blob: 99ed9cb80e5832e083ce4afcf09fe3ec37e2341a [file] [log] [blame]
/*
* QEMU RISC-V CPU
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017-2018 SiFive, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/qemu-print.h"
#include "qemu/ctype.h"
#include "qemu/log.h"
#include "cpu.h"
#include "cpu_vendorid.h"
#include "pmu.h"
#include "internals.h"
#include "time_helper.h"
#include "exec/exec-all.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/error-report.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "fpu/softfloat-helpers.h"
#include "sysemu/kvm.h"
#include "kvm_riscv.h"
#include "tcg/tcg.h"
/* RISC-V CPU definitions */
#define RISCV_CPU_MARCHID ((QEMU_VERSION_MAJOR << 16) | \
(QEMU_VERSION_MINOR << 8) | \
(QEMU_VERSION_MICRO))
#define RISCV_CPU_MIMPID RISCV_CPU_MARCHID
static const char riscv_single_letter_exts[] = "IEMAFDQCPVH";
struct isa_ext_data {
const char *name;
int min_version;
int ext_enable_offset;
};
#define ISA_EXT_DATA_ENTRY(_name, _min_ver, _prop) \
{#_name, _min_ver, offsetof(struct RISCVCPUConfig, _prop)}
/*
* Here are the ordering rules of extension naming defined by RISC-V
* specification :
* 1. All extensions should be separated from other multi-letter extensions
* by an underscore.
* 2. The first letter following the 'Z' conventionally indicates the most
* closely related alphabetical extension category, IMAFDQLCBKJTPVH.
* If multiple 'Z' extensions are named, they should be ordered first
* by category, then alphabetically within a category.
* 3. Standard supervisor-level extensions (starts with 'S') should be
* listed after standard unprivileged extensions. If multiple
* supervisor-level extensions are listed, they should be ordered
* alphabetically.
* 4. Non-standard extensions (starts with 'X') must be listed after all
* standard extensions. They must be separated from other multi-letter
* extensions by an underscore.
*
* Single letter extensions are checked in riscv_cpu_validate_misa_priv()
* instead.
*/
static const struct isa_ext_data isa_edata_arr[] = {
ISA_EXT_DATA_ENTRY(zicbom, PRIV_VERSION_1_12_0, ext_icbom),
ISA_EXT_DATA_ENTRY(zicboz, PRIV_VERSION_1_12_0, ext_icboz),
ISA_EXT_DATA_ENTRY(zicond, PRIV_VERSION_1_12_0, ext_zicond),
ISA_EXT_DATA_ENTRY(zicsr, PRIV_VERSION_1_10_0, ext_icsr),
ISA_EXT_DATA_ENTRY(zifencei, PRIV_VERSION_1_10_0, ext_ifencei),
ISA_EXT_DATA_ENTRY(zihintpause, PRIV_VERSION_1_10_0, ext_zihintpause),
ISA_EXT_DATA_ENTRY(zawrs, PRIV_VERSION_1_12_0, ext_zawrs),
ISA_EXT_DATA_ENTRY(zfh, PRIV_VERSION_1_11_0, ext_zfh),
ISA_EXT_DATA_ENTRY(zfhmin, PRIV_VERSION_1_11_0, ext_zfhmin),
ISA_EXT_DATA_ENTRY(zfinx, PRIV_VERSION_1_12_0, ext_zfinx),
ISA_EXT_DATA_ENTRY(zdinx, PRIV_VERSION_1_12_0, ext_zdinx),
ISA_EXT_DATA_ENTRY(zca, PRIV_VERSION_1_12_0, ext_zca),
ISA_EXT_DATA_ENTRY(zcb, PRIV_VERSION_1_12_0, ext_zcb),
ISA_EXT_DATA_ENTRY(zcf, PRIV_VERSION_1_12_0, ext_zcf),
ISA_EXT_DATA_ENTRY(zcd, PRIV_VERSION_1_12_0, ext_zcd),
ISA_EXT_DATA_ENTRY(zce, PRIV_VERSION_1_12_0, ext_zce),
ISA_EXT_DATA_ENTRY(zcmp, PRIV_VERSION_1_12_0, ext_zcmp),
ISA_EXT_DATA_ENTRY(zcmt, PRIV_VERSION_1_12_0, ext_zcmt),
ISA_EXT_DATA_ENTRY(zba, PRIV_VERSION_1_12_0, ext_zba),
ISA_EXT_DATA_ENTRY(zbb, PRIV_VERSION_1_12_0, ext_zbb),
ISA_EXT_DATA_ENTRY(zbc, PRIV_VERSION_1_12_0, ext_zbc),
ISA_EXT_DATA_ENTRY(zbkb, PRIV_VERSION_1_12_0, ext_zbkb),
ISA_EXT_DATA_ENTRY(zbkc, PRIV_VERSION_1_12_0, ext_zbkc),
ISA_EXT_DATA_ENTRY(zbkx, PRIV_VERSION_1_12_0, ext_zbkx),
ISA_EXT_DATA_ENTRY(zbs, PRIV_VERSION_1_12_0, ext_zbs),
ISA_EXT_DATA_ENTRY(zk, PRIV_VERSION_1_12_0, ext_zk),
ISA_EXT_DATA_ENTRY(zkn, PRIV_VERSION_1_12_0, ext_zkn),
ISA_EXT_DATA_ENTRY(zknd, PRIV_VERSION_1_12_0, ext_zknd),
ISA_EXT_DATA_ENTRY(zkne, PRIV_VERSION_1_12_0, ext_zkne),
ISA_EXT_DATA_ENTRY(zknh, PRIV_VERSION_1_12_0, ext_zknh),
ISA_EXT_DATA_ENTRY(zkr, PRIV_VERSION_1_12_0, ext_zkr),
ISA_EXT_DATA_ENTRY(zks, PRIV_VERSION_1_12_0, ext_zks),
ISA_EXT_DATA_ENTRY(zksed, PRIV_VERSION_1_12_0, ext_zksed),
ISA_EXT_DATA_ENTRY(zksh, PRIV_VERSION_1_12_0, ext_zksh),
ISA_EXT_DATA_ENTRY(zkt, PRIV_VERSION_1_12_0, ext_zkt),
ISA_EXT_DATA_ENTRY(zve32f, PRIV_VERSION_1_10_0, ext_zve32f),
ISA_EXT_DATA_ENTRY(zve64f, PRIV_VERSION_1_10_0, ext_zve64f),
