| /* |
| * Luminary Micro Stellaris peripherals |
| * |
| * Copyright (c) 2006 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licenced under the GPL. |
| */ |
| |
| #include "hw.h" |
| #include "arm-misc.h" |
| #include "primecell.h" |
| #include "devices.h" |
| #include "qemu-timer.h" |
| #include "i2c.h" |
| #include "net.h" |
| #include "sd.h" |
| #include "sysemu.h" |
| #include "boards.h" |
| |
| #define GPIO_A 0 |
| #define GPIO_B 1 |
| #define GPIO_C 2 |
| #define GPIO_D 3 |
| #define GPIO_E 4 |
| #define GPIO_F 5 |
| #define GPIO_G 6 |
| |
| #define BP_OLED_I2C 0x01 |
| #define BP_OLED_SSI 0x02 |
| #define BP_GAMEPAD 0x04 |
| |
| typedef const struct { |
| const char *name; |
| uint32_t did0; |
| uint32_t did1; |
| uint32_t dc0; |
| uint32_t dc1; |
| uint32_t dc2; |
| uint32_t dc3; |
| uint32_t dc4; |
| uint32_t peripherals; |
| } stellaris_board_info; |
| |
| /* General purpose timer module. */ |
| |
| typedef struct gptm_state { |
| uint32_t config; |
| uint32_t mode[2]; |
| uint32_t control; |
| uint32_t state; |
| uint32_t mask; |
| uint32_t load[2]; |
| uint32_t match[2]; |
| uint32_t prescale[2]; |
| uint32_t match_prescale[2]; |
| uint32_t rtc; |
| int64_t tick[2]; |
| struct gptm_state *opaque[2]; |
| uint32_t base; |
| QEMUTimer *timer[2]; |
| /* The timers have an alternate output used to trigger the ADC. */ |
| qemu_irq trigger; |
| qemu_irq irq; |
| } gptm_state; |
| |
| static void gptm_update_irq(gptm_state *s) |
| { |
| int level; |
| level = (s->state & s->mask) != 0; |
| qemu_set_irq(s->irq, level); |
| } |
| |
| static void gptm_stop(gptm_state *s, int n) |
| { |
| qemu_del_timer(s->timer[n]); |
| } |
| |
| static void gptm_reload(gptm_state *s, int n, int reset) |
| { |
| int64_t tick; |
| if (reset) |
| tick = qemu_get_clock(vm_clock); |
| else |
| tick = s->tick[n]; |
| |
| if (s->config == 0) { |
| /* 32-bit CountDown. */ |
| uint32_t count; |
| count = s->load[0] | (s->load[1] << 16); |
| tick += (int64_t)count * system_clock_scale; |
| } else if (s->config == 1) { |
| /* 32-bit RTC. 1Hz tick. */ |
| tick += ticks_per_sec; |
| } else if (s->mode[n] == 0xa) { |
| /* PWM mode. Not implemented. */ |
| } else { |
| cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n", |
| s->mode[n]); |
| } |
| s->tick[n] = tick; |
| qemu_mod_timer(s->timer[n], tick); |
| } |
| |
| static void gptm_tick(void *opaque) |
| { |
| gptm_state **p = (gptm_state **)opaque; |
| gptm_state *s; |
| int n; |
| |
| s = *p; |
| n = p - s->opaque; |
| if (s->config == 0) { |
| s->state |= 1; |
| if ((s->control & 0x20)) { |
| /* Output trigger. */ |
| qemu_irq_raise(s->trigger); |
| qemu_irq_lower(s->trigger); |
| } |
| if (s->mode[0] & 1) { |
| /* One-shot. */ |
| s->control &= ~1; |
| } else { |
| /* Periodic. */ |
| gptm_reload(s, 0, 0); |
| } |
| } else if (s->config == 1) { |
| /* RTC. */ |
| uint32_t match; |
| s->rtc++; |
| match = s->match[0] | (s->match[1] << 16); |
| if (s->rtc > match) |
| s->rtc = 0; |
| if (s->rtc == 0) { |
| s->state |= 8; |
| } |
| gptm_reload(s, 0, 0); |
| } else if (s->mode[n] == 0xa) { |
| /* PWM mode. Not implemented. */ |
| } else { |
| cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n", |
| s->mode[n]); |
| } |
| gptm_update_irq(s); |
| } |
| |
| static uint32_t gptm_read(void *opaque, target_phys_addr_t offset) |
| { |
| gptm_state *s = (gptm_state *)opaque; |
| |
| offset -= s->base; |
| switch (offset) { |
| case 0x00: /* CFG */ |
| return s->config; |
| case 0x04: /* TAMR */ |
| return s->mode[0]; |
| case 0x08: /* TBMR */ |
| return s->mode[1]; |
| case 0x0c: /* CTL */ |
| return s->control; |
| case 0x18: /* IMR */ |
| return s->mask; |
| case 0x1c: /* RIS */ |
| return s->state; |
| case 0x20: /* MIS */ |
| return s->state & s->mask; |
| case 0x24: /* CR */ |
| return 0; |
| case 0x28: /* TAILR */ |
| return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); |
| case 0x2c: /* TBILR */ |
| return s->load[1]; |
| case 0x30: /* TAMARCHR */ |
| return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); |
| case 0x34: /* TBMATCHR */ |
| return s->match[1]; |
| case 0x38: /* TAPR */ |
| return s->prescale[0]; |
| case 0x3c: /* TBPR */ |
| return s->prescale[1]; |
| case 0x40: /* TAPMR */ |
| return s->match_prescale[0]; |
| case 0x44: /* TBPMR */ |
| return s->match_prescale[1]; |
| case 0x48: /* TAR */ |
| if (s->control == 1) |
| return s->rtc; |
| case 0x4c: /* TBR */ |
| cpu_abort(cpu_single_env, "TODO: Timer value read\n"); |
| default: |
| cpu_abort(cpu_single_env, "gptm_read: Bad offset 0x%x\n", (int)offset); |
| return 0; |
| } |
