| #include "sysemu.h" |
| #include "cpu.h" |
| #include "dyngen-exec.h" |
| #include "qemu-char.h" |
| #include "sysemu.h" |
| #include "qemu-char.h" |
| #include "helper_regs.h" |
| #include "hw/spapr.h" |
| |
| #define HPTES_PER_GROUP 8 |
| |
| #define HPTE_V_SSIZE_SHIFT 62 |
| #define HPTE_V_AVPN_SHIFT 7 |
| #define HPTE_V_AVPN 0x3fffffffffffff80ULL |
| #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) |
| #define HPTE_V_COMPARE(x, y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) |
| #define HPTE_V_BOLTED 0x0000000000000010ULL |
| #define HPTE_V_LOCK 0x0000000000000008ULL |
| #define HPTE_V_LARGE 0x0000000000000004ULL |
| #define HPTE_V_SECONDARY 0x0000000000000002ULL |
| #define HPTE_V_VALID 0x0000000000000001ULL |
| |
| #define HPTE_R_PP0 0x8000000000000000ULL |
| #define HPTE_R_TS 0x4000000000000000ULL |
| #define HPTE_R_KEY_HI 0x3000000000000000ULL |
| #define HPTE_R_RPN_SHIFT 12 |
| #define HPTE_R_RPN 0x3ffffffffffff000ULL |
| #define HPTE_R_FLAGS 0x00000000000003ffULL |
| #define HPTE_R_PP 0x0000000000000003ULL |
| #define HPTE_R_N 0x0000000000000004ULL |
| #define HPTE_R_G 0x0000000000000008ULL |
| #define HPTE_R_M 0x0000000000000010ULL |
| #define HPTE_R_I 0x0000000000000020ULL |
| #define HPTE_R_W 0x0000000000000040ULL |
| #define HPTE_R_WIMG 0x0000000000000078ULL |
| #define HPTE_R_C 0x0000000000000080ULL |
| #define HPTE_R_R 0x0000000000000100ULL |
| #define HPTE_R_KEY_LO 0x0000000000000e00ULL |
| |
| #define HPTE_V_1TB_SEG 0x4000000000000000ULL |
| #define HPTE_V_VRMA_MASK 0x4001ffffff000000ULL |
| |
| #define HPTE_V_HVLOCK 0x40ULL |
| |
| static inline int lock_hpte(void *hpte, target_ulong bits) |
| { |
| uint64_t pteh; |
| |
| pteh = ldq_p(hpte); |
| |
| /* We're protected by qemu's global lock here */ |
| if (pteh & bits) { |
| return 0; |
| } |
| stq_p(hpte, pteh | HPTE_V_HVLOCK); |
| return 1; |
| } |
| |
| static target_ulong compute_tlbie_rb(target_ulong v, target_ulong r, |
| target_ulong pte_index) |
| { |
| target_ulong rb, va_low; |
| |
| rb = (v & ~0x7fULL) << 16; /* AVA field */ |
| va_low = pte_index >> 3; |
| if (v & HPTE_V_SECONDARY) { |
| va_low = ~va_low; |
| } |
| /* xor vsid from AVA */ |
| if (!(v & HPTE_V_1TB_SEG)) { |
| va_low ^= v >> 12; |
| } else { |
| va_low ^= v >> 24; |
| } |
| va_low &= 0x7ff; |
| if (v & HPTE_V_LARGE) { |
| rb |= 1; /* L field */ |
| #if 0 /* Disable that P7 specific bit for now */ |
| if (r & 0xff000) { |
| /* non-16MB large page, must be 64k */ |
| /* (masks depend on page size) */ |
| rb |= 0x1000; /* page encoding in LP field */ |
| rb |= (va_low & 0x7f) << 16; /* 7b of VA in AVA/LP field */ |
| rb |= (va_low & 0xfe); /* AVAL field */ |
| } |
| #endif |
| } else { |
| /* 4kB page */ |
| rb |= (va_low & 0x7ff) << 12; /* remaining 11b of AVA */ |
| } |
| rb |= (v >> 54) & 0x300; /* B field */ |
| return rb; |
| } |
| |
| static target_ulong h_enter(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong pte_index = args[1]; |
| target_ulong pteh = args[2]; |
| target_ulong ptel = args[3]; |
| target_ulong page_shift = 12; |
| target_ulong raddr; |
| target_ulong i; |
| uint8_t *hpte; |
| |
| /* only handle 4k and 16M pages for now */ |
| if (pteh & HPTE_V_LARGE) { |
| #if 0 /* We don't support 64k pages yet */ |
| if ((ptel & 0xf000) == 0x1000) { |
| /* 64k page */ |
| } else |
| #endif |
| if ((ptel & 0xff000) == 0) { |
| /* 16M page */ |
| page_shift = 24; |
| /* lowest AVA bit must be 0 for 16M pages */ |
| if (pteh & 0x80) { |
| return H_PARAMETER; |
| } |