ISA_EXT_DATA_ENTRY(zve64d, PRIV_VERSION_1_10_0, ext_zve64d),
ISA_EXT_DATA_ENTRY(zvfh, PRIV_VERSION_1_12_0, ext_zvfh),
ISA_EXT_DATA_ENTRY(zvfhmin, PRIV_VERSION_1_12_0, ext_zvfhmin),
ISA_EXT_DATA_ENTRY(zhinx, PRIV_VERSION_1_12_0, ext_zhinx),
ISA_EXT_DATA_ENTRY(zhinxmin, PRIV_VERSION_1_12_0, ext_zhinxmin),
ISA_EXT_DATA_ENTRY(smaia, PRIV_VERSION_1_12_0, ext_smaia),
ISA_EXT_DATA_ENTRY(ssaia, PRIV_VERSION_1_12_0, ext_ssaia),
ISA_EXT_DATA_ENTRY(sscofpmf, PRIV_VERSION_1_12_0, ext_sscofpmf),
ISA_EXT_DATA_ENTRY(sstc, PRIV_VERSION_1_12_0, ext_sstc),
ISA_EXT_DATA_ENTRY(svadu, PRIV_VERSION_1_12_0, ext_svadu),
ISA_EXT_DATA_ENTRY(svinval, PRIV_VERSION_1_12_0, ext_svinval),
ISA_EXT_DATA_ENTRY(svnapot, PRIV_VERSION_1_12_0, ext_svnapot),
ISA_EXT_DATA_ENTRY(svpbmt, PRIV_VERSION_1_12_0, ext_svpbmt),
ISA_EXT_DATA_ENTRY(xtheadba, PRIV_VERSION_1_11_0, ext_xtheadba),
ISA_EXT_DATA_ENTRY(xtheadbb, PRIV_VERSION_1_11_0, ext_xtheadbb),
ISA_EXT_DATA_ENTRY(xtheadbs, PRIV_VERSION_1_11_0, ext_xtheadbs),
ISA_EXT_DATA_ENTRY(xtheadcmo, PRIV_VERSION_1_11_0, ext_xtheadcmo),
ISA_EXT_DATA_ENTRY(xtheadcondmov, PRIV_VERSION_1_11_0, ext_xtheadcondmov),
ISA_EXT_DATA_ENTRY(xtheadfmemidx, PRIV_VERSION_1_11_0, ext_xtheadfmemidx),
ISA_EXT_DATA_ENTRY(xtheadfmv, PRIV_VERSION_1_11_0, ext_xtheadfmv),
ISA_EXT_DATA_ENTRY(xtheadmac, PRIV_VERSION_1_11_0, ext_xtheadmac),
ISA_EXT_DATA_ENTRY(xtheadmemidx, PRIV_VERSION_1_11_0, ext_xtheadmemidx),
ISA_EXT_DATA_ENTRY(xtheadmempair, PRIV_VERSION_1_11_0, ext_xtheadmempair),
ISA_EXT_DATA_ENTRY(xtheadsync, PRIV_VERSION_1_11_0, ext_xtheadsync),
ISA_EXT_DATA_ENTRY(xventanacondops, PRIV_VERSION_1_12_0, ext_XVentanaCondOps),
};
static bool isa_ext_is_enabled(RISCVCPU *cpu,
const struct isa_ext_data *edata)
{
bool *ext_enabled = (void *)&cpu->cfg + edata->ext_enable_offset;
return *ext_enabled;
}
static void isa_ext_update_enabled(RISCVCPU *cpu,
const struct isa_ext_data *edata, bool en)
{
bool *ext_enabled = (void *)&cpu->cfg + edata->ext_enable_offset;
*ext_enabled = en;
}
const char * const riscv_int_regnames[] = {
"x0/zero", "x1/ra", "x2/sp", "x3/gp", "x4/tp", "x5/t0", "x6/t1",
"x7/t2", "x8/s0", "x9/s1", "x10/a0", "x11/a1", "x12/a2", "x13/a3",
"x14/a4", "x15/a5", "x16/a6", "x17/a7", "x18/s2", "x19/s3", "x20/s4",
"x21/s5", "x22/s6", "x23/s7", "x24/s8", "x25/s9", "x26/s10", "x27/s11",
"x28/t3", "x29/t4", "x30/t5", "x31/t6"
};
const char * const riscv_int_regnamesh[] = {
"x0h/zeroh", "x1h/rah", "x2h/sph", "x3h/gph", "x4h/tph", "x5h/t0h",
"x6h/t1h", "x7h/t2h", "x8h/s0h", "x9h/s1h", "x10h/a0h", "x11h/a1h",
"x12h/a2h", "x13h/a3h", "x14h/a4h", "x15h/a5h", "x16h/a6h", "x17h/a7h",
"x18h/s2h", "x19h/s3h", "x20h/s4h", "x21h/s5h", "x22h/s6h", "x23h/s7h",
"x24h/s8h", "x25h/s9h", "x26h/s10h", "x27h/s11h", "x28h/t3h", "x29h/t4h",
"x30h/t5h", "x31h/t6h"
};
const char * const riscv_fpr_regnames[] = {
"f0/ft0", "f1/ft1", "f2/ft2", "f3/ft3", "f4/ft4", "f5/ft5",
"f6/ft6", "f7/ft7", "f8/fs0", "f9/fs1", "f10/fa0", "f11/fa1",
"f12/fa2", "f13/fa3", "f14/fa4", "f15/fa5", "f16/fa6", "f17/fa7",
"f18/fs2", "f19/fs3", "f20/fs4", "f21/fs5", "f22/fs6", "f23/fs7",
"f24/fs8", "f25/fs9", "f26/fs10", "f27/fs11", "f28/ft8", "f29/ft9",
"f30/ft10", "f31/ft11"
};
static const char * const riscv_excp_names[] = {
"misaligned_fetch",
"fault_fetch",
"illegal_instruction",
"breakpoint",
"misaligned_load",
"fault_load",
"misaligned_store",
"fault_store",
"user_ecall",
"supervisor_ecall",
"hypervisor_ecall",
"machine_ecall",
"exec_page_fault",
"load_page_fault",
"reserved",
"store_page_fault",
"reserved",
"reserved",
"reserved",
"reserved",
"guest_exec_page_fault",
"guest_load_page_fault",
"reserved",
"guest_store_page_fault",
};
static const char * const riscv_intr_names[] = {
"u_software",
"s_software",
"vs_software",
"m_software",
"u_timer",
"s_timer",
"vs_timer",
"m_timer",
"u_external",
"s_external",
"vs_external",
"m_external",
"reserved",
"reserved",
"reserved",
"reserved"
};
static void riscv_cpu_add_user_properties(Object *obj);
const char *riscv_cpu_get_trap_name(target_ulong cause, bool async)
{
if (async) {
return (cause < ARRAY_SIZE(riscv_intr_names)) ?
riscv_intr_names[cause] : "(unknown)";
} else {
return (cause < ARRAY_SIZE(riscv_excp_names)) ?
