); |
| } |
| |
| hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), |
| dev, &error_abort); |
| |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| virt_memory_pre_plug(hotplug_dev, dev, errp); |
| } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { |
| hwaddr db_start = 0, db_end = 0; |
| char *resv_prop_str; |
| |
| switch (vms->msi_controller) { |
| case VIRT_MSI_CTRL_NONE: |
| return; |
| case VIRT_MSI_CTRL_ITS: |
| /* GITS_TRANSLATER page */ |
| db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; |
| db_end = base_memmap[VIRT_GIC_ITS].base + |
| base_memmap[VIRT_GIC_ITS].size - 1; |
| break; |
| case VIRT_MSI_CTRL_GICV2M: |
| /* MSI_SETSPI_NS page */ |
| db_start = base_memmap[VIRT_GIC_V2M].base; |
| db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; |
| break; |
| } |
| resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", |
| db_start, db_end, |
| VIRTIO_IOMMU_RESV_MEM_T_MSI); |
| |
| qdev_prop_set_uint32(dev, "len-reserved-regions", 1); |
| qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); |
| g_free(resv_prop_str); |
| } |
| } |
| |
| static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); |
| |
| if (vms->platform_bus_dev) { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { |
| platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), |
| SYS_BUS_DEVICE(dev)); |
| } |
| } |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| virt_memory_plug(hotplug_dev, dev, errp); |
| } |
| if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { |
| PCIDevice *pdev = PCI_DEVICE(dev); |
| |
| vms->iommu = VIRT_IOMMU_VIRTIO; |
| vms->virtio_iommu_bdf = pci_get_bdf(pdev); |
| create_virtio_iommu_dt_bindings(vms); |
| } |
| } |
| |
| static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); |
| Error *local_err = NULL; |
| |
| if (!vms->acpi_dev) { |
| error_setg(&local_err, |
| "memory hotplug is not enabled: missing acpi-ged device"); |
| goto out; |
| } |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { |
| error_setg(&local_err, |
| "nvdimm device hot unplug is not supported yet."); |
| goto out; |
| } |
| |
| hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, |
| &local_err); |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void virt_dimm_unplug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); |
| Error *local_err = NULL; |
| |
| hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); |
| qdev_unrealize(dev); |
| |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| virt_dimm_unplug_request(hotplug_dev, dev, errp); |
| } else { |
| error_setg(errp, "device unplug request for unsupported device" |
| " type: %s", object_get_typename(OBJECT(dev))); |
| } |
| } |
| |
| static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| virt_dimm_unplug(hotplug_dev, dev, errp); |
| } else { |
| error_setg(errp, "virt: device unplug for unsupported device" |
| " type: %s", object_get_typename(OBJECT(dev))); |
| } |
| } |
| |
| static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, |
| DeviceState *dev) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) || |
| (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { |
| return HOTPLUG_HANDLER(machine); |
| } |
| if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { |
| VirtMachineState *vms = VIRT_MACHINE(machine); |
| |
| if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { |
| return HOTPLUG_HANDLER(machine); |
| } |
| } |
| return NULL; |
| } |
| |
| /* |
| * for arm64 kvm_type [7-0] encodes the requested number of bits |
| * in the IPA address space |
| */ |
| static int virt_kvm_type(MachineState *ms, const char *type_str) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(ms); |
| int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms); |
| int requested_pa_size; |
| |
| /* we freeze the memory map to compute the highest gpa */ |
| virt_set_memmap(vms); |
| |
| requested_pa_size = 64 - clz64(vms->highest_gpa); |
| |
| if (requested_pa_size > max_vm_pa_size) { |
| error_report("-m and ,maxmem option values " |
| "require an IPA range (%d bits) larger than " |
| "the one supported by the host (%d bits)", |
| requested_pa_size, max_vm_pa_size); |
| exit(1); |
| } |
| /* |
| * By default we return 0 which corresponds to an implicit legacy |
| * 40b IPA setting. Otherwise we return the actual requested PA |