| } else { |
| return H_PARAMETER; |
| } |
| } |
| |
| raddr = (ptel & HPTE_R_RPN) & ~((1ULL << page_shift) - 1); |
| |
| if (raddr < spapr->ram_limit) { |
| /* Regular RAM - should have WIMG=0010 */ |
| if ((ptel & HPTE_R_WIMG) != HPTE_R_M) { |
| return H_PARAMETER; |
| } |
| } else { |
| /* Looks like an IO address */ |
| /* FIXME: What WIMG combinations could be sensible for IO? |
| * For now we allow WIMG=010x, but are there others? */ |
| /* FIXME: Should we check against registered IO addresses? */ |
| if ((ptel & (HPTE_R_W | HPTE_R_I | HPTE_R_M)) != HPTE_R_I) { |
| return H_PARAMETER; |
| } |
| } |
| |
| pteh &= ~0x60ULL; |
| |
| if ((pte_index * HASH_PTE_SIZE_64) & ~env->htab_mask) { |
| return H_PARAMETER; |
| } |
| if (likely((flags & H_EXACT) == 0)) { |
| pte_index &= ~7ULL; |
| hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64); |
| for (i = 0; ; ++i) { |
| if (i == 8) { |
| return H_PTEG_FULL; |
| } |
| if (((ldq_p(hpte) & HPTE_V_VALID) == 0) && |
| lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID)) { |
| break; |
| } |
| hpte += HASH_PTE_SIZE_64; |
| } |
| } else { |
| i = 0; |
| hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64); |
| if (!lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID)) { |
| return H_PTEG_FULL; |
| } |
| } |
| stq_p(hpte + (HASH_PTE_SIZE_64/2), ptel); |
| /* eieio(); FIXME: need some sort of barrier for smp? */ |
| stq_p(hpte, pteh); |
| |
| assert(!(ldq_p(hpte) & HPTE_V_HVLOCK)); |
| args[0] = pte_index + i; |
| return H_SUCCESS; |
| } |
| |
| enum { |
| REMOVE_SUCCESS = 0, |
| REMOVE_NOT_FOUND = 1, |
| REMOVE_PARM = 2, |
| REMOVE_HW = 3, |
| }; |
| |
| static target_ulong remove_hpte(CPUState *env, target_ulong ptex, |
| target_ulong avpn, |
| target_ulong flags, |
| target_ulong *vp, target_ulong *rp) |
| { |
| uint8_t *hpte; |
| target_ulong v, r, rb; |
| |
| if ((ptex * HASH_PTE_SIZE_64) & ~env->htab_mask) { |
| return REMOVE_PARM; |
| } |
| |
| hpte = env->external_htab + (ptex * HASH_PTE_SIZE_64); |
| while (!lock_hpte(hpte, HPTE_V_HVLOCK)) { |
| /* We have no real concurrency in qemu soft-emulation, so we |
| * will never actually have a contested lock */ |
| assert(0); |
| } |
| |
| v = ldq_p(hpte); |
| r = ldq_p(hpte + (HASH_PTE_SIZE_64/2)); |
| |
| if ((v & HPTE_V_VALID) == 0 || |
| ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || |
| ((flags & H_ANDCOND) && (v & avpn) != 0)) { |
| stq_p(hpte, v & ~HPTE_V_HVLOCK); |
| assert(!(ldq_p(hpte) & HPTE_V_HVLOCK)); |
| return REMOVE_NOT_FOUND; |
| } |
| *vp = v & ~HPTE_V_HVLOCK; |
| *rp = r; |
| stq_p(hpte, 0); |
| rb = compute_tlbie_rb(v, r, ptex); |
| ppc_tlb_invalidate_one(env, rb); |
| assert(!(ldq_p(hpte) & HPTE_V_HVLOCK)); |
| return REMOVE_SUCCESS; |
| } |
| |
| static target_ulong h_remove(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong pte_index = args[1]; |
| target_ulong avpn = args[2]; |
| int ret; |
| |
| ret = remove_hpte(env, pte_index, avpn, flags, |
| &args[0], &args[1]); |
| |
| switch (ret) { |
| case REMOVE_SUCCESS: |
| return H_SUCCESS; |
| |
| case REMOVE_NOT_FOUND: |
| return H_NOT_FOUND; |
| |
| case REMOVE_PARM: |
| return H_PARAMETER; |
| |
| case REMOVE_HW: |
| return H_HARDWARE; |
| } |
| |
| assert(0); |
| } |
| |
| #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL |
| #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL |
| #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL |
| #define H_BULK_REMOVE_END 0xc000000000000000ULL |
| #define H_BULK_REMOVE_CODE 0x3000000000000000ULL |