riscv_excp_names[cause] : "(unknown)";
}
}
static void set_misa(CPURISCVState *env, RISCVMXL mxl, uint32_t ext)
{
env->misa_mxl_max = env->misa_mxl = mxl;
env->misa_ext_mask = env->misa_ext = ext;
}
static void set_priv_version(CPURISCVState *env, int priv_ver)
{
env->priv_ver = priv_ver;
}
static void set_vext_version(CPURISCVState *env, int vext_ver)
{
env->vext_ver = vext_ver;
}
#ifndef CONFIG_USER_ONLY
static uint8_t satp_mode_from_str(const char *satp_mode_str)
{
if (!strncmp(satp_mode_str, "mbare", 5)) {
return VM_1_10_MBARE;
}
if (!strncmp(satp_mode_str, "sv32", 4)) {
return VM_1_10_SV32;
}
if (!strncmp(satp_mode_str, "sv39", 4)) {
return VM_1_10_SV39;
}
if (!strncmp(satp_mode_str, "sv48", 4)) {
return VM_1_10_SV48;
}
if (!strncmp(satp_mode_str, "sv57", 4)) {
return VM_1_10_SV57;
}
if (!strncmp(satp_mode_str, "sv64", 4)) {
return VM_1_10_SV64;
}
g_assert_not_reached();
}
uint8_t satp_mode_max_from_map(uint32_t map)
{
/* map here has at least one bit set, so no problem with clz */
return 31 - __builtin_clz(map);
}
const char *satp_mode_str(uint8_t satp_mode, bool is_32_bit)
{
if (is_32_bit) {
switch (satp_mode) {
case VM_1_10_SV32:
return "sv32";
case VM_1_10_MBARE:
return "none";
}
} else {
switch (satp_mode) {
case VM_1_10_SV64:
return "sv64";
case VM_1_10_SV57:
return "sv57";
case VM_1_10_SV48:
return "sv48";
case VM_1_10_SV39:
return "sv39";
case VM_1_10_MBARE:
return "none";
}
}
g_assert_not_reached();
}
static void set_satp_mode_max_supported(RISCVCPU *cpu,
uint8_t satp_mode)
{
bool rv32 = riscv_cpu_mxl(&cpu->env) == MXL_RV32;
const bool *valid_vm = rv32 ? valid_vm_1_10_32 : valid_vm_1_10_64;
for (int i = 0; i <= satp_mode; ++i) {
if (valid_vm[i]) {
cpu->cfg.satp_mode.supported |= (1 << i);
}
}
}
/* Set the satp mode to the max supported */
static void set_satp_mode_default_map(RISCVCPU *cpu)
{
cpu->cfg.satp_mode.map = cpu->cfg.satp_mode.supported;
}
#endif
static void riscv_any_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
#if defined(TARGET_RISCV32)
set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVU);
#elif defined(TARGET_RISCV64)
set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVU);
#endif
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(RISCV_CPU(obj),
riscv_cpu_mxl(&RISCV_CPU(obj)->env) == MXL_RV32 ?
VM_1_10_SV32 : VM_1_10_SV57);
#endif
set_priv_version(env, PRIV_VERSION_1_12_0);
}
#if defined(TARGET_RISCV64)
static void rv64_base_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
/* We set this in the realise function */
set_misa(env, MXL_RV64, 0);
riscv_cpu_add_user_properties(obj);
/* Set latest version of privileged specification */
set_priv_version(env, PRIV_VERSION_1_12_0);
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV57);
#endif
}
static void rv64_sifive_u_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU);
set_priv_version(env, PRIV_VERSION_1_10_0);
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV39);
#endif
}
static void rv64_sifive_e_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
RISCVCPU *cpu = RISCV_CPU(obj);
set_misa(env, MXL_RV64, RVI | RVM | RVA | RVC | RVU);
set_priv_version(env, PRIV_VERSION_1_10_0);
cpu->cfg.mmu = false;
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(cpu, VM_1_10_MBARE);
#endif
}
static void rv64_thead_c906_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
RISCVCPU *cpu = RISCV_CPU(obj);
set_misa(env, MXL_RV64, RVG | RVC | RVS | RVU);
set_priv_version(env, PRIV_VERSION_1_11_0);
cpu->cfg.ext_zfh = true;
cpu->cfg.mmu = true;
cpu->cfg.ext_xtheadba = true;
cpu->cfg.ext_xtheadbb = true;
cpu->cfg.ext_xtheadbs = true;
cpu->cfg.ext_xtheadcmo = true;
cpu->cfg.ext_xtheadcondmov = true;
cpu->cfg.ext_xtheadfmemidx = true;
cpu->cfg.ext_xtheadmac = true;
cpu->cfg.ext_xtheadmemidx = true;
cpu->cfg.ext_xtheadmempair = true;
cpu->cfg.ext_xtheadsync = true;
cpu->cfg.mvendorid = THEAD_VENDOR_ID;
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(cpu, VM_1_10_SV39);
#endif
}
static void rv64_veyron_v1_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
RISCVCPU *cpu = RISCV_CPU(obj);
set_misa(env, MXL_RV64, RVG | RVC | RVS | RVU | RVH);
env->priv_ver = PRIV_VERSION_1_12_0;
/* Enable ISA extensions */
cpu->cfg.mmu = true;
cpu->cfg.ext_icbom = true;
cpu->cfg.cbom_blocksize = 64;
cpu->cfg.cboz_blocksize = 64;
cpu->cfg.ext_icboz = true;
cpu->cfg.ext_smaia = true;
cpu->cfg.ext_ssaia = true;
cpu->cfg.ext_sscofpmf = true;
cpu->cfg.ext_sstc = true;
cpu->cfg.ext_svinval = true;
cpu->cfg.ext_svnapot = true;
cpu->cfg.ext_svpbmt = true;
cpu->cfg.ext_smstateen = true;
cpu->cfg.ext_zba = true;
cpu->cfg.ext_zbb = true;
cpu->cfg.ext_zbc = true;
cpu->cfg.ext_zbs = true;
cpu->cfg.ext_XVentanaCondOps = true;
cpu->cfg.mvendorid = VEYRON_V1_MVENDORID;
cpu->cfg.marchid = VEYRON_V1_MARCHID;
cpu->cfg.mimpid = VEYRON_V1_MIMPID;
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(cpu, VM_1_10_SV48);
#endif
}
static void rv128_base_cpu_init(Object *obj)
{
if (qemu_tcg_mttcg_enabled()) {
/* Missing 128-bit aligned atomics */
error_report("128-bit RISC-V currently does not work with Multi "
"Threaded TCG. Please use: -accel tcg,thread=single");
exit(EXIT_FAILURE);
}
CPURISCVState *env = &RISCV_CPU(obj)->env;
/* We set this in the realise function */
set_misa(env, MXL_RV128, 0);
riscv_cpu_add_user_properties(obj);
/* Set latest version of privileged specification */
set_priv_version(env, PRIV_VERSION_1_12_0);
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV57);
#endif
}
#else
static void rv32_base_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