| * logsize |
| */ |
| return requested_pa_size > 40 ? requested_pa_size : 0; |
| } |
| |
| static void virt_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); |
| |
| mc->init = machvirt_init; |
| /* Start with max_cpus set to 512, which is the maximum supported by KVM. |
| * The value may be reduced later when we have more information about the |
| * configuration of the particular instance. |
| */ |
| mc->max_cpus = 512; |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); |
| mc->block_default_type = IF_VIRTIO; |
| mc->no_cdrom = 1; |
| mc->pci_allow_0_address = true; |
| /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ |
| mc->minimum_page_bits = 12; |
| mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; |
| mc->cpu_index_to_instance_props = virt_cpu_index_to_props; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); |
| mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; |
| mc->kvm_type = virt_kvm_type; |
| assert(!mc->get_hotplug_handler); |
| mc->get_hotplug_handler = virt_machine_get_hotplug_handler; |
| hc->pre_plug = virt_machine_device_pre_plug_cb; |
| hc->plug = virt_machine_device_plug_cb; |
| hc->unplug_request = virt_machine_device_unplug_request_cb; |
| hc->unplug = virt_machine_device_unplug_cb; |
| mc->nvdimm_supported = true; |
| mc->auto_enable_numa_with_memhp = true; |
| mc->auto_enable_numa_with_memdev = true; |
| mc->default_ram_id = "mach-virt.ram"; |
| |
| object_class_property_add(oc, "acpi", "OnOffAuto", |
| virt_get_acpi, virt_set_acpi, |
| NULL, NULL); |
| object_class_property_set_description(oc, "acpi", |
| "Enable ACPI"); |
| } |
| |
| static void virt_instance_init(Object *obj) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| |
| /* EL3 is disabled by default on virt: this makes us consistent |
| * between KVM and TCG for this board, and it also allows us to |
| * boot UEFI blobs which assume no TrustZone support. |
| */ |
| vms->secure = false; |
| object_property_add_bool(obj, "secure", virt_get_secure, |
| virt_set_secure); |
| object_property_set_description(obj, "secure", |
| "Set on/off to enable/disable the ARM " |
| "Security Extensions (TrustZone)"); |
| |
| /* EL2 is also disabled by default, for similar reasons */ |
| vms->virt = false; |
| object_property_add_bool(obj, "virtualization", virt_get_virt, |
| virt_set_virt); |
| object_property_set_description(obj, "virtualization", |
| "Set on/off to enable/disable emulating a " |
| "guest CPU which implements the ARM " |
| "Virtualization Extensions"); |
| |
| /* High memory is enabled by default */ |
| vms->highmem = true; |
| object_property_add_bool(obj, "highmem", virt_get_highmem, |
| virt_set_highmem); |
| object_property_set_description(obj, "highmem", |
| "Set on/off to enable/disable using " |
| "physical address space above 32 bits"); |
| vms->gic_version = VIRT_GIC_VERSION_NOSEL; |
| object_property_add_str(obj, "gic-version", virt_get_gic_version, |
| virt_set_gic_version); |
| object_property_set_description(obj, "gic-version", |
| "Set GIC version. " |
| "Valid values are 2, 3, host and max"); |
| |
| vms->highmem_ecam = !vmc->no_highmem_ecam; |
| |
| if (vmc->no_its) { |
| vms->its = false; |
| } else { |
| /* Default allows ITS instantiation */ |
| vms->its = true; |
| object_property_add_bool(obj, "its", virt_get_its, |
| virt_set_its); |
| object_property_set_description(obj, "its", |
| "Set on/off to enable/disable " |
| "ITS instantiation"); |
| } |
| |
| /* Default disallows iommu instantiation */ |
| vms->iommu = VIRT_IOMMU_NONE; |
| object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu); |
| object_property_set_description(obj, "iommu", |
| "Set the IOMMU type. " |
| "Valid values are none and smmuv3"); |
| |
| /* Default disallows RAS instantiation */ |
| vms->ras = false; |
| object_property_add_bool(obj, "ras", virt_get_ras, |
| virt_set_ras); |
| object_property_set_description(obj, "ras", |
| "Set on/off to enable/disable reporting host memory errors " |
| "to a KVM guest using ACPI and guest external abort exceptions"); |
| |
| /* MTE is disabled by default. */ |
| vms->mte = false; |
| object_property_add_bool(obj, "mte", virt_get_mte, virt_set_mte); |
| object_property_set_description(obj, "mte", |
| "Set on/off to enable/disable emulating a " |