| } |
| |
| static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value) |
| { |
| gptm_state *s = (gptm_state *)opaque; |
| uint32_t oldval; |
| |
| offset -= s->base; |
| /* The timers should be disabled before changing the configuration. |
| We take advantage of this and defer everything until the timer |
| is enabled. */ |
| switch (offset) { |
| case 0x00: /* CFG */ |
| s->config = value; |
| break; |
| case 0x04: /* TAMR */ |
| s->mode[0] = value; |
| break; |
| case 0x08: /* TBMR */ |
| s->mode[1] = value; |
| break; |
| case 0x0c: /* CTL */ |
| oldval = s->control; |
| s->control = value; |
| /* TODO: Implement pause. */ |
| if ((oldval ^ value) & 1) { |
| if (value & 1) { |
| gptm_reload(s, 0, 1); |
| } else { |
| gptm_stop(s, 0); |
| } |
| } |
| if (((oldval ^ value) & 0x100) && s->config >= 4) { |
| if (value & 0x100) { |
| gptm_reload(s, 1, 1); |
| } else { |
| gptm_stop(s, 1); |
| } |
| } |
| break; |
| case 0x18: /* IMR */ |
| s->mask = value & 0x77; |
| gptm_update_irq(s); |
| break; |
| case 0x24: /* CR */ |
| s->state &= ~value; |
| break; |
| case 0x28: /* TAILR */ |
| s->load[0] = value & 0xffff; |
| if (s->config < 4) { |
| s->load[1] = value >> 16; |
| } |
| break; |
| case 0x2c: /* TBILR */ |
| s->load[1] = value & 0xffff; |
| break; |
| case 0x30: /* TAMARCHR */ |
| s->match[0] = value & 0xffff; |
| if (s->config < 4) { |
| s->match[1] = value >> 16; |
| } |
| break; |
| case 0x34: /* TBMATCHR */ |
| s->match[1] = value >> 16; |
| break; |
| case 0x38: /* TAPR */ |
| s->prescale[0] = value; |
| break; |
| case 0x3c: /* TBPR */ |
| s->prescale[1] = value; |
| break; |
| case 0x40: /* TAPMR */ |
| s->match_prescale[0] = value; |
| break; |
| case 0x44: /* TBPMR */ |
| s->match_prescale[0] = value; |
| break; |
| default: |
| cpu_abort(cpu_single_env, "gptm_write: Bad offset 0x%x\n", (int)offset); |
| } |
| gptm_update_irq(s); |
| } |
| |
| static CPUReadMemoryFunc *gptm_readfn[] = { |
| gptm_read, |
| gptm_read, |
| gptm_read |
| }; |
| |
| static CPUWriteMemoryFunc *gptm_writefn[] = { |
| gptm_write, |
| gptm_write, |
| gptm_write |
| }; |
| |
| static void gptm_save(QEMUFile *f, void *opaque) |
| { |
| gptm_state *s = (gptm_state *)opaque; |
| |
| qemu_put_be32(f, s->config); |
| qemu_put_be32(f, s->mode[0]); |
| qemu_put_be32(f, s->mode[1]); |
| qemu_put_be32(f, s->control); |
| qemu_put_be32(f, s->state); |
| qemu_put_be32(f, s->mask); |
| qemu_put_be32(f, s->mode[0]); |
| qemu_put_be32(f, s->mode[0]); |
| qemu_put_be32(f, s->load[0]); |
| qemu_put_be32(f, s->load[1]); |
| qemu_put_be32(f, s->match[0]); |
| qemu_put_be32(f, s->match[1]); |
| qemu_put_be32(f, s->prescale[0]); |
| qemu_put_be32(f, s->prescale[1]); |
| qemu_put_be32(f, s->match_prescale[0]); |
| qemu_put_be32(f, s->match_prescale[1]); |
| qemu_put_be32(f, s->rtc); |
| qemu_put_be64(f, s->tick[0]); |
| qemu_put_be64(f, s->tick[1]); |
| qemu_put_timer(f, s->timer[0]); |
| qemu_put_timer(f, s->timer[1]); |
| } |
| |
| static int gptm_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| gptm_state *s = (gptm_state *)opaque; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| s->config = qemu_get_be32(f); |
| s->mode[0] = qemu_get_be32(f); |
| s->mode[1] = qemu_get_be32(f); |
| s->control = qemu_get_be32(f); |
| s->state = qemu_get_be32(f); |
| s->mask = qemu_get_be32(f); |
| s->mode[0] = qemu_get_be32(f); |
| s->mode[0] = qemu_get_be32(f); |
| s->load[0] = qemu_get_be32(f); |
| s->load[1] = qemu_get_be32(f); |
| s->match[0] = qemu_get_be32(f); |
| s->match[1] = qemu_get_be32(f); |
| s->prescale[0] = qemu_get_be32(f); |
| s->prescale[1] = qemu_get_be32(f); |
| s->match_prescale[0] = qemu_get_be32(f); |
| s->match_prescale[1] = qemu_get_be32(f); |
| s->rtc = qemu_get_be32(f); |
| s->tick[0] = qemu_get_be64(f); |
| s->tick[1] = qemu_get_be64(f); |
| qemu_get_timer(f, s->timer[0]); |
| qemu_get_timer(f, s->timer[1]); |
| |
| return 0; |
| } |
| |
| static void stellaris_gptm_init(uint32_t base, qemu_irq irq, qemu_irq trigger) |
| { |
| int iomemtype; |
| gptm_state *s; |
| |
| s = (gptm_state *)qemu_mallocz(sizeof(gptm_state)); |
| s->base = base; |
| s->irq = irq; |
| s->trigger = trigger; |
| s->opaque[0] = s->opaque[1] = s; |
| |
| iomemtype = cpu_register_io_memory(0, gptm_readfn, |
| gptm_writefn, s); |
| cpu_register_physical_memory(base, 0x00001000, iomemtype); |
| s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]); |
| s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]); |
| register_savevm("stellaris_gptm", -1, 1, gptm_save, gptm_load, s); |
| } |
| |
| |
| /* System controller. */ |
| |