/* We set this in the realise function */
set_misa(env, MXL_RV32, 0);
riscv_cpu_add_user_properties(obj);
/* Set latest version of privileged specification */
set_priv_version(env, PRIV_VERSION_1_12_0);
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV32);
#endif
}
static void rv32_sifive_u_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU);
set_priv_version(env, PRIV_VERSION_1_10_0);
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV32);
#endif
}
static void rv32_sifive_e_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
RISCVCPU *cpu = RISCV_CPU(obj);
set_misa(env, MXL_RV32, RVI | RVM | RVA | RVC | RVU);
set_priv_version(env, PRIV_VERSION_1_10_0);
cpu->cfg.mmu = false;
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(cpu, VM_1_10_MBARE);
#endif
}
static void rv32_ibex_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
RISCVCPU *cpu = RISCV_CPU(obj);
set_misa(env, MXL_RV32, RVI | RVM | RVC | RVU);
set_priv_version(env, PRIV_VERSION_1_11_0);
cpu->cfg.mmu = false;
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(cpu, VM_1_10_MBARE);
#endif
cpu->cfg.epmp = true;
}
static void rv32_imafcu_nommu_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
RISCVCPU *cpu = RISCV_CPU(obj);
set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVC | RVU);
set_priv_version(env, PRIV_VERSION_1_10_0);
cpu->cfg.mmu = false;
#ifndef CONFIG_USER_ONLY
set_satp_mode_max_supported(cpu, VM_1_10_MBARE);
#endif
}
#endif
#if defined(CONFIG_KVM)
static void riscv_host_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
#if defined(TARGET_RISCV32)
set_misa(env, MXL_RV32, 0);
#elif defined(TARGET_RISCV64)
set_misa(env, MXL_RV64, 0);
#endif
riscv_cpu_add_user_properties(obj);
}
#endif
static ObjectClass *riscv_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
char **cpuname;
cpuname = g_strsplit(cpu_model, ",", 1);
typename = g_strdup_printf(RISCV_CPU_TYPE_NAME("%s"), cpuname[0]);
oc = object_class_by_name(typename);
g_strfreev(cpuname);
g_free(typename);
if (!oc || !object_class_dynamic_cast(oc, TYPE_RISCV_CPU) ||
object_class_is_abstract(oc)) {
return NULL;
}
return oc;
}
static void riscv_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
int i;
#if !defined(CONFIG_USER_ONLY)
if (riscv_has_ext(env, RVH)) {
qemu_fprintf(f, " %s %d\n", "V = ", env->virt_enabled);
}
#endif
qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "pc ", env->pc);
#ifndef CONFIG_USER_ONLY
{
static const int dump_csrs[] = {
CSR_MHARTID,
CSR_MSTATUS,
CSR_MSTATUSH,
/*
* CSR_SSTATUS is intentionally omitted here as its value
* can be figured out by looking at CSR_MSTATUS
*/
CSR_HSTATUS,
CSR_VSSTATUS,
CSR_MIP,
CSR_MIE,
CSR_MIDELEG,
CSR_HIDELEG,
CSR_MEDELEG,
CSR_HEDELEG,
CSR_MTVEC,
CSR_STVEC,
CSR_VSTVEC,
CSR_MEPC,
CSR_SEPC,
CSR_VSEPC,
CSR_MCAUSE,
CSR_SCAUSE,
CSR_VSCAUSE,
CSR_MTVAL,
CSR_STVAL,
CSR_HTVAL,
CSR_MTVAL2,
CSR_MSCRATCH,
CSR_SSCRATCH,
CSR_SATP,
CSR_MMTE,
CSR_UPMBASE,
CSR_UPMMASK,
CSR_SPMBASE,
CSR_SPMMASK,
CSR_MPMBASE,
CSR_MPMMASK,
};
for (int i = 0; i < ARRAY_SIZE(dump_csrs); ++i) {
int csrno = dump_csrs[i];
target_ulong val = 0;
RISCVException res = riscv_csrrw_debug(env, csrno, &val, 0, 0);
/*
* Rely on the smode, hmode, etc, predicates within csr.c
* to do the filtering of the registers that are present.
*/
if (res == RISCV_EXCP_NONE) {
qemu_fprintf(f, " %-8s " TARGET_FMT_lx "\n",
csr_ops[csrno].name, val);
}
}
}
#endif
for (i = 0; i < 32; i++) {
qemu_fprintf(f, " %-8s " TARGET_FMT_lx,
riscv_int_regnames[i], env->gpr[i]);
if ((i & 3) == 3) {
qemu_fprintf(f, "\n");
}
}
if (flags & CPU_DUMP_FPU) {
for (i = 0; i < 32; i++) {
qemu_fprintf(f, " %-8s %016" PRIx64,
riscv_fpr_regnames[i], env->fpr[i]);
if ((i & 3) == 3) {
qemu_fprintf(f, "\n");
}
}
}
}
static void riscv_cpu_set_pc(CPUState *cs, vaddr value)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
if (env->xl == MXL_RV32) {
env->pc = (int32_t)value;
} else {
env->pc = value;
}
}
static vaddr riscv_cpu_get_pc(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
/* Match cpu_get_tb_cpu_state. */
if (env->xl == MXL_RV32) {
return env->pc & UINT32_MAX;
}
return env->pc;
}
static void riscv_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
RISCVMXL xl = FIELD_EX32(tb->flags, TB_FLAGS, XL);
tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL));
if (xl == MXL_RV32) {
env->pc = (int32_t) tb->pc;
} else {
env->pc = tb->pc;
}
}
static bool riscv_cpu_has_work(CPUState *cs)
{
#ifndef CONFIG_USER_ONLY
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
/*
* Definition of the WFI instruction requires it to ignore the privilege
* mode and delegation registers, but respect individual enables
*/
return riscv_cpu_all_pending(env) != 0;
#else
return true;
#endif
}
static void riscv_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
RISCVMXL xl = FIELD_EX32(tb->flags, TB_FLAGS, XL);
if (xl == MXL_RV32) {
env->pc = (int32_t)data[0];
} else {
env->pc = data[0];
}
env->bins = data[1];
}
static void riscv_cpu_reset_hold(Object *obj)
{
#ifndef CONFIG_USER_ONLY
uint8_t iprio;
int i, irq, rdzero;
#endif
CPUState *cs = CPU(obj);
RISCVCPU *cpu = RISCV_CPU(cs);
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu);
CPURISCVState *env = &cpu->env;
if (mcc->parent_phases.hold) {
mcc->parent_phases.hold(obj);
}
#ifndef CONFIG_USER_ONLY
env->misa_mxl = env->misa_mxl_max;
env->priv = PRV_M;
env->mstatus &= ~(MSTATUS_MIE | MSTATUS_MPRV);
if (env->misa_mxl > MXL_RV32) {
/*
* The reset status of SXL/UXL is undefined, but mstatus is WARL
* and we must ensure that the value after init is valid for read.
