| /* |
| * QEMU Hypervisor.framework support for Apple Silicon |
| |
| * Copyright 2020 Alexander Graf <agraf@csgraf.de> |
| * Copyright 2020 Google LLC |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| |
| #include "sysemu/runstate.h" |
| #include "sysemu/hvf.h" |
| #include "sysemu/hvf_int.h" |
| #include "sysemu/hw_accel.h" |
| #include "hvf_arm.h" |
| #include "cpregs.h" |
| |
| #include <mach/mach_time.h> |
| |
| #include "exec/address-spaces.h" |
| #include "hw/irq.h" |
| #include "qemu/main-loop.h" |
| #include "sysemu/cpus.h" |
| #include "arm-powerctl.h" |
| #include "target/arm/cpu.h" |
| #include "target/arm/internals.h" |
| #include "trace/trace-target_arm_hvf.h" |
| #include "migration/vmstate.h" |
| |
| #define HVF_SYSREG(crn, crm, op0, op1, op2) \ |
| ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) |
| #define PL1_WRITE_MASK 0x4 |
| |
| #define SYSREG_OP0_SHIFT 20 |
| #define SYSREG_OP0_MASK 0x3 |
| #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK) |
| #define SYSREG_OP1_SHIFT 14 |
| #define SYSREG_OP1_MASK 0x7 |
| #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK) |
| #define SYSREG_CRN_SHIFT 10 |
| #define SYSREG_CRN_MASK 0xf |
| #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK) |
| #define SYSREG_CRM_SHIFT 1 |
| #define SYSREG_CRM_MASK 0xf |
| #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK) |
| #define SYSREG_OP2_SHIFT 17 |
| #define SYSREG_OP2_MASK 0x7 |
| #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK) |
| |
| #define SYSREG(op0, op1, crn, crm, op2) \ |
| ((op0 << SYSREG_OP0_SHIFT) | \ |
| (op1 << SYSREG_OP1_SHIFT) | \ |
| (crn << SYSREG_CRN_SHIFT) | \ |
| (crm << SYSREG_CRM_SHIFT) | \ |
| (op2 << SYSREG_OP2_SHIFT)) |
| #define SYSREG_MASK \ |
| SYSREG(SYSREG_OP0_MASK, \ |
| SYSREG_OP1_MASK, \ |
| SYSREG_CRN_MASK, \ |
| SYSREG_CRM_MASK, \ |
| SYSREG_OP2_MASK) |
| #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4) |
| #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4) |
| #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4) |
| #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1) |
| #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0) |
| #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0) |
| #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1) |
| #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2) |
| #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2) |
| #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3) |
| #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4) |
| #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5) |
| #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6) |
| #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7) |
| #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0) |
| #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7) |
| |
| #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4) |
| #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5) |
| #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6) |
| #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7) |
| #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0) |
| #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1) |
| #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2) |
| #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3) |
| #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6) |
| #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3) |
| #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3) |
| #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4) |
| #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1) |
| #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1) |
| #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1) |
| #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2) |
| #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2) |
| #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0) |
| #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0) |
| #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6) |
| #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7) |
| #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0) |
| #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3) |
| #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7) |
| #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5) |
| #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5) |
| |
| #define WFX_IS_WFE (1 << 0) |
| |
| #define TMR_CTL_ENABLE (1 << 0) |
| #define TMR_CTL_IMASK (1 << 1) |
| #define TMR_CTL_ISTATUS (1 << 2) |
| |
| static void hvf_wfi(CPUState *cpu); |
| |
| typedef struct HVFVTimer { |
| /* Vtimer value during migration and paused state */ |
| uint64_t vtimer_val; |
| } HVFVTimer; |
| |
| static HVFVTimer vtimer; |
| |
| typedef struct ARMHostCPUFeatures { |
| ARMISARegisters isar; |
| uint64_t features; |
| uint64_t midr; |
| uint32_t reset_sctlr; |
| const char *dtb_compatible; |
| } ARMHostCPUFeatures; |
| |
| static ARMHostCPUFeatures arm_host_cpu_features; |
| |
| struct hvf_reg_match { |
| int reg; |
| uint64_t offset; |
| }; |
| |
| static const struct hvf_reg_match hvf_reg_match[] = { |
| { HV_REG_X0, offsetof(CPUARMState, xregs[0]) }, |
| { HV_REG_X1, offsetof(CPUARMState, xregs[1]) }, |
| { HV_REG_X2, offsetof(CPUARMState, xregs[2]) }, |
| { HV_REG_X3, offsetof(CPUARMState, xregs[3]) }, |