| typedef struct { |
| uint32_t base; |
| uint32_t pborctl; |
| uint32_t ldopctl; |
| uint32_t int_status; |
| uint32_t int_mask; |
| uint32_t resc; |
| uint32_t rcc; |
| uint32_t rcgc[3]; |
| uint32_t scgc[3]; |
| uint32_t dcgc[3]; |
| uint32_t clkvclr; |
| uint32_t ldoarst; |
| uint32_t user0; |
| uint32_t user1; |
| qemu_irq irq; |
| stellaris_board_info *board; |
| } ssys_state; |
| |
| static void ssys_update(ssys_state *s) |
| { |
| qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); |
| } |
| |
| static uint32_t pllcfg_sandstorm[16] = { |
| 0x31c0, /* 1 Mhz */ |
| 0x1ae0, /* 1.8432 Mhz */ |
| 0x18c0, /* 2 Mhz */ |
| 0xd573, /* 2.4576 Mhz */ |
| 0x37a6, /* 3.57954 Mhz */ |
| 0x1ae2, /* 3.6864 Mhz */ |
| 0x0c40, /* 4 Mhz */ |
| 0x98bc, /* 4.906 Mhz */ |
| 0x935b, /* 4.9152 Mhz */ |
| 0x09c0, /* 5 Mhz */ |
| 0x4dee, /* 5.12 Mhz */ |
| 0x0c41, /* 6 Mhz */ |
| 0x75db, /* 6.144 Mhz */ |
| 0x1ae6, /* 7.3728 Mhz */ |
| 0x0600, /* 8 Mhz */ |
| 0x585b /* 8.192 Mhz */ |
| }; |
| |
| static uint32_t pllcfg_fury[16] = { |
| 0x3200, /* 1 Mhz */ |
| 0x1b20, /* 1.8432 Mhz */ |
| 0x1900, /* 2 Mhz */ |
| 0xf42b, /* 2.4576 Mhz */ |
| 0x37e3, /* 3.57954 Mhz */ |
| 0x1b21, /* 3.6864 Mhz */ |
| 0x0c80, /* 4 Mhz */ |
| 0x98ee, /* 4.906 Mhz */ |
| 0xd5b4, /* 4.9152 Mhz */ |
| 0x0a00, /* 5 Mhz */ |
| 0x4e27, /* 5.12 Mhz */ |
| 0x1902, /* 6 Mhz */ |
| 0xec1c, /* 6.144 Mhz */ |
| 0x1b23, /* 7.3728 Mhz */ |
| 0x0640, /* 8 Mhz */ |
| 0xb11c /* 8.192 Mhz */ |
| }; |
| |
| static uint32_t ssys_read(void *opaque, target_phys_addr_t offset) |
| { |
| ssys_state *s = (ssys_state *)opaque; |
| |
| offset -= s->base; |
| switch (offset) { |
| case 0x000: /* DID0 */ |
| return s->board->did0; |
| case 0x004: /* DID1 */ |
| return s->board->did1; |
| case 0x008: /* DC0 */ |
| return s->board->dc0; |
| case 0x010: /* DC1 */ |
| return s->board->dc1; |
| case 0x014: /* DC2 */ |
| return s->board->dc2; |
| case 0x018: /* DC3 */ |
| return s->board->dc3; |
| case 0x01c: /* DC4 */ |
| return s->board->dc4; |
| case 0x030: /* PBORCTL */ |
| return s->pborctl; |
| case 0x034: /* LDOPCTL */ |
| return s->ldopctl; |
| case 0x040: /* SRCR0 */ |
| return 0; |
| case 0x044: /* SRCR1 */ |
| return 0; |
| case 0x048: /* SRCR2 */ |
| return 0; |
| case 0x050: /* RIS */ |
| return s->int_status; |
| case 0x054: /* IMC */ |
| return s->int_mask; |
| case 0x058: /* MISC */ |
| return s->int_status & s->int_mask; |
| case 0x05c: /* RESC */ |
| return s->resc; |
| case 0x060: /* RCC */ |
| return s->rcc; |
| case 0x064: /* PLLCFG */ |
| { |
| int xtal; |
| xtal = (s->rcc >> 6) & 0xf; |
| if (s->board->did0 & (1 << 16)) { |
| return pllcfg_fury[xtal]; |
| } else { |
| return pllcfg_sandstorm[xtal]; |
| } |
| } |
| case 0x100: /* RCGC0 */ |
| return s->rcgc[0]; |
| case 0x104: /* RCGC1 */ |
| return s->rcgc[1]; |
| case 0x108: /* RCGC2 */ |
| return s->rcgc[2]; |
| case 0x110: /* SCGC0 */ |
| return s->scgc[0]; |
| case 0x114: /* SCGC1 */ |
| return s->scgc[1]; |
| case 0x118: /* SCGC2 */ |
| return s->scgc[2]; |
| case 0x120: /* DCGC0 */ |
| return s->dcgc[0]; |
| case 0x124: /* DCGC1 */ |
| return s->dcgc[1]; |
| case 0x128: /* DCGC2 */ |
| return s->dcgc[2]; |
| case 0x150: /* CLKVCLR */ |
| return s->clkvclr; |
| case 0x160: /* LDOARST */ |
| return s->ldoarst; |
| case 0x1e0: /* USER0 */ |
| return s->user0; |
| case 0x1e4: /* USER1 */ |
| return s->user1; |
| default: |
| cpu_abort(cpu_single_env, "ssys_read: Bad offset 0x%x\n", (int)offset); |
| return 0; |
| } |
| } |
| |
| static void ssys_calculate_system_clock(ssys_state *s) |
| { |
| system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); |
| } |
| |
| static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value) |
| { |
| ssys_state *s = (ssys_state *)opaque; |
| |
| offset -= s->base; |
| switch (offset) { |
| case 0x030: /* PBORCTL */ |
| s->pborctl = value & 0xffff; |
| break; |
| case 0x034: /* LDOPCTL */ |
| s->ldopctl = value & 0x1f; |
| break; |
| case 0x040: /* SRCR0 */ |
| case 0x044: /* SRCR1 */ |
| case 0x048: /* SRCR2 */ |
| fprintf(stderr, "Peripheral reset not implemented\n"); |
| break; |
| case 0x054: /* IMC */ |
| s->int_mask = value & 0x7f; |
| break; |
| case 0x058: /* MISC */ |
| s->int_status &= ~value; |
| break; |
| case 0x05c: /* RESC */ |
| s->resc = value & 0x3f; |
| break; |
| case 0x060: /* RCC */ |
| if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { |
| /* PLL enable. */ |
| s->int_status |= (1 << 6); |
| } |
| s->rcc = value; |
| ssys_calculate_system_clock(s); |
| break; |
| case 0x100: /* RCGC0 */ |
| s->rcgc[0] = value; |
| break; |