*/
env->mstatus = set_field(env->mstatus, MSTATUS64_SXL, env->misa_mxl);
env->mstatus = set_field(env->mstatus, MSTATUS64_UXL, env->misa_mxl);
if (riscv_has_ext(env, RVH)) {
env->vsstatus = set_field(env->vsstatus,
MSTATUS64_SXL, env->misa_mxl);
env->vsstatus = set_field(env->vsstatus,
MSTATUS64_UXL, env->misa_mxl);
env->mstatus_hs = set_field(env->mstatus_hs,
MSTATUS64_SXL, env->misa_mxl);
env->mstatus_hs = set_field(env->mstatus_hs,
MSTATUS64_UXL, env->misa_mxl);
}
}
env->mcause = 0;
env->miclaim = MIP_SGEIP;
env->pc = env->resetvec;
env->bins = 0;
env->two_stage_lookup = false;
env->menvcfg = (cpu->cfg.ext_svpbmt ? MENVCFG_PBMTE : 0) |
(cpu->cfg.ext_svadu ? MENVCFG_HADE : 0);
env->henvcfg = (cpu->cfg.ext_svpbmt ? HENVCFG_PBMTE : 0) |
(cpu->cfg.ext_svadu ? HENVCFG_HADE : 0);
/* Initialized default priorities of local interrupts. */
for (i = 0; i < ARRAY_SIZE(env->miprio); i++) {
iprio = riscv_cpu_default_priority(i);
env->miprio[i] = (i == IRQ_M_EXT) ? 0 : iprio;
env->siprio[i] = (i == IRQ_S_EXT) ? 0 : iprio;
env->hviprio[i] = 0;
}
i = 0;
while (!riscv_cpu_hviprio_index2irq(i, &irq, &rdzero)) {
if (!rdzero) {
env->hviprio[irq] = env->miprio[irq];
}
i++;
}
/* mmte is supposed to have pm.current hardwired to 1 */
env->mmte |= (EXT_STATUS_INITIAL | MMTE_M_PM_CURRENT);
#endif
env->xl = riscv_cpu_mxl(env);
riscv_cpu_update_mask(env);
cs->exception_index = RISCV_EXCP_NONE;
env->load_res = -1;
set_default_nan_mode(1, &env->fp_status);
#ifndef CONFIG_USER_ONLY
if (cpu->cfg.debug) {
riscv_trigger_init(env);
}
if (kvm_enabled()) {
kvm_riscv_reset_vcpu(cpu);
}
#endif
}
static void riscv_cpu_disas_set_info(CPUState *s, disassemble_info *info)
{
RISCVCPU *cpu = RISCV_CPU(s);
switch (riscv_cpu_mxl(&cpu->env)) {
case MXL_RV32:
info->print_insn = print_insn_riscv32;
break;
case MXL_RV64:
info->print_insn = print_insn_riscv64;
break;
case MXL_RV128:
info->print_insn = print_insn_riscv128;
break;
default:
g_assert_not_reached();
}
}
/*
* Check consistency between chosen extensions while setting
* cpu->cfg accordingly.
*/
static void riscv_cpu_validate_set_extensions(RISCVCPU *cpu, Error **errp)
{
CPURISCVState *env = &cpu->env;
/* Do some ISA extension error checking */
if (riscv_has_ext(env, RVG) &&
!(riscv_has_ext(env, RVI) && riscv_has_ext(env, RVM) &&
riscv_has_ext(env, RVA) && riscv_has_ext(env, RVF) &&
riscv_has_ext(env, RVD) &&
cpu->cfg.ext_icsr && cpu->cfg.ext_ifencei)) {
warn_report("Setting G will also set IMAFD_Zicsr_Zifencei");
cpu->cfg.ext_icsr = true;
cpu->cfg.ext_ifencei = true;
env->misa_ext |= RVI | RVM | RVA | RVF | RVD;
env->misa_ext_mask = env->misa_ext;
}
if (riscv_has_ext(env, RVI) && riscv_has_ext(env, RVE)) {
error_setg(errp,
"I and E extensions are incompatible");
return;
}
if (!riscv_has_ext(env, RVI) && !riscv_has_ext(env, RVE)) {
error_setg(errp,
"Either I or E extension must be set");
return;
}
if (riscv_has_ext(env, RVS) && !riscv_has_ext(env, RVU)) {
error_setg(errp,
"Setting S extension without U extension is illegal");
return;
}
if (riscv_has_ext(env, RVH) && !riscv_has_ext(env, RVI)) {
error_setg(errp,
"H depends on an I base integer ISA with 32 x registers");
return;
}
if (riscv_has_ext(env, RVH) && !riscv_has_ext(env, RVS)) {
error_setg(errp, "H extension implicitly requires S-mode");
return;
}
if (riscv_has_ext(env, RVF) && !cpu->cfg.ext_icsr) {
error_setg(errp, "F extension requires Zicsr");
return;
}
if ((cpu->cfg.ext_zawrs) && !riscv_has_ext(env, RVA)) {
error_setg(errp, "Zawrs extension requires A extension");
return;
}
if (cpu->cfg.ext_zfh) {
cpu->cfg.ext_zfhmin = true;
}
if (cpu->cfg.ext_zfhmin && !riscv_has_ext(env, RVF)) {
error_setg(errp, "Zfh/Zfhmin extensions require F extension");
return;
}
if (riscv_has_ext(env, RVD) && !riscv_has_ext(env, RVF)) {
error_setg(errp, "D extension requires F extension");
return;
}
/* The V vector extension depends on the Zve64d extension */
if (riscv_has_ext(env, RVV)) {
cpu->cfg.ext_zve64d = true;
}
/* The Zve64d extension depends on the Zve64f extension */
if (cpu->cfg.ext_zve64d) {
cpu->cfg.ext_zve64f = true;
}
/* The Zve64f extension depends on the Zve32f extension */
if (cpu->cfg.ext_zve64f) {
cpu->cfg.ext_zve32f = true;
}
if (cpu->cfg.ext_zve64d && !riscv_has_ext(env, RVD)) {
error_setg(errp, "Zve64d/V extensions require D extension");
return;
}
if (cpu->cfg.ext_zve32f && !riscv_has_ext(env, RVF)) {
error_setg(errp, "Zve32f/Zve64f extensions require F extension");
return;
}
if (cpu->cfg.ext_zvfh) {
cpu->cfg.ext_zvfhmin = true;
}
if (cpu->cfg.ext_zvfhmin && !cpu->cfg.ext_zve32f) {
error_setg(errp, "Zvfh/Zvfhmin extensions require Zve32f extension");
return;