| { HV_REG_X4, offsetof(CPUARMState, xregs[4]) }, |
| { HV_REG_X5, offsetof(CPUARMState, xregs[5]) }, |
| { HV_REG_X6, offsetof(CPUARMState, xregs[6]) }, |
| { HV_REG_X7, offsetof(CPUARMState, xregs[7]) }, |
| { HV_REG_X8, offsetof(CPUARMState, xregs[8]) }, |
| { HV_REG_X9, offsetof(CPUARMState, xregs[9]) }, |
| { HV_REG_X10, offsetof(CPUARMState, xregs[10]) }, |
| { HV_REG_X11, offsetof(CPUARMState, xregs[11]) }, |
| { HV_REG_X12, offsetof(CPUARMState, xregs[12]) }, |
| { HV_REG_X13, offsetof(CPUARMState, xregs[13]) }, |
| { HV_REG_X14, offsetof(CPUARMState, xregs[14]) }, |
| { HV_REG_X15, offsetof(CPUARMState, xregs[15]) }, |
| { HV_REG_X16, offsetof(CPUARMState, xregs[16]) }, |
| { HV_REG_X17, offsetof(CPUARMState, xregs[17]) }, |
| { HV_REG_X18, offsetof(CPUARMState, xregs[18]) }, |
| { HV_REG_X19, offsetof(CPUARMState, xregs[19]) }, |
| { HV_REG_X20, offsetof(CPUARMState, xregs[20]) }, |
| { HV_REG_X21, offsetof(CPUARMState, xregs[21]) }, |
| { HV_REG_X22, offsetof(CPUARMState, xregs[22]) }, |
| { HV_REG_X23, offsetof(CPUARMState, xregs[23]) }, |
| { HV_REG_X24, offsetof(CPUARMState, xregs[24]) }, |
| { HV_REG_X25, offsetof(CPUARMState, xregs[25]) }, |
| { HV_REG_X26, offsetof(CPUARMState, xregs[26]) }, |
| { HV_REG_X27, offsetof(CPUARMState, xregs[27]) }, |
| { HV_REG_X28, offsetof(CPUARMState, xregs[28]) }, |
| { HV_REG_X29, offsetof(CPUARMState, xregs[29]) }, |
| { HV_REG_X30, offsetof(CPUARMState, xregs[30]) }, |
| { HV_REG_PC, offsetof(CPUARMState, pc) }, |
| }; |
| |
| static const struct hvf_reg_match hvf_fpreg_match[] = { |
| { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) }, |
| { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) }, |
| { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) }, |
| { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) }, |
| { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) }, |
| { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) }, |
| { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) }, |
| { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) }, |
| { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) }, |
| { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) }, |
| { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) }, |
| { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) }, |
| { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) }, |
| { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) }, |
| { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) }, |
| { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) }, |
| { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) }, |
| { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) }, |
| { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) }, |
| { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) }, |
| { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) }, |
| { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) }, |
| { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) }, |
| { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) }, |
| { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) }, |
| { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) }, |
| { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) }, |
| { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) }, |
| { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) }, |
| { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) }, |
| { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) }, |
| { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) }, |
| }; |
| |
| struct hvf_sreg_match { |
| int reg; |
| uint32_t key; |
| uint32_t cp_idx; |
| }; |
| |
| static struct hvf_sreg_match hvf_sreg_match[] = { |
| { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) }, |
| |
| { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) }, |
| { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) }, |
| { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) }, |
| { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) }, |
| |
| #ifdef SYNC_NO_RAW_REGS |
| /* |
| * The registers below are manually synced on init because they are |
| * marked as NO_RAW. We still list them to make number space sync easier. |
| */ |
| { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) }, |
| { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) }, |
| { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) }, |
| { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) }, |
| #endif |
| { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) }, |
| { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) }, |
| { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) }, |
| { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) }, |
| { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) }, |
| #ifdef SYNC_NO_MMFR0 |
| /* We keep the hardware MMFR0 around. HW limits are there anyway */ |
| { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) }, |
| #endif |
| { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) }, |
| { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) }, |
| |
| { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) }, |
| { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) }, |
| { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) }, |
| { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) }, |
| { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) }, |
| { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) }, |
| |
| { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) }, |
| { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) }, |
| { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) }, |
| { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) }, |
| { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) }, |
| { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) }, |
| { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) }, |
| { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) }, |
| { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) }, |
| { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) }, |
| |
| { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) }, |
| { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) }, |
| { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) }, |
| { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) }, |
| { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) }, |
| { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) }, |
| { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) }, |
| { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) }, |
| { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) }, |
| { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) }, |
| { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) }, |
| { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) }, |
| { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) }, |
| { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) }, |
| { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) }, |
| { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) }, |
| { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) }, |
| { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) }, |
| { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) }, |
| { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) }, |
| }; |
| |
| int hvf_get_registers(CPUState *cpu) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| hv_return_t ret; |
| uint64_t val; |
| hv_simd_fp_uchar16_t fpval; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { |
| ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val); |
| *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val; |
| assert_hvf_ok(ret); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { |
| ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg, |
| &fpval); |
| memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval)); |
| assert_hvf_ok(ret); |
| } |
| |
| val = 0; |
| ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val); |
| assert_hvf_ok(ret); |
| vfp_set_fpcr(env, val); |
| |
| val = 0; |
| ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val); |
| assert_hvf_ok(ret); |
| vfp_set_fpsr(env, val); |
| |
| ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val); |
| assert_hvf_ok(ret); |
| pstate_write(env, val); |
| |
| for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { |
| if (hvf_sreg_match[i].cp_idx == -1) { |
| continue; |
| } |
| |
| ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val); |
| assert_hvf_ok(ret); |
| |
| arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; |
| } |
| assert(write_list_to_cpustate(arm_cpu)); |
| |
| aarch64_restore_sp(env, arm_current_el(env)); |
| |
| return 0; |
| } |
| |
| int hvf_put_registers(CPUState *cpu) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| hv_return_t ret; |
| uint64_t val; |
| hv_simd_fp_uchar16_t fpval; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { |
| val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset); |
| ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val); |
| assert_hvf_ok(ret); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { |
| memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval)); |
| ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg, |
| fpval); |
| assert_hvf_ok(ret); |
| } |
| |
| ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env)); |
| assert_hvf_ok(ret); |
| |
| ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env)); |
| assert_hvf_ok(ret); |
| |
| ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env)); |
| assert_hvf_ok(ret); |
| |
| aarch64_save_sp(env, arm_current_el(env)); |
| |
| assert(write_cpustate_to_list(arm_cpu, false)); |
| for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { |
| if (hvf_sreg_match[i].cp_idx == -1) { |
| continue; |
| } |
| |
| val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx]; |
| ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val); |
| assert_hvf_ok(ret); |
| } |
| |
| ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset); |
| assert_hvf_ok(ret); |
| |
| return 0; |
| } |
| |
| static void flush_cpu_state(CPUState *cpu) |
| { |
| if (cpu->vcpu_dirty) { |
| hvf_put_registers(cpu); |
| cpu->vcpu_dirty = false; |
| } |
| } |
| |
| static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val) |
| { |
| hv_return_t r; |
| |
| flush_cpu_state(cpu); |
| |
| if (rt < 31) { |
| r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val); |
| assert_hvf_ok(r); |
| } |
| } |
| |
| static uint64_t hvf_get_reg(CPUState *cpu, int rt) |
| { |
| uint64_t val = 0; |
| hv_return_t r; |
| |
| flush_cpu_state(cpu); |
| |
| if (rt < 31) { |
| r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val); |