| case 0x104: /* RCGC1 */ |
| s->rcgc[1] = value; |
| break; |
| case 0x108: /* RCGC2 */ |
| s->rcgc[2] = value; |
| break; |
| case 0x110: /* SCGC0 */ |
| s->scgc[0] = value; |
| break; |
| case 0x114: /* SCGC1 */ |
| s->scgc[1] = value; |
| break; |
| case 0x118: /* SCGC2 */ |
| s->scgc[2] = value; |
| break; |
| case 0x120: /* DCGC0 */ |
| s->dcgc[0] = value; |
| break; |
| case 0x124: /* DCGC1 */ |
| s->dcgc[1] = value; |
| break; |
| case 0x128: /* DCGC2 */ |
| s->dcgc[2] = value; |
| break; |
| case 0x150: /* CLKVCLR */ |
| s->clkvclr = value; |
| break; |
| case 0x160: /* LDOARST */ |
| s->ldoarst = value; |
| break; |
| default: |
| cpu_abort(cpu_single_env, "ssys_write: Bad offset 0x%x\n", (int)offset); |
| } |
| ssys_update(s); |
| } |
| |
| static CPUReadMemoryFunc *ssys_readfn[] = { |
| ssys_read, |
| ssys_read, |
| ssys_read |
| }; |
| |
| static CPUWriteMemoryFunc *ssys_writefn[] = { |
| ssys_write, |
| ssys_write, |
| ssys_write |
| }; |
| |
| static void ssys_reset(void *opaque) |
| { |
| ssys_state *s = (ssys_state *)opaque; |
| |
| s->pborctl = 0x7ffd; |
| s->rcc = 0x078e3ac0; |
| s->rcgc[0] = 1; |
| s->scgc[0] = 1; |
| s->dcgc[0] = 1; |
| } |
| |
| static void ssys_save(QEMUFile *f, void *opaque) |
| { |
| ssys_state *s = (ssys_state *)opaque; |
| |
| qemu_put_be32(f, s->pborctl); |
| qemu_put_be32(f, s->ldopctl); |
| qemu_put_be32(f, s->int_mask); |
| qemu_put_be32(f, s->int_status); |
| qemu_put_be32(f, s->resc); |
| qemu_put_be32(f, s->rcc); |
| qemu_put_be32(f, s->rcgc[0]); |
| qemu_put_be32(f, s->rcgc[1]); |
| qemu_put_be32(f, s->rcgc[2]); |
| qemu_put_be32(f, s->scgc[0]); |
| qemu_put_be32(f, s->scgc[1]); |
| qemu_put_be32(f, s->scgc[2]); |
| qemu_put_be32(f, s->dcgc[0]); |
| qemu_put_be32(f, s->dcgc[1]); |
| qemu_put_be32(f, s->dcgc[2]); |
| qemu_put_be32(f, s->clkvclr); |
| qemu_put_be32(f, s->ldoarst); |
| } |
| |
| static int ssys_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| ssys_state *s = (ssys_state *)opaque; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| s->pborctl = qemu_get_be32(f); |
| s->ldopctl = qemu_get_be32(f); |
| s->int_mask = qemu_get_be32(f); |
| s->int_status = qemu_get_be32(f); |
| s->resc = qemu_get_be32(f); |
| s->rcc = qemu_get_be32(f); |
| s->rcgc[0] = qemu_get_be32(f); |
| s->rcgc[1] = qemu_get_be32(f); |
| s->rcgc[2] = qemu_get_be32(f); |
| s->scgc[0] = qemu_get_be32(f); |
| s->scgc[1] = qemu_get_be32(f); |
| s->scgc[2] = qemu_get_be32(f); |
| s->dcgc[0] = qemu_get_be32(f); |
| s->dcgc[1] = qemu_get_be32(f); |
| s->dcgc[2] = qemu_get_be32(f); |
| s->clkvclr = qemu_get_be32(f); |
| s->ldoarst = qemu_get_be32(f); |
| ssys_calculate_system_clock(s); |
| |
| return 0; |
| } |
| |
| static void stellaris_sys_init(uint32_t base, qemu_irq irq, |
| stellaris_board_info * board, |
| uint8_t *macaddr) |
| { |
| int iomemtype; |
| ssys_state *s; |
| |
| s = (ssys_state *)qemu_mallocz(sizeof(ssys_state)); |
| s->base = base; |
| s->irq = irq; |
| s->board = board; |
| /* Most devices come preprogrammed with a MAC address in the user data. */ |
| s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16); |
| s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16); |
| |
| iomemtype = cpu_register_io_memory(0, ssys_readfn, |
| ssys_writefn, s); |
| cpu_register_physical_memory(base, 0x00001000, iomemtype); |
| ssys_reset(s); |
| register_savevm("stellaris_sys", -1, 1, ssys_save, ssys_load, s); |
| } |
| |
| |
| /* I2C controller. */ |
| |
| typedef struct { |
| i2c_bus *bus; |
| qemu_irq irq; |
| uint32_t base; |
| uint32_t msa; |
| uint32_t mcs; |
| uint32_t mdr; |
| uint32_t mtpr; |
| uint32_t mimr; |
| uint32_t mris; |
| uint32_t mcr; |
| } stellaris_i2c_state; |
| |
| #define STELLARIS_I2C_MCS_BUSY 0x01 |
| #define STELLARIS_I2C_MCS_ERROR 0x02 |
| #define STELLARIS_I2C_MCS_ADRACK 0x04 |
| #define STELLARIS_I2C_MCS_DATACK 0x08 |
| #define STELLARIS_I2C_MCS_ARBLST 0x10 |
| #define STELLARIS_I2C_MCS_IDLE 0x20 |
| #define STELLARIS_I2C_MCS_BUSBSY 0x40 |
| |
| static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset) |
| { |
| stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; |
| |
| offset -= s->base; |
| switch (offset) { |
| case 0x00: /* MSA */ |
| return s->msa; |
| case 0x04: /* MCS */ |
| /* We don't emulate timing, so the controller is never busy. */ |
| return s->mcs | STELLARIS_I2C_MCS_IDLE; |
| case 0x08: /* MDR */ |
| return s->mdr; |
| case 0x0c: /* MTPR */ |
| return s->mtpr; |
| case 0x10: /* MIMR */ |
| return s->mimr; |
| case 0x14: /* MRIS */ |
| return s->mris; |
| case 0x18: /* MMIS */ |
