| /* |
| * QEMU Firmware configuration device emulation |
| * |
| * Copyright (c) 2008 Gleb Natapov |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw.h" |
| #include "sysemu.h" |
| #include "isa.h" |
| #include "fw_cfg.h" |
| |
| /* debug firmware config */ |
| //#define DEBUG_FW_CFG |
| |
| #ifdef DEBUG_FW_CFG |
| #define FW_CFG_DPRINTF(fmt, args...) \ |
| do { printf("FW_CFG: " fmt , ##args); } while (0) |
| #else |
| #define FW_CFG_DPRINTF(fmt, args...) |
| #endif |
| |
| #define FW_CFG_SIZE 2 |
| |
| typedef struct _FWCfgEntry { |
| uint16_t len; |
| uint8_t *data; |
| void *callback_opaque; |
| FWCfgCallback callback; |
| } FWCfgEntry; |
| |
| typedef struct _FWCfgState { |
| FWCfgEntry entries[2][FW_CFG_MAX_ENTRY]; |
| uint16_t cur_entry; |
| uint16_t cur_offset; |
| } FWCfgState; |
| |
| static void fw_cfg_write(FWCfgState *s, uint8_t value) |
| { |
| int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); |
| FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; |
| |
| FW_CFG_DPRINTF("write %d\n", value); |
| |
| if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) { |
| e->data[s->cur_offset++] = value; |
| if (s->cur_offset == e->len) { |
| e->callback(e->callback_opaque, e->data); |
| s->cur_offset = 0; |
| } |
| } |
| } |
| |
| static int fw_cfg_select(FWCfgState *s, uint16_t key) |
| { |
| int ret; |
| |
| s->cur_offset = 0; |
| if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) { |
| s->cur_entry = FW_CFG_INVALID; |
| ret = 0; |
| } else { |
| s->cur_entry = key; |
| ret = 1; |
| } |
| |
| FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not "); |
| |
| return ret; |
| } |
| |
| static uint8_t fw_cfg_read(FWCfgState *s) |
| { |
| int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); |
| FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; |
| uint8_t ret; |
| |
| if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len) |
| ret = 0; |
| else |
| ret = e->data[s->cur_offset++]; |
| |
| FW_CFG_DPRINTF("read %d\n", ret); |
| |
| return ret; |
| } |
| |
| static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr) |
| { |
| return fw_cfg_read(opaque); |
| } |
| |
| static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value) |
| { |
| return fw_cfg_write(opaque, (uint8_t)value); |
| } |
| |
| static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value) |
| { |
| fw_cfg_select(opaque, (uint16_t)value); |
| } |
| |
| static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr) |
| { |
| return fw_cfg_read(opaque); |
| } |
| |
| static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| return fw_cfg_write(opaque, (uint8_t)value); |
| } |
| |
| static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| fw_cfg_select(opaque, (uint16_t)value); |
| } |
| |
| static CPUReadMemoryFunc *fw_cfg_ctl_mem_read[3] = { |
| NULL, |
| NULL, |
| NULL, |
| }; |
| |
| static CPUWriteMemoryFunc *fw_cfg_ctl_mem_write[3] = { |
| NULL, |
| fw_cfg_mem_writew, |
| NULL, |
| }; |
| |
| static CPUReadMemoryFunc *fw_cfg_data_mem_read[3] = { |
| fw_cfg_mem_readb, |
| NULL, |
| NULL, |
| }; |
| |
| static CPUWriteMemoryFunc *fw_cfg_data_mem_write[3] = { |
| fw_cfg_mem_writeb, |
| NULL, |
| NULL, |
| }; |
| |
| static void fw_cfg_reset(void *opaque) |
| { |
| FWCfgState *s = opaque; |
| |
| fw_cfg_select(s, 0); |
| } |
| |
| static void fw_cfg_save(QEMUFile *f, void *opaque) |
| { |
| FWCfgState *s = opaque; |
| |