| assert_hvf_ok(r); |
| } |
| |
| return val; |
| } |
| |
| static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) |
| { |
| ARMISARegisters host_isar = {}; |
| const struct isar_regs { |
| int reg; |
| uint64_t *val; |
| } regs[] = { |
| { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 }, |
| { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 }, |
| { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 }, |
| { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 }, |
| { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 }, |
| { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 }, |
| { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 }, |
| { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 }, |
| { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 }, |
| }; |
| hv_vcpu_t fd; |
| hv_return_t r = HV_SUCCESS; |
| hv_vcpu_exit_t *exit; |
| int i; |
| |
| ahcf->dtb_compatible = "arm,arm-v8"; |
| ahcf->features = (1ULL << ARM_FEATURE_V8) | |
| (1ULL << ARM_FEATURE_NEON) | |
| (1ULL << ARM_FEATURE_AARCH64) | |
| (1ULL << ARM_FEATURE_PMU) | |
| (1ULL << ARM_FEATURE_GENERIC_TIMER); |
| |
| /* We set up a small vcpu to extract host registers */ |
| |
| if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) { |
| return false; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(regs); i++) { |
| r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val); |
| } |
| r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr); |
| r |= hv_vcpu_destroy(fd); |
| |
| ahcf->isar = host_isar; |
| |
| /* |
| * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1 |
| * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97 |
| */ |
| ahcf->reset_sctlr = 0x30100180; |
| /* |
| * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility, |
| * let's disable it on boot and then allow guest software to turn it on by |
| * setting it to 0. |
| */ |
| ahcf->reset_sctlr |= 0x00800000; |
| |
| /* Make sure we don't advertise AArch32 support for EL0/EL1 */ |
| if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) { |
| return false; |
| } |
| |
| return r == HV_SUCCESS; |
| } |
| |
| void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu) |
| { |
| if (!arm_host_cpu_features.dtb_compatible) { |
| if (!hvf_enabled() || |
| !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) { |
| /* |
| * We can't report this error yet, so flag that we need to |
| * in arm_cpu_realizefn(). |
| */ |
| cpu->host_cpu_probe_failed = true; |
| return; |
| } |
| } |
| |
| cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; |
| cpu->isar = arm_host_cpu_features.isar; |
| cpu->env.features = arm_host_cpu_features.features; |
| cpu->midr = arm_host_cpu_features.midr; |
| cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr; |
| } |
| |
| void hvf_arch_vcpu_destroy(CPUState *cpu) |
| { |
| } |
| |
| int hvf_arch_init_vcpu(CPUState *cpu) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match); |
| uint32_t sregs_cnt = 0; |
| uint64_t pfr; |
| hv_return_t ret; |
| int i; |
| |
| env->aarch64 = true; |
| asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz)); |
| |
| /* Allocate enough space for our sysreg sync */ |
| arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes, |
| sregs_match_len); |
| arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values, |
| sregs_match_len); |
| arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t, |
| arm_cpu->cpreg_vmstate_indexes, |
| sregs_match_len); |
| arm_cpu->cpreg_vmstate_values = g_renew(uint64_t, |
| arm_cpu->cpreg_vmstate_values, |
| sregs_match_len); |
| |
| memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t)); |
| |
| /* Populate cp list for all known sysregs */ |
| for (i = 0; i < sregs_match_len; i++) { |
| const ARMCPRegInfo *ri; |
| uint32_t key = hvf_sreg_match[i].key; |
| |
| ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key); |
| if (ri) { |
| assert(!(ri->type & ARM_CP_NO_RAW)); |
| hvf_sreg_match[i].cp_idx = sregs_cnt; |
| arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key); |
| } else { |
| hvf_sreg_match[i].cp_idx = -1; |
| } |
| } |
| arm_cpu->cpreg_array_len = sregs_cnt; |
| arm_cpu->cpreg_vmstate_array_len = sregs_cnt; |
| |
| assert(write_cpustate_to_list(arm_cpu, false)); |
| |
| /* Set CP_NO_RAW system registers on init */ |
| ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1, |
| arm_cpu->midr); |
| assert_hvf_ok(ret); |
| |
| ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1, |
| arm_cpu->mp_affinity); |
| assert_hvf_ok(ret); |
| |
| ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr); |
| assert_hvf_ok(ret); |
| pfr |= env->gicv3state ? (1 << 24) : 0; |
| ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr); |
| assert_hvf_ok(ret); |
| |
| /* We're limited to underlying hardware caps, override internal versions */ |
| ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1, |
| &arm_cpu->isar.id_aa64mmfr0); |
| assert_hvf_ok(ret); |
| |
| return 0; |
| } |
| |
| void hvf_kick_vcpu_thread(CPUState *cpu) |
| { |
| cpus_kick_thread(cpu); |
| hv_vcpus_exit(&cpu->hvf->fd, 1); |
| } |
| |
| static void hvf_raise_exception(CPUState *cpu, uint32_t excp, |
| uint32_t syndrome) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| |
| cpu->exception_index = excp; |
| env->exception.target_el = 1; |
| env->exception.syndrome = syndrome; |
| |