| return s->mris & s->mimr; |
| case 0x20: /* MCR */ |
| return s->mcr; |
| default: |
| cpu_abort(cpu_single_env, "strllaris_i2c_read: Bad offset 0x%x\n", |
| (int)offset); |
| return 0; |
| } |
| } |
| |
| static void stellaris_i2c_update(stellaris_i2c_state *s) |
| { |
| int level; |
| |
| level = (s->mris & s->mimr) != 0; |
| qemu_set_irq(s->irq, level); |
| } |
| |
| static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset, |
| uint32_t value) |
| { |
| stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; |
| |
| offset -= s->base; |
| switch (offset) { |
| case 0x00: /* MSA */ |
| s->msa = value & 0xff; |
| break; |
| case 0x04: /* MCS */ |
| if ((s->mcr & 0x10) == 0) { |
| /* Disabled. Do nothing. */ |
| break; |
| } |
| /* Grab the bus if this is starting a transfer. */ |
| if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { |
| if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { |
| s->mcs |= STELLARIS_I2C_MCS_ARBLST; |
| } else { |
| s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; |
| s->mcs |= STELLARIS_I2C_MCS_BUSBSY; |
| } |
| } |
| /* If we don't have the bus then indicate an error. */ |
| if (!i2c_bus_busy(s->bus) |
| || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { |
| s->mcs |= STELLARIS_I2C_MCS_ERROR; |
| break; |
| } |
| s->mcs &= ~STELLARIS_I2C_MCS_ERROR; |
| if (value & 1) { |
| /* Transfer a byte. */ |
| /* TODO: Handle errors. */ |
| if (s->msa & 1) { |
| /* Recv */ |
| s->mdr = i2c_recv(s->bus) & 0xff; |
| } else { |
| /* Send */ |
| i2c_send(s->bus, s->mdr); |
| } |
| /* Raise an interrupt. */ |
| s->mris |= 1; |
| } |
| if (value & 4) { |
| /* Finish transfer. */ |
| i2c_end_transfer(s->bus); |
| s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; |
| } |
| break; |
| case 0x08: /* MDR */ |
| s->mdr = value & 0xff; |
| break; |
| case 0x0c: /* MTPR */ |
| s->mtpr = value & 0xff; |
| break; |
| case 0x10: /* MIMR */ |
| s->mimr = 1; |
| break; |
| case 0x1c: /* MICR */ |
| s->mris &= ~value; |
| break; |
| case 0x20: /* MCR */ |
| if (value & 1) |
| cpu_abort(cpu_single_env, |
| "stellaris_i2c_write: Loopback not implemented\n"); |
| if (value & 0x20) |
| cpu_abort(cpu_single_env, |
| "stellaris_i2c_write: Slave mode not implemented\n"); |
| s->mcr = value & 0x31; |
| break; |
| default: |
| cpu_abort(cpu_single_env, "stellaris_i2c_write: Bad offset 0x%x\n", |
| (int)offset); |
| } |
| stellaris_i2c_update(s); |
| } |
| |
| static void stellaris_i2c_reset(stellaris_i2c_state *s) |
| { |
| if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) |
| i2c_end_transfer(s->bus); |
| |
| s->msa = 0; |
| s->mcs = 0; |
| s->mdr = 0; |
| s->mtpr = 1; |
| s->mimr = 0; |
| s->mris = 0; |
| s->mcr = 0; |
| stellaris_i2c_update(s); |
| } |
| |
| static CPUReadMemoryFunc *stellaris_i2c_readfn[] = { |
| stellaris_i2c_read, |
| stellaris_i2c_read, |
| stellaris_i2c_read |
| }; |
| |
| static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = { |
| stellaris_i2c_write, |
| stellaris_i2c_write, |
| stellaris_i2c_write |
| }; |
| |
| static void stellaris_i2c_save(QEMUFile *f, void *opaque) |
| { |
| stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; |
| |
| qemu_put_be32(f, s->msa); |
| qemu_put_be32(f, s->mcs); |
| qemu_put_be32(f, s->mdr); |
| qemu_put_be32(f, s->mtpr); |
| qemu_put_be32(f, s->mimr); |
| qemu_put_be32(f, s->mris); |
| qemu_put_be32(f, s->mcr); |
| } |
| |
| static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| s->msa = qemu_get_be32(f); |
| s->mcs = qemu_get_be32(f); |
| s->mdr = qemu_get_be32(f); |
| s->mtpr = qemu_get_be32(f); |
| s->mimr = qemu_get_be32(f); |
| s->mris = qemu_get_be32(f); |
| s->mcr = qemu_get_be32(f); |
| |
| return 0; |
| } |
| |
| static void stellaris_i2c_init(uint32_t base, qemu_irq irq, i2c_bus *bus) |
| { |
| stellaris_i2c_state *s; |
| int iomemtype; |
| |
| s = (stellaris_i2c_state *)qemu_mallocz(sizeof(stellaris_i2c_state)); |
| s->base = base; |
| s->irq = irq; |
| s->bus = bus; |
| |
| iomemtype = cpu_register_io_memory(0, stellaris_i2c_readfn, |
| stellaris_i2c_writefn, s); |
| cpu_register_physical_memory(base, 0x00001000, iomemtype); |
| /* ??? For now we only implement the master interface. */ |
| stellaris_i2c_reset(s); |
| register_savevm("stellaris_i2c", -1, 1, |
| stellaris_i2c_save, stellaris_i2c_load, s); |
| } |
| |
| /* Analogue to Digital Converter. This is only partially implemented, |
| enough for applications that use a combined ADC and timer tick. */ |
| |
| #define STELLARIS_ADC_EM_CONTROLLER 0 |
| #define STELLARIS_ADC_EM_COMP 1 |
| #define STELLARIS_ADC_EM_EXTERNAL 4 |