}
if (cpu->cfg.ext_zvfh && !cpu->cfg.ext_zfhmin) {
error_setg(errp, "Zvfh extensions requires Zfhmin extension");
return;
}
/* Set the ISA extensions, checks should have happened above */
if (cpu->cfg.ext_zhinx) {
cpu->cfg.ext_zhinxmin = true;
}
if ((cpu->cfg.ext_zdinx || cpu->cfg.ext_zhinxmin) && !cpu->cfg.ext_zfinx) {
error_setg(errp, "Zdinx/Zhinx/Zhinxmin extensions require Zfinx");
return;
}
if (cpu->cfg.ext_zfinx) {
if (!cpu->cfg.ext_icsr) {
error_setg(errp, "Zfinx extension requires Zicsr");
return;
}
if (riscv_has_ext(env, RVF)) {
error_setg(errp,
"Zfinx cannot be supported together with F extension");
return;
}
}
if (cpu->cfg.ext_zce) {
cpu->cfg.ext_zca = true;
cpu->cfg.ext_zcb = true;
cpu->cfg.ext_zcmp = true;
cpu->cfg.ext_zcmt = true;
if (riscv_has_ext(env, RVF) && env->misa_mxl_max == MXL_RV32) {
cpu->cfg.ext_zcf = true;
}
}
if (riscv_has_ext(env, RVC)) {
cpu->cfg.ext_zca = true;
if (riscv_has_ext(env, RVF) && env->misa_mxl_max == MXL_RV32) {
cpu->cfg.ext_zcf = true;
}
if (riscv_has_ext(env, RVD)) {
cpu->cfg.ext_zcd = true;
}
}
if (env->misa_mxl_max != MXL_RV32 && cpu->cfg.ext_zcf) {
error_setg(errp, "Zcf extension is only relevant to RV32");
return;
}
if (!riscv_has_ext(env, RVF) && cpu->cfg.ext_zcf) {
error_setg(errp, "Zcf extension requires F extension");
return;
}
if (!riscv_has_ext(env, RVD) && cpu->cfg.ext_zcd) {
error_setg(errp, "Zcd extension requires D extension");
return;
}
if ((cpu->cfg.ext_zcf || cpu->cfg.ext_zcd || cpu->cfg.ext_zcb ||
cpu->cfg.ext_zcmp || cpu->cfg.ext_zcmt) && !cpu->cfg.ext_zca) {
error_setg(errp, "Zcf/Zcd/Zcb/Zcmp/Zcmt extensions require Zca "
"extension");
return;
}
if (cpu->cfg.ext_zcd && (cpu->cfg.ext_zcmp || cpu->cfg.ext_zcmt)) {
error_setg(errp, "Zcmp/Zcmt extensions are incompatible with "
"Zcd extension");
return;
}
if (cpu->cfg.ext_zcmt && !cpu->cfg.ext_icsr) {
error_setg(errp, "Zcmt extension requires Zicsr extension");
return;
}
if (cpu->cfg.ext_zk) {
cpu->cfg.ext_zkn = true;
cpu->cfg.ext_zkr = true;
cpu->cfg.ext_zkt = true;
}
if (cpu->cfg.ext_zkn) {
cpu->cfg.ext_zbkb = true;
cpu->cfg.ext_zbkc = true;
cpu->cfg.ext_zbkx = true;
cpu->cfg.ext_zkne = true;
cpu->cfg.ext_zknd = true;
cpu->cfg.ext_zknh = true;
}
if (cpu->cfg.ext_zks) {
cpu->cfg.ext_zbkb = true;
cpu->cfg.ext_zbkc = true;
cpu->cfg.ext_zbkx = true;
cpu->cfg.ext_zksed = true;
cpu->cfg.ext_zksh = true;
}
if (riscv_has_ext(env, RVV)) {
int vext_version = VEXT_VERSION_1_00_0;
if (!is_power_of_2(cpu->cfg.vlen)) {
error_setg(errp,
"Vector extension VLEN must be power of 2");
return;
}
if (cpu->cfg.vlen > RV_VLEN_MAX || cpu->cfg.vlen < 128) {
error_setg(errp,
"Vector extension implementation only supports VLEN "
"in the range [128, %d]", RV_VLEN_MAX);
return;
}
if (!is_power_of_2(cpu->cfg.elen)) {
error_setg(errp,
"Vector extension ELEN must be power of 2");
return;
}
if (cpu->cfg.elen > 64 || cpu->cfg.elen < 8) {
error_setg(errp,
"Vector extension implementation only supports ELEN "
"in the range [8, 64]");
return;
}
if (cpu->cfg.vext_spec) {
if (!g_strcmp0(cpu->cfg.vext_spec, "v1.0")) {
vext_version = VEXT_VERSION_1_00_0;
} else {
error_setg(errp,
"Unsupported vector spec version '%s'",
cpu->cfg.vext_spec);
return;
}
} else {
qemu_log("vector version is not specified, "
"use the default value v1.0\n");
}
set_vext_version(env, vext_version);
}
}
#ifndef CONFIG_USER_ONLY
static void riscv_cpu_satp_mode_finalize(RISCVCPU *cpu, Error **errp)
{
bool rv32 = riscv_cpu_mxl(&cpu->env) == MXL_RV32;
uint8_t satp_mode_map_max;
uint8_t satp_mode_supported_max =
satp_mode_max_from_map(cpu->cfg.satp_mode.supported);
if (cpu->cfg.satp_mode.map == 0) {
if (cpu->cfg.satp_mode.init == 0) {
/* If unset by the user, we fallback to the default satp mode. */
set_satp_mode_default_map(cpu);
} else {
/*
* Find the lowest level that was disabled and then enable the
* first valid level below which can be found in
* valid_vm_1_10_32/64.
*/
for (int i = 1; i < 16; ++i) {
if ((cpu->cfg.satp_mode.init & (1 << i)) &&
(cpu->cfg.satp_mode.supported & (1 << i))) {
for (int j = i - 1; j >= 0; --j) {
if (cpu->cfg.satp_mode.supported & (1 << j)) {
cpu->cfg.satp_mode.map |= (1 << j);
break;
}
}
break;
}
}
}
}
satp_mode_map_max = satp_mode_max_from_map(cpu->cfg.satp_mode.map);
/* Make sure the user asked for a supported configuration (HW and qemu) */
if (satp_mode_map_max > satp_mode_supported_max) {
error_setg(errp, "satp_mode %s is higher than hw max capability %s",
satp_mode_str(satp_mode_map_max, rv32),
satp_mode_str(satp_mode_supported_max, rv32));
return;
}
/*
* Make sure the user did not ask for an invalid configuration as per
* the specification.