| "guest CPU which implements the ARM " |
| "Memory Tagging Extension"); |
| |
| vms->irqmap = a15irqmap; |
| |
| virt_flash_create(vms); |
| } |
| |
| static const TypeInfo virt_machine_info = { |
| .name = TYPE_VIRT_MACHINE, |
| .parent = TYPE_MACHINE, |
| .abstract = true, |
| .instance_size = sizeof(VirtMachineState), |
| .class_size = sizeof(VirtMachineClass), |
| .class_init = virt_machine_class_init, |
| .instance_init = virt_instance_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_HOTPLUG_HANDLER }, |
| { } |
| }, |
| }; |
| |
| static void machvirt_machine_init(void) |
| { |
| type_register_static(&virt_machine_info); |
| } |
| type_init(machvirt_machine_init); |
| |
| static void virt_machine_5_2_options(MachineClass *mc) |
| { |
| } |
| DEFINE_VIRT_MACHINE_AS_LATEST(5, 2) |
| |
| static void virt_machine_5_1_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_5_2_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); |
| vmc->no_kvm_steal_time = true; |
| } |
| DEFINE_VIRT_MACHINE(5, 1) |
| |
| static void virt_machine_5_0_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_5_1_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); |
| mc->numa_mem_supported = true; |
| vmc->acpi_expose_flash = true; |
| mc->auto_enable_numa_with_memdev = false; |
| } |
| DEFINE_VIRT_MACHINE(5, 0) |
| |
| static void virt_machine_4_2_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_5_0_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); |
| vmc->kvm_no_adjvtime = true; |
| } |
| DEFINE_VIRT_MACHINE(4, 2) |
| |
| static void virt_machine_4_1_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_4_2_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); |
| vmc->no_ged = true; |
| mc->auto_enable_numa_with_memhp = false; |
| } |
| DEFINE_VIRT_MACHINE(4, 1) |
| |
| static void virt_machine_4_0_options(MachineClass *mc) |
| { |
| virt_machine_4_1_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); |
| } |
| DEFINE_VIRT_MACHINE(4, 0) |
| |
| static void virt_machine_3_1_options(MachineClass *mc) |
| { |
| virt_machine_4_0_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); |
| } |
| DEFINE_VIRT_MACHINE(3, 1) |
| |
| static void virt_machine_3_0_options(MachineClass *mc) |
| { |
| virt_machine_3_1_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); |
| } |
| DEFINE_VIRT_MACHINE(3, 0) |
| |
| static void virt_machine_2_12_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_3_0_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); |
| vmc->no_highmem_ecam = true; |
| mc->max_cpus = 255; |
| } |
| DEFINE_VIRT_MACHINE(2, 12) |
| |
| static void virt_machine_2_11_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_12_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); |
| vmc->smbios_old_sys_ver = true; |
| } |
| DEFINE_VIRT_MACHINE(2, 11) |
| |
| static void virt_machine_2_10_options(MachineClass *mc) |
| { |
| virt_machine_2_11_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); |
| /* before 2.11 we never faulted accesses to bad addresses */ |
| mc->ignore_memory_transaction_failures = true; |
| } |
| DEFINE_VIRT_MACHINE(2, 10) |
| |
| static void virt_machine_2_9_options(MachineClass *mc) |
| { |
| virt_machine_2_10_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); |
| } |
| DEFINE_VIRT_MACHINE(2, 9) |
| |
| static void virt_machine_2_8_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_9_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); |
| /* For 2.8 and earlier we falsely claimed in the DT that |
| * our timers were edge-triggered, not level-triggered. |
| */ |
| vmc->claim_edge_triggered_timers = true; |
| } |
| DEFINE_VIRT_MACHINE(2, 8) |
| |
| static void virt_machine_2_7_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_8_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); |
| /* ITS was introduced with 2.8 */ |
| vmc->no_its = true; |
| /* Stick with 1K pages for migration compatibility */ |
| mc->minimum_page_bits = 0; |
| } |
| DEFINE_VIRT_MACHINE(2, 7) |
| |
| static void virt_machine_2_6_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_7_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); |
| vmc->disallow_affinity_adjustment = true; |
| /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ |
| vmc->no_pmu = true; |
| } |
| DEFINE_VIRT_MACHINE(2, 6) |