| qemu_put_be16s(f, &s->cur_entry); |
| qemu_put_be16s(f, &s->cur_offset); |
| } |
| |
| static int fw_cfg_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| FWCfgState *s = opaque; |
| |
| if (version_id > 1) |
| return -EINVAL; |
| |
| qemu_get_be16s(f, &s->cur_entry); |
| qemu_get_be16s(f, &s->cur_offset); |
| |
| return 0; |
| } |
| |
| int fw_cfg_add_bytes(void *opaque, uint16_t key, uint8_t *data, uint16_t len) |
| { |
| FWCfgState *s = opaque; |
| int arch = !!(key & FW_CFG_ARCH_LOCAL); |
| |
| key &= FW_CFG_ENTRY_MASK; |
| |
| if (key >= FW_CFG_MAX_ENTRY) |
| return 0; |
| |
| s->entries[arch][key].data = data; |
| s->entries[arch][key].len = len; |
| |
| return 1; |
| } |
| |
| int fw_cfg_add_i16(void *opaque, uint16_t key, uint16_t value) |
| { |
| uint16_t *copy; |
| |
| copy = qemu_malloc(sizeof(value)); |
| if (!copy) |
| return 0; |
| *copy = cpu_to_le16(value); |
| return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); |
| } |
| |
| int fw_cfg_add_i32(void *opaque, uint16_t key, uint32_t value) |
| { |
| uint32_t *copy; |
| |
| copy = qemu_malloc(sizeof(value)); |
| if (!copy) |
| return 0; |
| *copy = cpu_to_le32(value); |
| return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); |
| } |
| |
| int fw_cfg_add_i64(void *opaque, uint16_t key, uint64_t value) |
| { |
| uint64_t *copy; |
| |
| copy = qemu_malloc(sizeof(value)); |
| if (!copy) |
| return 0; |
| *copy = cpu_to_le64(value); |
| return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); |
| } |
| |
| int fw_cfg_add_callback(void *opaque, uint16_t key, FWCfgCallback callback, |
| void *callback_opaque, uint8_t *data, size_t len) |
| { |
| FWCfgState *s = opaque; |
| int arch = !!(key & FW_CFG_ARCH_LOCAL); |
| |
| key &= FW_CFG_ENTRY_MASK; |
| |
| if (key >= FW_CFG_MAX_ENTRY || !(key & FW_CFG_WRITE_CHANNEL) |
| || len > 65535) |
| return 0; |
| |
| s->entries[arch][key].data = data; |
| s->entries[arch][key].len = len; |
| s->entries[arch][key].callback_opaque = callback_opaque; |
| s->entries[arch][key].callback = callback; |
| |
| return 1; |
| } |
| |
| void *fw_cfg_init(uint32_t ctl_port, uint32_t data_port, |
| target_phys_addr_t ctl_addr, target_phys_addr_t data_addr) |
| { |
| FWCfgState *s; |
| int io_ctl_memory, io_data_memory; |
| extern int nographic; |
| |
| s = qemu_mallocz(sizeof(FWCfgState)); |
| if (!s) |
| return NULL; |
| |
| if (ctl_port) { |
| register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s); |
| } |
| if (data_port) { |
| register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s); |
| register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s); |
| } |
| if (ctl_addr) { |
| io_ctl_memory = cpu_register_io_memory(0, fw_cfg_ctl_mem_read, |
| fw_cfg_ctl_mem_write, s); |
| cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory); |
| } |
| if (data_addr) { |
| io_data_memory = cpu_register_io_memory(0, fw_cfg_data_mem_read, |
| fw_cfg_data_mem_write, s); |
| cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory); |
| } |
| fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4); |
| fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16); |
| fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)nographic); |
| fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); |
| |
| register_savevm("fw_cfg", -1, 1, fw_cfg_save, fw_cfg_load, s); |
| qemu_register_reset(fw_cfg_reset, s); |
| fw_cfg_reset(s); |
| |
| return s; |
| } |