*/
if (!rv32) {
for (int i = satp_mode_map_max - 1; i >= 0; --i) {
if (!(cpu->cfg.satp_mode.map & (1 << i)) &&
(cpu->cfg.satp_mode.init & (1 << i)) &&
(cpu->cfg.satp_mode.supported & (1 << i))) {
error_setg(errp, "cannot disable %s satp mode if %s "
"is enabled", satp_mode_str(i, false),
satp_mode_str(satp_mode_map_max, false));
return;
}
}
}
/* Finally expand the map so that all valid modes are set */
for (int i = satp_mode_map_max - 1; i >= 0; --i) {
if (cpu->cfg.satp_mode.supported & (1 << i)) {
cpu->cfg.satp_mode.map |= (1 << i);
}
}
}
#endif
static void riscv_cpu_finalize_features(RISCVCPU *cpu, Error **errp)
{
#ifndef CONFIG_USER_ONLY
Error *local_err = NULL;
riscv_cpu_satp_mode_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
#endif
}
static void riscv_cpu_validate_misa_priv(CPURISCVState *env, Error **errp)
{
if (riscv_has_ext(env, RVH) && env->priv_ver < PRIV_VERSION_1_12_0) {
error_setg(errp, "H extension requires priv spec 1.12.0");
return;
}
}
static void riscv_cpu_realize(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
RISCVCPU *cpu = RISCV_CPU(dev);
CPURISCVState *env = &cpu->env;
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(dev);
CPUClass *cc = CPU_CLASS(mcc);
int i, priv_version = -1;
Error *local_err = NULL;
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
if (cpu->cfg.priv_spec) {
if (!g_strcmp0(cpu->cfg.priv_spec, "v1.12.0")) {
priv_version = PRIV_VERSION_1_12_0;
} else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.11.0")) {
priv_version = PRIV_VERSION_1_11_0;
} else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.10.0")) {
priv_version = PRIV_VERSION_1_10_0;
} else {
error_setg(errp,
"Unsupported privilege spec version '%s'",
cpu->cfg.priv_spec);
return;
}
}
if (priv_version >= PRIV_VERSION_1_10_0) {
set_priv_version(env, priv_version);
}
riscv_cpu_validate_misa_priv(env, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
/* Force disable extensions if priv spec version does not match */
for (i = 0; i < ARRAY_SIZE(isa_edata_arr); i++) {
if (isa_ext_is_enabled(cpu, &isa_edata_arr[i]) &&
(env->priv_ver < isa_edata_arr[i].min_version)) {
isa_ext_update_enabled(cpu, &isa_edata_arr[i], false);
#ifndef CONFIG_USER_ONLY
warn_report("disabling %s extension for hart 0x" TARGET_FMT_lx
" because privilege spec version does not match",
isa_edata_arr[i].name, env->mhartid);
#else
warn_report("disabling %s extension because "
"privilege spec version does not match",
isa_edata_arr[i].name);
#endif
}
}
if (cpu->cfg.epmp && !cpu->cfg.pmp) {
/*
* Enhanced PMP should only be available
* on harts with PMP support
*/
error_setg(errp, "Invalid configuration: EPMP requires PMP support");
return;
}
#ifndef CONFIG_USER_ONLY
if (cpu->cfg.ext_sstc) {
riscv_timer_init(cpu);
}
#endif /* CONFIG_USER_ONLY */
/* Validate that MISA_MXL is set properly. */
switch (env->misa_mxl_max) {
#ifdef TARGET_RISCV64
case MXL_RV64:
case MXL_RV128:
cc->gdb_core_xml_file = "riscv-64bit-cpu.xml";
break;
#endif
case MXL_RV32:
cc->gdb_core_xml_file = "riscv-32bit-cpu.xml";
break;
default:
g_assert_not_reached();
}
assert(env->misa_mxl_max == env->misa_mxl);
riscv_cpu_validate_set_extensions(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
#ifndef CONFIG_USER_ONLY
if (cpu->cfg.pmu_num) {
if (!riscv_pmu_init(cpu, cpu->cfg.pmu_num) && cpu->cfg.ext_sscofpmf) {
cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
riscv_pmu_timer_cb, cpu);
}
}
#endif
riscv_cpu_finalize_features(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
riscv_cpu_register_gdb_regs_for_features(cs);
qemu_init_vcpu(cs);
cpu_reset(cs);
mcc->parent_realize(dev, errp);
}
#ifndef CONFIG_USER_ONLY
static void cpu_riscv_get_satp(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
RISCVSATPMap *satp_map = opaque;
uint8_t satp = satp_mode_from_str(name);
bool value;
value = satp_map->map & (1 << satp);
visit_type_bool(v, name, &value, errp);
}
static void cpu_riscv_set_satp(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
RISCVSATPMap *satp_map = opaque;
uint8_t satp = satp_mode_from_str(name);
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
satp_map->map = deposit32(satp_map->map, satp, 1, value);
satp_map->init |= 1 << satp;
}
static void riscv_add_satp_mode_properties(Object *obj)
{
RISCVCPU *cpu = RISCV_CPU(obj);
if (cpu->env.misa_mxl == MXL_RV32) {
object_property_add(obj, "sv32", "bool", cpu_riscv_get_satp,
cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode);
} else {
object_property_add(obj, "sv39", "bool", cpu_riscv_get_satp,
cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode);
object_property_add(obj, "sv48", "bool", cpu_riscv_get_satp,
cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode);
object_property_add(obj, "sv57", "bool", cpu_riscv_get_satp,
cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode);
object_property_add(obj, "sv64", "bool", cpu_riscv_get_satp,
cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode);
}
}
static void riscv_cpu_set_irq(void *opaque, int irq, int level)
{
RISCVCPU *cpu = RISCV_CPU(opaque);
CPURISCVState *env = &cpu->env;
if (irq < IRQ_LOCAL_MAX) {
switch (irq) {
case IRQ_U_SOFT:
case IRQ_S_SOFT:
case IRQ_VS_SOFT:
case IRQ_M_SOFT:
case IRQ_U_TIMER:
case IRQ_S_TIMER:
case IRQ_VS_TIMER:
case IRQ_M_TIMER:
case IRQ_U_EXT:
case IRQ_VS_EXT:
case IRQ_M_EXT:
if (kvm_enabled()) {
kvm_riscv_set_irq(cpu, irq, level);
} else {
riscv_cpu_update_mip(env, 1 << irq, BOOL_TO_MASK(level));
}
break;
case IRQ_S_EXT:
if (kvm_enabled()) {
kvm_riscv_set_irq(cpu, irq, level);
} else {
env->external_seip = level;
riscv_cpu_update_mip(env, 1 << irq,
BOOL_TO_MASK(level | env->software_seip));
}
break;
default:
g_assert_not_reached();
}
} else if (irq < (IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX)) {
/* Require H-extension for handling guest local interrupts */
if (!riscv_has_ext(env, RVH)) {
g_assert_not_reached();
}
/* Compute bit position in HGEIP CSR */
irq = irq - IRQ_LOCAL_MAX + 1;
if (env->geilen < irq) {
g_assert_not_reached();
}
/* Update HGEIP CSR */