| arm_cpu_do_interrupt(cpu); |
| } |
| |
| static void hvf_psci_cpu_off(ARMCPU *arm_cpu) |
| { |
| int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity); |
| assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS); |
| } |
| |
| /* |
| * Handle a PSCI call. |
| * |
| * Returns 0 on success |
| * -1 when the PSCI call is unknown, |
| */ |
| static bool hvf_handle_psci_call(CPUState *cpu) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| uint64_t param[4] = { |
| env->xregs[0], |
| env->xregs[1], |
| env->xregs[2], |
| env->xregs[3] |
| }; |
| uint64_t context_id, mpidr; |
| bool target_aarch64 = true; |
| CPUState *target_cpu_state; |
| ARMCPU *target_cpu; |
| target_ulong entry; |
| int target_el = 1; |
| int32_t ret = 0; |
| |
| trace_hvf_psci_call(param[0], param[1], param[2], param[3], |
| arm_cpu->mp_affinity); |
| |
| switch (param[0]) { |
| case QEMU_PSCI_0_2_FN_PSCI_VERSION: |
| ret = QEMU_PSCI_VERSION_1_1; |
| break; |
| case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: |
| ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */ |
| break; |
| case QEMU_PSCI_0_2_FN_AFFINITY_INFO: |
| case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: |
| mpidr = param[1]; |
| |
| switch (param[2]) { |
| case 0: |
| target_cpu_state = arm_get_cpu_by_id(mpidr); |
| if (!target_cpu_state) { |
| ret = QEMU_PSCI_RET_INVALID_PARAMS; |
| break; |
| } |
| target_cpu = ARM_CPU(target_cpu_state); |
| |
| ret = target_cpu->power_state; |
| break; |
| default: |
| /* Everything above affinity level 0 is always on. */ |
| ret = 0; |
| } |
| break; |
| case QEMU_PSCI_0_2_FN_SYSTEM_RESET: |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| /* |
| * QEMU reset and shutdown are async requests, but PSCI |
| * mandates that we never return from the reset/shutdown |
| * call, so power the CPU off now so it doesn't execute |
| * anything further. |
| */ |
| hvf_psci_cpu_off(arm_cpu); |
| break; |
| case QEMU_PSCI_0_2_FN_SYSTEM_OFF: |
| qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); |
| hvf_psci_cpu_off(arm_cpu); |
| break; |
| case QEMU_PSCI_0_1_FN_CPU_ON: |
| case QEMU_PSCI_0_2_FN_CPU_ON: |
| case QEMU_PSCI_0_2_FN64_CPU_ON: |
| mpidr = param[1]; |
| entry = param[2]; |
| context_id = param[3]; |
| ret = arm_set_cpu_on(mpidr, entry, context_id, |
| target_el, target_aarch64); |
| break; |
| case QEMU_PSCI_0_1_FN_CPU_OFF: |
| case QEMU_PSCI_0_2_FN_CPU_OFF: |
| hvf_psci_cpu_off(arm_cpu); |
| break; |
| case QEMU_PSCI_0_1_FN_CPU_SUSPEND: |
| case QEMU_PSCI_0_2_FN_CPU_SUSPEND: |
| case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: |
| /* Affinity levels are not supported in QEMU */ |
| if (param[1] & 0xfffe0000) { |
| ret = QEMU_PSCI_RET_INVALID_PARAMS; |
| break; |
| } |
| /* Powerdown is not supported, we always go into WFI */ |
| env->xregs[0] = 0; |
| hvf_wfi(cpu); |
| break; |
| case QEMU_PSCI_0_1_FN_MIGRATE: |
| case QEMU_PSCI_0_2_FN_MIGRATE: |
| ret = QEMU_PSCI_RET_NOT_SUPPORTED; |
| break; |
| case QEMU_PSCI_1_0_FN_PSCI_FEATURES: |
| switch (param[1]) { |
| case QEMU_PSCI_0_2_FN_PSCI_VERSION: |
| case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: |
| case QEMU_PSCI_0_2_FN_AFFINITY_INFO: |
| case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: |
| case QEMU_PSCI_0_2_FN_SYSTEM_RESET: |
| case QEMU_PSCI_0_2_FN_SYSTEM_OFF: |
| case QEMU_PSCI_0_1_FN_CPU_ON: |
| case QEMU_PSCI_0_2_FN_CPU_ON: |
| case QEMU_PSCI_0_2_FN64_CPU_ON: |
| case QEMU_PSCI_0_1_FN_CPU_OFF: |
| case QEMU_PSCI_0_2_FN_CPU_OFF: |
| case QEMU_PSCI_0_1_FN_CPU_SUSPEND: |
| case QEMU_PSCI_0_2_FN_CPU_SUSPEND: |
| case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: |
| case QEMU_PSCI_1_0_FN_PSCI_FEATURES: |
| ret = 0; |
| break; |
| case QEMU_PSCI_0_1_FN_MIGRATE: |
| case QEMU_PSCI_0_2_FN_MIGRATE: |
| default: |
| ret = QEMU_PSCI_RET_NOT_SUPPORTED; |
| } |
| break; |
| default: |
| return false; |
| } |
| |
| env->xregs[0] = ret; |
| return true; |
| } |
| |
| static bool is_id_sysreg(uint32_t reg) |
| { |
| return SYSREG_OP0(reg) == 3 && |
| SYSREG_OP1(reg) == 0 && |
| SYSREG_CRN(reg) == 0 && |
| SYSREG_CRM(reg) >= 1 && |
| SYSREG_CRM(reg) < 8; |
| } |
| |
| static uint32_t hvf_reg2cp_reg(uint32_t reg) |
| { |
| return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, |
| (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK, |
| (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK, |
| (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK, |
| (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK, |
| (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK); |
| } |
| |
| static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| const ARMCPRegInfo *ri; |
| |
| ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); |
| if (ri) { |
| if (ri->accessfn) { |
| if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) { |
| return false; |
| } |
| } |
| if (ri->type & ARM_CP_CONST) { |
| *val = ri->resetvalue; |
| } else if (ri->readfn) { |
| *val = ri->readfn(env, ri); |
| } else { |
| *val = CPREG_FIELD64(env, ri); |
| } |
| trace_hvf_vgic_read(ri->name, *val); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| uint64_t val = 0; |
| |
| switch (reg) { |
| case SYSREG_CNTPCT_EL0: |
| val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / |
| gt_cntfrq_period_ns(arm_cpu); |
| break; |
| case SYSREG_PMCR_EL0: |
| val = env->cp15.c9_pmcr; |
| break; |
| case SYSREG_PMCCNTR_EL0: |