| #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL |
| #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL |
| #define H_BULK_REMOVE_PARM 0x2000000000000000ULL |
| #define H_BULK_REMOVE_HW 0x3000000000000000ULL |
| #define H_BULK_REMOVE_RC 0x0c00000000000000ULL |
| #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL |
| #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL |
| #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL |
| #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL |
| #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL |
| |
| #define H_BULK_REMOVE_MAX_BATCH 4 |
| |
| static target_ulong h_bulk_remove(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| int i; |
| |
| for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { |
| target_ulong *tsh = &args[i*2]; |
| target_ulong tsl = args[i*2 + 1]; |
| target_ulong v, r, ret; |
| |
| if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { |
| break; |
| } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { |
| return H_PARAMETER; |
| } |
| |
| *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; |
| *tsh |= H_BULK_REMOVE_RESPONSE; |
| |
| if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { |
| *tsh |= H_BULK_REMOVE_PARM; |
| return H_PARAMETER; |
| } |
| |
| ret = remove_hpte(env, *tsh & H_BULK_REMOVE_PTEX, tsl, |
| (*tsh & H_BULK_REMOVE_FLAGS) >> 26, |
| &v, &r); |
| |
| *tsh |= ret << 60; |
| |
| switch (ret) { |
| case REMOVE_SUCCESS: |
| *tsh |= (r & (HPTE_R_C | HPTE_R_R)) << 43; |
| break; |
| |
| case REMOVE_PARM: |
| return H_PARAMETER; |
| |
| case REMOVE_HW: |
| return H_HARDWARE; |
| } |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_protect(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong pte_index = args[1]; |
| target_ulong avpn = args[2]; |
| uint8_t *hpte; |
| target_ulong v, r, rb; |
| |
| if ((pte_index * HASH_PTE_SIZE_64) & ~env->htab_mask) { |
| return H_PARAMETER; |
| } |
| |
| hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64); |
| while (!lock_hpte(hpte, HPTE_V_HVLOCK)) { |
| /* We have no real concurrency in qemu soft-emulation, so we |
| * will never actually have a contested lock */ |
| assert(0); |
| } |
| |
| v = ldq_p(hpte); |
| r = ldq_p(hpte + (HASH_PTE_SIZE_64/2)); |
| |
| if ((v & HPTE_V_VALID) == 0 || |
| ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { |
| stq_p(hpte, v & ~HPTE_V_HVLOCK); |
| assert(!(ldq_p(hpte) & HPTE_V_HVLOCK)); |
| return H_NOT_FOUND; |
| } |
| |
| r &= ~(HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N | |
| HPTE_R_KEY_HI | HPTE_R_KEY_LO); |
| r |= (flags << 55) & HPTE_R_PP0; |
| r |= (flags << 48) & HPTE_R_KEY_HI; |
| r |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO); |
| rb = compute_tlbie_rb(v, r, pte_index); |
| stq_p(hpte, v & ~HPTE_V_VALID); |
| ppc_tlb_invalidate_one(env, rb); |
| stq_p(hpte + (HASH_PTE_SIZE_64/2), r); |
| /* Don't need a memory barrier, due to qemu's global lock */ |
| stq_p(hpte, v & ~HPTE_V_HVLOCK); |
| assert(!(ldq_p(hpte) & HPTE_V_HVLOCK)); |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_dabr(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* FIXME: actually implement this */ |
| return H_HARDWARE; |
| } |
| |
| #define FLAGS_REGISTER_VPA 0x0000200000000000ULL |
| #define FLAGS_REGISTER_DTL 0x0000400000000000ULL |
| #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL |
| #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL |
| #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL |
| #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL |
| |
| #define VPA_MIN_SIZE 640 |
| #define VPA_SIZE_OFFSET 0x4 |
| #define VPA_SHARED_PROC_OFFSET 0x9 |
| #define VPA_SHARED_PROC_VAL 0x2 |
| |
| static target_ulong register_vpa(CPUState *env, target_ulong vpa) |
| { |
| uint16_t size; |
| uint8_t tmp; |
| |
| if (vpa == 0) { |
| hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| if (vpa % env->dcache_line_size) { |
| return H_PARAMETER; |
| } |
| /* FIXME: bounds check the address */ |
| |
| size = lduw_be_phys(vpa + 0x4); |
| |
| if (size < VPA_MIN_SIZE) { |
| return H_PARAMETER; |
| } |
| |
| /* VPA is not allowed to cross a page boundary */ |
| if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| env->vpa = vpa; |
| |
| tmp = ldub_phys(env->vpa + VPA_SHARED_PROC_OFFSET); |
| tmp |= VPA_SHARED_PROC_VAL; |
| stb_phys(env->vpa + VPA_SHARED_PROC_OFFSET, tmp); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_vpa(CPUState *env, target_ulong vpa) |
| { |
| if (env->slb_shadow) { |
| return H_RESOURCE; |
| } |
| |
| if (env->dispatch_trace_log) { |
| return H_RESOURCE; |
| } |
| |
| env->vpa = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_slb_shadow(CPUState *env, target_ulong addr) |
| { |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(addr + 0x4); |
| if (size < 0x8) { |
| return H_PARAMETER; |
| } |
| |
| if ((addr / 4096) != ((addr + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| if (!env->vpa) { |
| return H_RESOURCE; |
| } |
| |
| env->slb_shadow = addr; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_slb_shadow(CPUState *env, target_ulong addr) |
| { |
| env->slb_shadow = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_dtl(CPUState *env, target_ulong addr) |
| { |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with DTL at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(addr + 0x4); |
| |
| if (size < 48) { |
| return H_PARAMETER; |
| } |
| |
| if (!env->vpa) { |
| return H_RESOURCE; |
| } |
| |
| env->dispatch_trace_log = addr; |
| env->dtl_size = size; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_dtl(CPUState *emv, target_ulong addr) |
| { |
| env->dispatch_trace_log = 0; |
| env->dtl_size = 0; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_register_vpa(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong procno = args[1]; |
| target_ulong vpa = args[2]; |
| target_ulong ret = H_PARAMETER; |
| CPUState *tenv; |
| |
| for (tenv = first_cpu; tenv; tenv = tenv->next_cpu) { |
| if (tenv->cpu_index == procno) { |
| break; |
| } |
| } |
| |
| if (!tenv) { |
| return H_PARAMETER; |
| } |
| |
| switch (flags) { |
| case FLAGS_REGISTER_VPA: |
| ret = register_vpa(tenv, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_VPA: |
| ret = deregister_vpa(tenv, vpa); |
| break; |
| |
| case FLAGS_REGISTER_SLBSHADOW: |
| ret = register_slb_shadow(tenv, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_SLBSHADOW: |
| ret = deregister_slb_shadow(tenv, vpa); |
| break; |
| |
| case FLAGS_REGISTER_DTL: |
| ret = register_dtl(tenv, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_DTL: |
| ret = deregister_dtl(tenv, vpa); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static target_ulong h_cede(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| env->msr |= (1ULL << MSR_EE); |
| hreg_compute_hflags(env); |
| if (!cpu_has_work(env)) { |
| env->halted = 1; |
| } |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_rtas(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong rtas_r3 = args[0]; |