| #define STELLARIS_ADC_EM_TIMER 5 |
| #define STELLARIS_ADC_EM_PWM0 6 |
| #define STELLARIS_ADC_EM_PWM1 7 |
| #define STELLARIS_ADC_EM_PWM2 8 |
| |
| #define STELLARIS_ADC_FIFO_EMPTY 0x0100 |
| #define STELLARIS_ADC_FIFO_FULL 0x1000 |
| |
| typedef struct |
| { |
| uint32_t base; |
| uint32_t actss; |
| uint32_t ris; |
| uint32_t im; |
| uint32_t emux; |
| uint32_t ostat; |
| uint32_t ustat; |
| uint32_t sspri; |
| uint32_t sac; |
| struct { |
| uint32_t state; |
| uint32_t data[16]; |
| } fifo[4]; |
| uint32_t ssmux[4]; |
| uint32_t ssctl[4]; |
| uint32_t noise; |
| qemu_irq irq; |
| } stellaris_adc_state; |
| |
| static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) |
| { |
| int tail; |
| |
| tail = s->fifo[n].state & 0xf; |
| if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { |
| s->ustat |= 1 << n; |
| } else { |
| s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); |
| s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; |
| if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) |
| s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; |
| } |
| return s->fifo[n].data[tail]; |
| } |
| |
| static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, |
| uint32_t value) |
| { |
| int head; |
| |
| head = (s->fifo[n].state >> 4) & 0xf; |
| if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { |
| s->ostat |= 1 << n; |
| return; |
| } |
| s->fifo[n].data[head] = value; |
| head = (head + 1) & 0xf; |
| s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; |
| s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); |
| if ((s->fifo[n].state & 0xf) == head) |
| s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; |
| } |
| |
| static void stellaris_adc_update(stellaris_adc_state *s) |
| { |
| int level; |
| |
| level = (s->ris & s->im) != 0; |
| qemu_set_irq(s->irq, level); |
| } |
| |
| static void stellaris_adc_trigger(void *opaque, int irq, int level) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| |
| if ((s->actss & 1) == 0) { |
| return; |
| } |
| |
| /* Some applications use the ADC as a random number source, so introduce |
| some variation into the signal. */ |
| s->noise = s->noise * 314159 + 1; |
| /* ??? actual inputs not implemented. Return an arbitrary value. */ |
| stellaris_adc_fifo_write(s, 0, 0x200 + ((s->noise >> 16) & 7)); |
| s->ris |= 1; |
| stellaris_adc_update(s); |
| } |
| |
| static void stellaris_adc_reset(stellaris_adc_state *s) |
| { |
| int n; |
| |
| for (n = 0; n < 4; n++) { |
| s->ssmux[n] = 0; |
| s->ssctl[n] = 0; |
| s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; |
| } |
| } |
| |
| static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| |
| /* TODO: Implement this. */ |
| offset -= s->base; |
| if (offset >= 0x40 && offset < 0xc0) { |
| int n; |
| n = (offset - 0x40) >> 5; |
| switch (offset & 0x1f) { |
| case 0x00: /* SSMUX */ |
| return s->ssmux[n]; |
| case 0x04: /* SSCTL */ |
| return s->ssctl[n]; |
| case 0x08: /* SSFIFO */ |
| return stellaris_adc_fifo_read(s, n); |
| case 0x0c: /* SSFSTAT */ |
| return s->fifo[n].state; |
| default: |
| break; |
| } |
| } |
| switch (offset) { |
| case 0x00: /* ACTSS */ |
| return s->actss; |
| case 0x04: /* RIS */ |
| return s->ris; |
| case 0x08: /* IM */ |
| return s->im; |
| case 0x0c: /* ISC */ |
| return s->ris & s->im; |
| case 0x10: /* OSTAT */ |
| return s->ostat; |
| case 0x14: /* EMUX */ |
| return s->emux; |
| case 0x18: /* USTAT */ |
| return s->ustat; |
| case 0x20: /* SSPRI */ |
| return s->sspri; |
| case 0x30: /* SAC */ |
| return s->sac; |
| default: |
| cpu_abort(cpu_single_env, "strllaris_adc_read: Bad offset 0x%x\n", |
| (int)offset); |
| return 0; |
| } |
| } |
| |
| static void stellaris_adc_write(void *opaque, target_phys_addr_t offset, |
| uint32_t value) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| |
| /* TODO: Implement this. */ |
| offset -= s->base; |
| if (offset >= 0x40 && offset < 0xc0) { |
| int n; |
| n = (offset - 0x40) >> 5; |
| switch (offset & 0x1f) { |
| case 0x00: /* SSMUX */ |
| s->ssmux[n] = value & 0x33333333; |
| return; |
| case 0x04: /* SSCTL */ |
| if (value != 6) { |
| cpu_abort(cpu_single_env, "ADC: Unimplemented sequence %x\n", |
| value); |
| } |
| s->ssctl[n] = value; |
| return; |
| default: |
| break; |
| } |
| } |
| switch (offset) { |
| case 0x00: /* ACTSS */ |
| s->actss = value & 0xf; |
| if (value & 0xe) { |
| cpu_abort(cpu_single_env, |
| "Not implemented: ADC sequencers 1-3\n"); |
| } |
| break; |
| case 0x08: /* IM */ |
| s->im = value; |
| break; |
| case 0x0c: /* ISC */ |
| s->ris &= ~value; |
| break; |