| pmu_op_start(env); |
| val = env->cp15.c15_ccnt; |
| pmu_op_finish(env); |
| break; |
| case SYSREG_PMCNTENCLR_EL0: |
| val = env->cp15.c9_pmcnten; |
| break; |
| case SYSREG_PMOVSCLR_EL0: |
| val = env->cp15.c9_pmovsr; |
| break; |
| case SYSREG_PMSELR_EL0: |
| val = env->cp15.c9_pmselr; |
| break; |
| case SYSREG_PMINTENCLR_EL1: |
| val = env->cp15.c9_pminten; |
| break; |
| case SYSREG_PMCCFILTR_EL0: |
| val = env->cp15.pmccfiltr_el0; |
| break; |
| case SYSREG_PMCNTENSET_EL0: |
| val = env->cp15.c9_pmcnten; |
| break; |
| case SYSREG_PMUSERENR_EL0: |
| val = env->cp15.c9_pmuserenr; |
| break; |
| case SYSREG_PMCEID0_EL0: |
| case SYSREG_PMCEID1_EL0: |
| /* We can't really count anything yet, declare all events invalid */ |
| val = 0; |
| break; |
| case SYSREG_OSLSR_EL1: |
| val = env->cp15.oslsr_el1; |
| break; |
| case SYSREG_OSDLR_EL1: |
| /* Dummy register */ |
| break; |
| case SYSREG_ICC_AP0R0_EL1: |
| case SYSREG_ICC_AP0R1_EL1: |
| case SYSREG_ICC_AP0R2_EL1: |
| case SYSREG_ICC_AP0R3_EL1: |
| case SYSREG_ICC_AP1R0_EL1: |
| case SYSREG_ICC_AP1R1_EL1: |
| case SYSREG_ICC_AP1R2_EL1: |
| case SYSREG_ICC_AP1R3_EL1: |
| case SYSREG_ICC_ASGI1R_EL1: |
| case SYSREG_ICC_BPR0_EL1: |
| case SYSREG_ICC_BPR1_EL1: |
| case SYSREG_ICC_DIR_EL1: |
| case SYSREG_ICC_EOIR0_EL1: |
| case SYSREG_ICC_EOIR1_EL1: |
| case SYSREG_ICC_HPPIR0_EL1: |
| case SYSREG_ICC_HPPIR1_EL1: |
| case SYSREG_ICC_IAR0_EL1: |
| case SYSREG_ICC_IAR1_EL1: |
| case SYSREG_ICC_IGRPEN0_EL1: |
| case SYSREG_ICC_IGRPEN1_EL1: |
| case SYSREG_ICC_PMR_EL1: |
| case SYSREG_ICC_SGI0R_EL1: |
| case SYSREG_ICC_SGI1R_EL1: |
| case SYSREG_ICC_SRE_EL1: |
| case SYSREG_ICC_CTLR_EL1: |
| /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ |
| if (!hvf_sysreg_read_cp(cpu, reg, &val)) { |
| hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); |
| } |
| break; |
| default: |
| if (is_id_sysreg(reg)) { |
| /* ID system registers read as RES0 */ |
| val = 0; |
| break; |
| } |
| cpu_synchronize_state(cpu); |
| trace_hvf_unhandled_sysreg_read(env->pc, reg, |
| SYSREG_OP0(reg), |
| SYSREG_OP1(reg), |
| SYSREG_CRN(reg), |
| SYSREG_CRM(reg), |
| SYSREG_OP2(reg)); |
| hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); |
| return 1; |
| } |
| |
| trace_hvf_sysreg_read(reg, |
| SYSREG_OP0(reg), |
| SYSREG_OP1(reg), |
| SYSREG_CRN(reg), |
| SYSREG_CRM(reg), |
| SYSREG_OP2(reg), |
| val); |
| hvf_set_reg(cpu, rt, val); |
| |
| return 0; |
| } |
| |
| static void pmu_update_irq(CPUARMState *env) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && |
| (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); |
| } |
| |
| static bool pmu_event_supported(uint16_t number) |
| { |
| return false; |
| } |
| |
| /* Returns true if the counter (pass 31 for PMCCNTR) should count events using |
| * the current EL, security state, and register configuration. |
| */ |
| static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) |
| { |
| uint64_t filter; |
| bool enabled, filtered = true; |
| int el = arm_current_el(env); |
| |
| enabled = (env->cp15.c9_pmcr & PMCRE) && |
| (env->cp15.c9_pmcnten & (1 << counter)); |
| |
| if (counter == 31) { |
| filter = env->cp15.pmccfiltr_el0; |
| } else { |
| filter = env->cp15.c14_pmevtyper[counter]; |
| } |
| |
| if (el == 0) { |
| filtered = filter & PMXEVTYPER_U; |
| } else if (el == 1) { |
| filtered = filter & PMXEVTYPER_P; |
| } |
| |
| if (counter != 31) { |
| /* |
| * If not checking PMCCNTR, ensure the counter is setup to an event we |
| * support |
| */ |
| uint16_t event = filter & PMXEVTYPER_EVTCOUNT; |
| if (!pmu_event_supported(event)) { |
| return false; |
| } |
| } |
| |
| return enabled && !filtered; |
| } |
| |
| static void pmswinc_write(CPUARMState *env, uint64_t value) |
| { |
| unsigned int i; |
| for (i = 0; i < pmu_num_counters(env); i++) { |
| /* Increment a counter's count iff: */ |
| if ((value & (1 << i)) && /* counter's bit is set */ |
| /* counter is enabled and not filtered */ |
| pmu_counter_enabled(env, i) && |
| /* counter is SW_INCR */ |
| (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { |
| /* |
| * Detect if this write causes an overflow since we can't predict |
| * PMSWINC overflows like we can for other events |
| */ |
| uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; |
| |
| if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { |
| env->cp15.c9_pmovsr |= (1 << i); |
| pmu_update_irq(env); |
| } |
| |
| env->cp15.c14_pmevcntr[i] = new_pmswinc; |
| } |
| } |
| } |
| |
| static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| const ARMCPRegInfo *ri; |
| |
| ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg)); |
| |
| if (ri) { |
| if (ri->accessfn) { |
| if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) { |
| return false; |
| } |
| } |
| if (ri->writefn) { |
| ri->writefn(env, ri, val); |
| } else { |
| CPREG_FIELD64(env, ri) = val; |
| } |
| |
| trace_hvf_vgic_write(ri->name, val); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| |
| trace_hvf_sysreg_write(reg, |
| SYSREG_OP0(reg), |
| SYSREG_OP1(reg), |
| SYSREG_CRN(reg), |
| SYSREG_CRM(reg), |
| SYSREG_OP2(reg), |
| val); |
| |
| switch (reg) { |
| case SYSREG_PMCCNTR_EL0: |
| pmu_op_start(env); |
| env->cp15.c15_ccnt = val; |
| pmu_op_finish(env); |
| break; |
| case SYSREG_PMCR_EL0: |
| pmu_op_start(env); |
| |
| if (val & PMCRC) { |
| /* The counter has been reset */ |