| uint32_t token = ldl_be_phys(rtas_r3); |
| uint32_t nargs = ldl_be_phys(rtas_r3 + 4); |
| uint32_t nret = ldl_be_phys(rtas_r3 + 8); |
| |
| return spapr_rtas_call(spapr, token, nargs, rtas_r3 + 12, |
| nret, rtas_r3 + 12 + 4*nargs); |
| } |
| |
| static target_ulong h_logical_load(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| |
| switch (size) { |
| case 1: |
| args[0] = ldub_phys(addr); |
| return H_SUCCESS; |
| case 2: |
| args[0] = lduw_phys(addr); |
| return H_SUCCESS; |
| case 4: |
| args[0] = ldl_phys(addr); |
| return H_SUCCESS; |
| case 8: |
| args[0] = ldq_phys(addr); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_store(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| target_ulong val = args[2]; |
| |
| switch (size) { |
| case 1: |
| stb_phys(addr, val); |
| return H_SUCCESS; |
| case 2: |
| stw_phys(addr, val); |
| return H_SUCCESS; |
| case 4: |
| stl_phys(addr, val); |
| return H_SUCCESS; |
| case 8: |
| stq_phys(addr, val); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_icbi(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_logical_dcbf(CPUState *env, sPAPREnvironment *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; |
| static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; |
| |
| void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) |
| { |
| spapr_hcall_fn *slot; |
| |
| if (opcode <= MAX_HCALL_OPCODE) { |
| assert((opcode & 0x3) == 0); |
| |
| slot = &papr_hypercall_table[opcode / 4]; |
| } else { |
| assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); |
| |
| |
| slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| } |
| |
| assert(!(*slot) || (fn == *slot)); |
| *slot = fn; |
| } |
| |
| target_ulong spapr_hypercall(CPUState *env, target_ulong opcode, |
| target_ulong *args) |
| { |
| if (msr_pr) { |
| hcall_dprintf("Hypercall made with MSR[PR]=1\n"); |
| return H_PRIVILEGE; |
| } |
| |
| if ((opcode <= MAX_HCALL_OPCODE) |
| && ((opcode & 0x3) == 0)) { |
| spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; |
| |
| if (fn) { |
| return fn(env, spapr, opcode, args); |
| } |
| } else if ((opcode >= KVMPPC_HCALL_BASE) && |
| (opcode <= KVMPPC_HCALL_MAX)) { |
| spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| |
| if (fn) { |
| return fn(env, spapr, opcode, args); |
| } |
| } |
| |
| hcall_dprintf("Unimplemented hcall 0x" TARGET_FMT_lx "\n", opcode); |
| return H_FUNCTION; |
| } |
| |
| static void hypercall_init(void) |
| { |
| /* hcall-pft */ |
| spapr_register_hypercall(H_ENTER, h_enter); |
| spapr_register_hypercall(H_REMOVE, h_remove); |
| spapr_register_hypercall(H_PROTECT, h_protect); |
| |
| /* hcall-bulk */ |
| spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); |
| |
| /* hcall-dabr */ |
| spapr_register_hypercall(H_SET_DABR, h_set_dabr); |
| |
| /* hcall-splpar */ |
| spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); |
| spapr_register_hypercall(H_CEDE, h_cede); |
| |
| /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate |
| * here between the "CI" and the "CACHE" variants, they will use whatever |
| * mapping attributes qemu is using. When using KVM, the kernel will |
| * enforce the attributes more strongly |
| */ |
| spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); |
| spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); |
| |
| /* qemu/KVM-PPC specific hcalls */ |
| spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); |
| } |
| device_init(hypercall_init); |