| case 0x10: /* OSTAT */ |
| s->ostat &= ~value; |
| break; |
| case 0x14: /* EMUX */ |
| s->emux = value; |
| break; |
| case 0x18: /* USTAT */ |
| s->ustat &= ~value; |
| break; |
| case 0x20: /* SSPRI */ |
| s->sspri = value; |
| break; |
| case 0x28: /* PSSI */ |
| cpu_abort(cpu_single_env, "Not implemented: ADC sample initiate\n"); |
| break; |
| case 0x30: /* SAC */ |
| s->sac = value; |
| break; |
| default: |
| cpu_abort(cpu_single_env, "stellaris_adc_write: Bad offset 0x%x\n", |
| (int)offset); |
| } |
| stellaris_adc_update(s); |
| } |
| |
| static CPUReadMemoryFunc *stellaris_adc_readfn[] = { |
| stellaris_adc_read, |
| stellaris_adc_read, |
| stellaris_adc_read |
| }; |
| |
| static CPUWriteMemoryFunc *stellaris_adc_writefn[] = { |
| stellaris_adc_write, |
| stellaris_adc_write, |
| stellaris_adc_write |
| }; |
| |
| static void stellaris_adc_save(QEMUFile *f, void *opaque) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| int i; |
| int j; |
| |
| qemu_put_be32(f, s->actss); |
| qemu_put_be32(f, s->ris); |
| qemu_put_be32(f, s->im); |
| qemu_put_be32(f, s->emux); |
| qemu_put_be32(f, s->ostat); |
| qemu_put_be32(f, s->ustat); |
| qemu_put_be32(f, s->sspri); |
| qemu_put_be32(f, s->sac); |
| for (i = 0; i < 4; i++) { |
| qemu_put_be32(f, s->fifo[i].state); |
| for (j = 0; j < 16; j++) { |
| qemu_put_be32(f, s->fifo[i].data[j]); |
| } |
| qemu_put_be32(f, s->ssmux[i]); |
| qemu_put_be32(f, s->ssctl[i]); |
| } |
| qemu_put_be32(f, s->noise); |
| } |
| |
| static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| stellaris_adc_state *s = (stellaris_adc_state *)opaque; |
| int i; |
| int j; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| s->actss = qemu_get_be32(f); |
| s->ris = qemu_get_be32(f); |
| s->im = qemu_get_be32(f); |
| s->emux = qemu_get_be32(f); |
| s->ostat = qemu_get_be32(f); |
| s->ustat = qemu_get_be32(f); |
| s->sspri = qemu_get_be32(f); |
| s->sac = qemu_get_be32(f); |
| for (i = 0; i < 4; i++) { |
| s->fifo[i].state = qemu_get_be32(f); |
| for (j = 0; j < 16; j++) { |
| s->fifo[i].data[j] = qemu_get_be32(f); |
| } |
| s->ssmux[i] = qemu_get_be32(f); |
| s->ssctl[i] = qemu_get_be32(f); |
| } |
| s->noise = qemu_get_be32(f); |
| |
| return 0; |
| } |
| |
| static qemu_irq stellaris_adc_init(uint32_t base, qemu_irq irq) |
| { |
| stellaris_adc_state *s; |
| int iomemtype; |
| qemu_irq *qi; |
| |
| s = (stellaris_adc_state *)qemu_mallocz(sizeof(stellaris_adc_state)); |
| s->base = base; |
| s->irq = irq; |
| |
| iomemtype = cpu_register_io_memory(0, stellaris_adc_readfn, |
| stellaris_adc_writefn, s); |
| cpu_register_physical_memory(base, 0x00001000, iomemtype); |
| stellaris_adc_reset(s); |
| qi = qemu_allocate_irqs(stellaris_adc_trigger, s, 1); |
| register_savevm("stellaris_adc", -1, 1, |
| stellaris_adc_save, stellaris_adc_load, s); |
| return qi[0]; |
| } |
| |
| /* Some boards have both an OLED controller and SD card connected to |
| the same SSI port, with the SD card chip select connected to a |
| GPIO pin. Technically the OLED chip select is connected to the SSI |
| Fss pin. We do not bother emulating that as both devices should |
| never be selected simultaneously, and our OLED controller ignores stray |
| 0xff commands that occur when deselecting the SD card. */ |
| |
| typedef struct { |
| ssi_xfer_cb xfer_cb[2]; |
| void *opaque[2]; |
| qemu_irq irq; |
| int current_dev; |
| } stellaris_ssi_bus_state; |
| |
| static void stellaris_ssi_bus_select(void *opaque, int irq, int level) |
| { |
| stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque; |
| |
| s->current_dev = level; |
| } |
| |
| static int stellaris_ssi_bus_xfer(void *opaque, int val) |
| { |
| stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque; |
| |
| return s->xfer_cb[s->current_dev](s->opaque[s->current_dev], val); |
| } |
| |
| static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque) |
| { |
| stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque; |
| |
| qemu_put_be32(f, s->current_dev); |
| } |
| |
| static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque; |
| |
| if (version_id != 1) |
| return -EINVAL; |
| |
| s->current_dev = qemu_get_be32(f); |
| |
| return 0; |
| } |
| |
| static void *stellaris_ssi_bus_init(qemu_irq *irqp, |
| ssi_xfer_cb cb0, void *opaque0, |
| ssi_xfer_cb cb1, void *opaque1) |
| { |
| qemu_irq *qi; |
| stellaris_ssi_bus_state *s; |
| |
| s = (stellaris_ssi_bus_state *)qemu_mallocz(sizeof(stellaris_ssi_bus_state)); |
| s->xfer_cb[0] = cb0; |
| s->opaque[0] = opaque0; |
| s->xfer_cb[1] = cb1; |
| s->opaque[1] = opaque1; |