| env->cp15.c15_ccnt = 0; |
| } |
| |
| if (val & PMCRP) { |
| unsigned int i; |
| for (i = 0; i < pmu_num_counters(env); i++) { |
| env->cp15.c14_pmevcntr[i] = 0; |
| } |
| } |
| |
| env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; |
| env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK); |
| |
| pmu_op_finish(env); |
| break; |
| case SYSREG_PMUSERENR_EL0: |
| env->cp15.c9_pmuserenr = val & 0xf; |
| break; |
| case SYSREG_PMCNTENSET_EL0: |
| env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env)); |
| break; |
| case SYSREG_PMCNTENCLR_EL0: |
| env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env)); |
| break; |
| case SYSREG_PMINTENCLR_EL1: |
| pmu_op_start(env); |
| env->cp15.c9_pminten |= val; |
| pmu_op_finish(env); |
| break; |
| case SYSREG_PMOVSCLR_EL0: |
| pmu_op_start(env); |
| env->cp15.c9_pmovsr &= ~val; |
| pmu_op_finish(env); |
| break; |
| case SYSREG_PMSWINC_EL0: |
| pmu_op_start(env); |
| pmswinc_write(env, val); |
| pmu_op_finish(env); |
| break; |
| case SYSREG_PMSELR_EL0: |
| env->cp15.c9_pmselr = val & 0x1f; |
| break; |
| case SYSREG_PMCCFILTR_EL0: |
| pmu_op_start(env); |
| env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0; |
| pmu_op_finish(env); |
| break; |
| case SYSREG_OSLAR_EL1: |
| env->cp15.oslsr_el1 = val & 1; |
| break; |
| case SYSREG_OSDLR_EL1: |
| /* Dummy register */ |
| break; |
| case SYSREG_ICC_AP0R0_EL1: |
| case SYSREG_ICC_AP0R1_EL1: |
| case SYSREG_ICC_AP0R2_EL1: |
| case SYSREG_ICC_AP0R3_EL1: |
| case SYSREG_ICC_AP1R0_EL1: |
| case SYSREG_ICC_AP1R1_EL1: |
| case SYSREG_ICC_AP1R2_EL1: |
| case SYSREG_ICC_AP1R3_EL1: |
| case SYSREG_ICC_ASGI1R_EL1: |
| case SYSREG_ICC_BPR0_EL1: |
| case SYSREG_ICC_BPR1_EL1: |
| case SYSREG_ICC_CTLR_EL1: |
| case SYSREG_ICC_DIR_EL1: |
| case SYSREG_ICC_EOIR0_EL1: |
| case SYSREG_ICC_EOIR1_EL1: |
| case SYSREG_ICC_HPPIR0_EL1: |
| case SYSREG_ICC_HPPIR1_EL1: |
| case SYSREG_ICC_IAR0_EL1: |
| case SYSREG_ICC_IAR1_EL1: |
| case SYSREG_ICC_IGRPEN0_EL1: |
| case SYSREG_ICC_IGRPEN1_EL1: |
| case SYSREG_ICC_PMR_EL1: |
| case SYSREG_ICC_SGI0R_EL1: |
| case SYSREG_ICC_SGI1R_EL1: |
| case SYSREG_ICC_SRE_EL1: |
| /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */ |
| if (!hvf_sysreg_write_cp(cpu, reg, val)) { |
| hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); |
| } |
| break; |
| default: |
| cpu_synchronize_state(cpu); |
| trace_hvf_unhandled_sysreg_write(env->pc, reg, |
| SYSREG_OP0(reg), |
| SYSREG_OP1(reg), |
| SYSREG_CRN(reg), |
| SYSREG_CRM(reg), |
| SYSREG_OP2(reg)); |
| hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int hvf_inject_interrupts(CPUState *cpu) |
| { |
| if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) { |
| trace_hvf_inject_fiq(); |
| hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ, |
| true); |
| } |
| |
| if (cpu->interrupt_request & CPU_INTERRUPT_HARD) { |
| trace_hvf_inject_irq(); |
| hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ, |
| true); |
| } |
| |
| return 0; |
| } |
| |
| static uint64_t hvf_vtimer_val_raw(void) |
| { |
| /* |
| * mach_absolute_time() returns the vtimer value without the VM |
| * offset that we define. Add our own offset on top. |
| */ |
| return mach_absolute_time() - hvf_state->vtimer_offset; |
| } |
| |
| static uint64_t hvf_vtimer_val(void) |
| { |
| if (!runstate_is_running()) { |
| /* VM is paused, the vtimer value is in vtimer.vtimer_val */ |
| return vtimer.vtimer_val; |
| } |
| |
| return hvf_vtimer_val_raw(); |
| } |
| |
| static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts) |
| { |
| /* |
| * Use pselect to sleep so that other threads can IPI us while we're |
| * sleeping. |
| */ |
| qatomic_mb_set(&cpu->thread_kicked, false); |
| qemu_mutex_unlock_iothread(); |
| pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask); |
| qemu_mutex_lock_iothread(); |
| } |
| |
| static void hvf_wfi(CPUState *cpu) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| struct timespec ts; |
| hv_return_t r; |
| uint64_t ctl; |
| uint64_t cval; |
| int64_t ticks_to_sleep; |
| uint64_t seconds; |
| uint64_t nanos; |
| uint32_t cntfrq; |
| |
| if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) { |
| /* Interrupt pending, no need to wait */ |
| return; |
| } |
| |
| r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); |
| assert_hvf_ok(r); |
| |
| if (!(ctl & 1) || (ctl & 2)) { |
| /* Timer disabled or masked, just wait for an IPI. */ |
| hvf_wait_for_ipi(cpu, NULL); |
| return; |
| } |
| |
| r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval); |
| assert_hvf_ok(r); |
| |
| ticks_to_sleep = cval - hvf_vtimer_val(); |
| if (ticks_to_sleep < 0) { |
| return; |
| } |
| |
| cntfrq = gt_cntfrq_period_ns(arm_cpu); |
| seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND); |
| ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq); |
| nanos = ticks_to_sleep * cntfrq; |
| |
| /* |
| * Don't sleep for less than the time a context switch would take, |
| * so that we can satisfy fast timer requests on the same CPU. |
| * Measurements on M1 show the sweet spot to be ~2ms. |
| */ |
| if (!seconds && nanos < (2 * SCALE_MS)) { |
| return; |
| } |
| |
| ts = (struct timespec) { seconds, nanos }; |
| hvf_wait_for_ipi(cpu, &ts); |
| } |
| |
| static void hvf_sync_vtimer(CPUState *cpu) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| hv_return_t r; |
| uint64_t ctl; |
| bool irq_state; |