| qi = qemu_allocate_irqs(stellaris_ssi_bus_select, s, 1); |
| *irqp = *qi; |
| register_savevm("stellaris_ssi_bus", -1, 1, |
| stellaris_ssi_bus_save, stellaris_ssi_bus_load, s); |
| return s; |
| } |
| |
| /* Board init. */ |
| static stellaris_board_info stellaris_boards[] = { |
| { "LM3S811EVB", |
| 0, |
| 0x0032000e, |
| 0x001f001f, /* dc0 */ |
| 0x001132bf, |
| 0x01071013, |
| 0x3f0f01ff, |
| 0x0000001f, |
| BP_OLED_I2C |
| }, |
| { "LM3S6965EVB", |
| 0x10010002, |
| 0x1073402e, |
| 0x00ff007f, /* dc0 */ |
| 0x001133ff, |
| 0x030f5317, |
| 0x0f0f87ff, |
| 0x5000007f, |
| BP_OLED_SSI | BP_GAMEPAD |
| } |
| }; |
| |
| static void stellaris_init(const char *kernel_filename, const char *cpu_model, |
| DisplayState *ds, stellaris_board_info *board) |
| { |
| static const int uart_irq[] = {5, 6, 33, 34}; |
| static const int timer_irq[] = {19, 21, 23, 35}; |
| static const uint32_t gpio_addr[7] = |
| { 0x40004000, 0x40005000, 0x40006000, 0x40007000, |
| 0x40024000, 0x40025000, 0x40026000}; |
| static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; |
| |
| qemu_irq *pic; |
| qemu_irq *gpio_in[7]; |
| qemu_irq *gpio_out[7]; |
| qemu_irq adc; |
| int sram_size; |
| int flash_size; |
| i2c_bus *i2c; |
| int i; |
| |
| flash_size = ((board->dc0 & 0xffff) + 1) << 1; |
| sram_size = (board->dc0 >> 18) + 1; |
| pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model); |
| |
| if (board->dc1 & (1 << 16)) { |
| adc = stellaris_adc_init(0x40038000, pic[14]); |
| } else { |
| adc = NULL; |
| } |
| for (i = 0; i < 4; i++) { |
| if (board->dc2 & (0x10000 << i)) { |
| stellaris_gptm_init(0x40030000 + i * 0x1000, |
| pic[timer_irq[i]], adc); |
| } |
| } |
| |
| stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr); |
| |
| for (i = 0; i < 7; i++) { |
| if (board->dc4 & (1 << i)) { |
| gpio_in[i] = pl061_init(gpio_addr[i], pic[gpio_irq[i]], |
| &gpio_out[i]); |
| } |
| } |
| |
| if (board->dc2 & (1 << 12)) { |
| i2c = i2c_init_bus(); |
| stellaris_i2c_init(0x40020000, pic[8], i2c); |
| if (board->peripherals & BP_OLED_I2C) { |
| ssd0303_init(ds, i2c, 0x3d); |
| } |
| } |
| |
| for (i = 0; i < 4; i++) { |
| if (board->dc2 & (1 << i)) { |
| pl011_init(0x4000c000 + i * 0x1000, pic[uart_irq[i]], |
| serial_hds[i], PL011_LUMINARY); |
| } |
| } |
| if (board->dc2 & (1 << 4)) { |
| if (board->peripherals & BP_OLED_SSI) { |
| void * oled; |
| void * sd; |
| void *ssi_bus; |
| int index; |
| |
| oled = ssd0323_init(ds, &gpio_out[GPIO_C][7]); |
| index = drive_get_index(IF_SD, 0, 0); |
| sd = ssi_sd_init(drives_table[index].bdrv); |
| |
| ssi_bus = stellaris_ssi_bus_init(&gpio_out[GPIO_D][0], |
| ssi_sd_xfer, sd, |
| ssd0323_xfer_ssi, oled); |
| |
| pl022_init(0x40008000, pic[7], stellaris_ssi_bus_xfer, ssi_bus); |
| /* Make sure the select pin is high. */ |
| qemu_irq_raise(gpio_out[GPIO_D][0]); |
| } else { |
| pl022_init(0x40008000, pic[7], NULL, NULL); |
| } |
| } |
| if (board->dc4 & (1 << 28)) { |
| /* FIXME: Obey network model. */ |
| stellaris_enet_init(&nd_table[0], 0x40048000, pic[42]); |
| } |
| if (board->peripherals & BP_GAMEPAD) { |
| qemu_irq gpad_irq[5]; |
| static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; |
| |
| gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ |
| gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ |
| gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ |
| gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ |
| gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ |
| |
| stellaris_gamepad_init(5, gpad_irq, gpad_keycode); |
| } |
| } |
| |
| /* FIXME: Figure out how to generate these from stellaris_boards. */ |
| static void lm3s811evb_init(ram_addr_t ram_size, int vga_ram_size, |
| const char *boot_device, DisplayState *ds, |
| const char *kernel_filename, const char *kernel_cmdline, |
| const char *initrd_filename, const char *cpu_model) |
| { |
| stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[0]); |
| } |
| |
| static void lm3s6965evb_init(ram_addr_t ram_size, int vga_ram_size, |
| const char *boot_device, DisplayState *ds, |
| const char *kernel_filename, const char *kernel_cmdline, |
| const char *initrd_filename, const char *cpu_model) |
| { |
| stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[1]); |
| } |
| |
| QEMUMachine lm3s811evb_machine = { |
| "lm3s811evb", |
| "Stellaris LM3S811EVB", |
| lm3s811evb_init, |
| (64 * 1024 + 8 * 1024) | RAMSIZE_FIXED, |
| }; |
| |
| QEMUMachine lm3s6965evb_machine = { |
| "lm3s6965evb", |
| "Stellaris LM3S6965EVB", |
| lm3s6965evb_init, |
| (256 * 1024 + 64 * 1024) | RAMSIZE_FIXED, |
| }; |