| |
| if (!cpu->hvf->vtimer_masked) { |
| /* We will get notified on vtimer changes by hvf, nothing to do */ |
| return; |
| } |
| |
| r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); |
| assert_hvf_ok(r); |
| |
| irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) == |
| (TMR_CTL_ENABLE | TMR_CTL_ISTATUS); |
| qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state); |
| |
| if (!irq_state) { |
| /* Timer no longer asserting, we can unmask it */ |
| hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false); |
| cpu->hvf->vtimer_masked = false; |
| } |
| } |
| |
| int hvf_vcpu_exec(CPUState *cpu) |
| { |
| ARMCPU *arm_cpu = ARM_CPU(cpu); |
| CPUARMState *env = &arm_cpu->env; |
| hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit; |
| hv_return_t r; |
| bool advance_pc = false; |
| |
| if (hvf_inject_interrupts(cpu)) { |
| return EXCP_INTERRUPT; |
| } |
| |
| if (cpu->halted) { |
| return EXCP_HLT; |
| } |
| |
| flush_cpu_state(cpu); |
| |
| qemu_mutex_unlock_iothread(); |
| assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd)); |
| |
| /* handle VMEXIT */ |
| uint64_t exit_reason = hvf_exit->reason; |
| uint64_t syndrome = hvf_exit->exception.syndrome; |
| uint32_t ec = syn_get_ec(syndrome); |
| |
| qemu_mutex_lock_iothread(); |
| switch (exit_reason) { |
| case HV_EXIT_REASON_EXCEPTION: |
| /* This is the main one, handle below. */ |
| break; |
| case HV_EXIT_REASON_VTIMER_ACTIVATED: |
| qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1); |
| cpu->hvf->vtimer_masked = true; |
| return 0; |
| case HV_EXIT_REASON_CANCELED: |
| /* we got kicked, no exit to process */ |
| return 0; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| hvf_sync_vtimer(cpu); |
| |
| switch (ec) { |
| case EC_DATAABORT: { |
| bool isv = syndrome & ARM_EL_ISV; |
| bool iswrite = (syndrome >> 6) & 1; |
| bool s1ptw = (syndrome >> 7) & 1; |
| uint32_t sas = (syndrome >> 22) & 3; |
| uint32_t len = 1 << sas; |
| uint32_t srt = (syndrome >> 16) & 0x1f; |
| uint32_t cm = (syndrome >> 8) & 0x1; |
| uint64_t val = 0; |
| |
| trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address, |
| hvf_exit->exception.physical_address, isv, |
| iswrite, s1ptw, len, srt); |
| |
| if (cm) { |
| /* We don't cache MMIO regions */ |
| advance_pc = true; |
| break; |
| } |
| |
| assert(isv); |
| |
| if (iswrite) { |
| val = hvf_get_reg(cpu, srt); |
| address_space_write(&address_space_memory, |
| hvf_exit->exception.physical_address, |
| MEMTXATTRS_UNSPECIFIED, &val, len); |
| } else { |
| address_space_read(&address_space_memory, |
| hvf_exit->exception.physical_address, |
| MEMTXATTRS_UNSPECIFIED, &val, len); |
| hvf_set_reg(cpu, srt, val); |
| } |
| |
| advance_pc = true; |
| break; |
| } |
| case EC_SYSTEMREGISTERTRAP: { |
| bool isread = (syndrome >> 0) & 1; |
| uint32_t rt = (syndrome >> 5) & 0x1f; |
| uint32_t reg = syndrome & SYSREG_MASK; |
| uint64_t val; |
| int ret = 0; |
| |
| if (isread) { |
| ret = hvf_sysreg_read(cpu, reg, rt); |
| } else { |
| val = hvf_get_reg(cpu, rt); |
| ret = hvf_sysreg_write(cpu, reg, val); |
| } |
| |
| advance_pc = !ret; |
| break; |
| } |
| case EC_WFX_TRAP: |
| advance_pc = true; |
| if (!(syndrome & WFX_IS_WFE)) { |
| hvf_wfi(cpu); |
| } |
| break; |
| case EC_AA64_HVC: |
| cpu_synchronize_state(cpu); |
| if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) { |
| if (!hvf_handle_psci_call(cpu)) { |
| trace_hvf_unknown_hvc(env->xregs[0]); |
| /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ |
| env->xregs[0] = -1; |
| } |
| } else { |
| trace_hvf_unknown_hvc(env->xregs[0]); |
| hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); |
| } |
| break; |
| case EC_AA64_SMC: |
| cpu_synchronize_state(cpu); |
| if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) { |
| advance_pc = true; |
| |
| if (!hvf_handle_psci_call(cpu)) { |
| trace_hvf_unknown_smc(env->xregs[0]); |
| /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ |
| env->xregs[0] = -1; |
| } |
| } else { |
| trace_hvf_unknown_smc(env->xregs[0]); |
| hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); |
| } |
| break; |
| default: |
| cpu_synchronize_state(cpu); |
| trace_hvf_exit(syndrome, ec, env->pc); |
| error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec); |
| } |
| |
| if (advance_pc) { |
| uint64_t pc; |
| |
| flush_cpu_state(cpu); |
| |
| r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc); |
| assert_hvf_ok(r); |
| pc += 4; |
| r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc); |
| assert_hvf_ok(r); |
| } |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_hvf_vtimer = { |
| .name = "hvf-vtimer", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(vtimer_val, HVFVTimer), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void hvf_vm_state_change(void *opaque, bool running, RunState state) |
| { |
| HVFVTimer *s = opaque; |
| |
| if (running) { |
| /* Update vtimer offset on all CPUs */ |
| hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val; |
| cpu_synchronize_all_states(); |
| } else { |
| /* Remember vtimer value on every pause */ |
| s->vtimer_val = hvf_vtimer_val_raw(); |
| } |
| } |
| |
| int hvf_arch_init(void) |
| { |
| hvf_state->vtimer_offset = mach_absolute_time(); |
| vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer); |
| qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer); |
| return 0; |
| } |