env->hgeip &= ~((target_ulong)1 << irq);
if (level) {
env->hgeip |= (target_ulong)1 << irq;
}
/* Update mip.SGEIP bit */
riscv_cpu_update_mip(env, MIP_SGEIP,
BOOL_TO_MASK(!!(env->hgeie & env->hgeip)));
} else {
g_assert_not_reached();
}
}
#endif /* CONFIG_USER_ONLY */
static void riscv_cpu_init(Object *obj)
{
RISCVCPU *cpu = RISCV_CPU(obj);
cpu->cfg.ext_ifencei = true;
cpu->cfg.ext_icsr = true;
cpu->cfg.mmu = true;
cpu->cfg.pmp = true;
cpu_set_cpustate_pointers(cpu);
#ifndef CONFIG_USER_ONLY
qdev_init_gpio_in(DEVICE(cpu), riscv_cpu_set_irq,
IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX);
#endif /* CONFIG_USER_ONLY */
}
typedef struct RISCVCPUMisaExtConfig {
const char *name;
const char *description;
target_ulong misa_bit;
bool enabled;
} RISCVCPUMisaExtConfig;
static void cpu_set_misa_ext_cfg(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const RISCVCPUMisaExtConfig *misa_ext_cfg = opaque;
target_ulong misa_bit = misa_ext_cfg->misa_bit;
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
if (value) {
env->misa_ext |= misa_bit;
env->misa_ext_mask |= misa_bit;
} else {
env->misa_ext &= ~misa_bit;
env->misa_ext_mask &= ~misa_bit;
}
}
static void cpu_get_misa_ext_cfg(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const RISCVCPUMisaExtConfig *misa_ext_cfg = opaque;
target_ulong misa_bit = misa_ext_cfg->misa_bit;
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
bool value;
value = env->misa_ext & misa_bit;
visit_type_bool(v, name, &value, errp);
}
static const RISCVCPUMisaExtConfig misa_ext_cfgs[] = {
{.name = "a", .description = "Atomic instructions",
.misa_bit = RVA, .enabled = true},
{.name = "c", .description = "Compressed instructions",
.misa_bit = RVC, .enabled = true},
{.name = "d", .description = "Double-precision float point",
.misa_bit = RVD, .enabled = true},
{.name = "f", .description = "Single-precision float point",
.misa_bit = RVF, .enabled = true},
{.name = "i", .description = "Base integer instruction set",
.misa_bit = RVI, .enabled = true},
{.name = "e", .description = "Base integer instruction set (embedded)",
.misa_bit = RVE, .enabled = false},
{.name = "m", .description = "Integer multiplication and division",
.misa_bit = RVM, .enabled = true},
{.name = "s", .description = "Supervisor-level instructions",
.misa_bit = RVS, .enabled = true},
{.name = "u", .description = "User-level instructions",
.misa_bit = RVU, .enabled = true},
{.name = "h", .description = "Hypervisor",
.misa_bit = RVH, .enabled = true},
{.name = "x-j", .description = "Dynamic translated languages",
.misa_bit = RVJ, .enabled = false},
{.name = "v", .description = "Vector operations",
.misa_bit = RVV, .enabled = false},
{.name = "g", .description = "General purpose (IMAFD_Zicsr_Zifencei)",
.misa_bit = RVG, .enabled = false},
};
static void riscv_cpu_add_misa_properties(Object *cpu_obj)
{
int i;
for (i = 0; i < ARRAY_SIZE(misa_ext_cfgs); i++) {
const RISCVCPUMisaExtConfig *misa_cfg = &misa_ext_cfgs[i];
object_property_add(cpu_obj, misa_cfg->name, "bool",
cpu_get_misa_ext_cfg,
cpu_set_misa_ext_cfg,
NULL, (void *)misa_cfg);
object_property_set_description(cpu_obj, misa_cfg->name,
misa_cfg->description);
object_property_set_bool(cpu_obj, misa_cfg->name,
misa_cfg->enabled, NULL);
}
}
static Property riscv_cpu_extensions[] = {
/* Defaults for standard extensions */
DEFINE_PROP_UINT8("pmu-num", RISCVCPU, cfg.pmu_num, 16),
DEFINE_PROP_BOOL("sscofpmf", RISCVCPU, cfg.ext_sscofpmf, false),
DEFINE_PROP_BOOL("Zifencei", RISCVCPU, cfg.ext_ifencei, true),
DEFINE_PROP_BOOL("Zicsr", RISCVCPU, cfg.ext_icsr, true),
DEFINE_PROP_BOOL("Zihintpause", RISCVCPU, cfg.ext_zihintpause, true),
DEFINE_PROP_BOOL("Zawrs", RISCVCPU, cfg.ext_zawrs, true),
DEFINE_PROP_BOOL("Zfh", RISCVCPU, cfg.ext_zfh, false),
DEFINE_PROP_BOOL("Zfhmin", RISCVCPU, cfg.ext_zfhmin, false),
DEFINE_PROP_BOOL("Zve32f", RISCVCPU, cfg.ext_zve32f, false),
DEFINE_PROP_BOOL("Zve64f", RISCVCPU, cfg.ext_zve64f, false),
DEFINE_PROP_BOOL("Zve64d", RISCVCPU, cfg.ext_zve64d, false),
DEFINE_PROP_BOOL("mmu", RISCVCPU, cfg.mmu, true),
DEFINE_PROP_BOOL("pmp", RISCVCPU, cfg.pmp, true),
DEFINE_PROP_BOOL("sstc", RISCVCPU, cfg.ext_sstc, true),
DEFINE_PROP_STRING("priv_spec", RISCVCPU, cfg.priv_spec),
DEFINE_PROP_STRING("vext_spec", RISCVCPU, cfg.vext_spec),
DEFINE_PROP_UINT16("vlen", RISCVCPU, cfg.vlen, 128),
DEFINE_PROP_UINT16("elen", RISCVCPU, cfg.elen, 64),
DEFINE_PROP_BOOL("svadu", RISCVCPU, cfg.ext_svadu, true),
DEFINE_PROP_BOOL("svinval", RISCVCPU, cfg.ext_svinval, false),
DEFINE_PROP_BOOL("svnapot", RISCVCPU, cfg.ext_svnapot, false),
DEFINE_PROP_BOOL("svpbmt", RISCVCPU, cfg.ext_svpbmt, false),
DEFINE_PROP_BOOL("zba", RISCVCPU, cfg.ext_zba, true),
DEFINE_PROP_BOOL("zbb", RISCVCPU, cfg.ext_zbb, true),
DEFINE_PROP_BOOL("zbc", RISCVCPU, cfg.ext_zbc, true),
DEFINE_PROP_BOOL("zbkb", RISCVCPU, cfg.ext_zbkb, false),
DEFINE_PROP_BOOL("zbkc", RISCVCPU, cfg.ext_zbkc, false),
DEFINE_PROP_BOOL("zbkx", RISCVCPU, cfg.ext_zbkx, false),
DEFINE_PROP_BOOL("zbs", RISCVCPU, cfg.ext_zbs, true),
DEFINE_PROP_BOOL("zk", RISCVCPU, cfg.ext_zk, false),
DEFINE_PROP_BOOL("zkn", RISCVCPU, cfg.ext_zkn, false),
DEFINE_PROP_BOOL("zknd", RISCVCPU, cfg.ext_zknd, false),
DEFINE_PROP_BOOL("zkne", RISCVCPU, cfg.ext_zkne, false),
DEFINE_PROP_BOOL("zknh", RISCVCPU, cfg.ext_zknh, false),
DEFINE_PROP_BOOL("zkr", RISCVCPU, cfg.ext_zkr, false),
DEFINE_PROP_BOOL("zks", RISCVCPU, cfg.ext_zks, false),
DEFINE_PROP_BOOL("zksed", RISCVCPU, cfg.ext_zksed, false),
DEFINE_PROP_BOOL("zksh", RISCVCPU, cfg.ext_zksh, false),
DEFINE_PROP_BOOL("zkt", RISCVCPU, cfg.ext_zkt, false),
DEFINE_PROP_BOOL("zdinx", RISCVCPU, cfg.ext_zdinx, false),
DEFINE_PROP_BOOL("zfinx", RISCVCPU, cfg.ext_zfinx, false),
DEFINE_PROP_BOOL("zhinx", RISCVCPU, cfg.ext_zhinx, false),
DEFINE_PROP_BOOL("zhinxmin", RISCVCPU, cfg.ext_zhinxmin, false),
DEFINE_PROP_BOOL("zicbom", RISCVCPU, cfg.ext_icbom, true),
DEFINE_PROP_UINT16("cbom_blocksize", RISCVCPU, cfg.cbom_blocksize, 64),
DEFINE_PROP_BOOL("zicboz", RISCVCPU, cfg.ext_icboz, true),
DEFINE_PROP_UINT16("cboz_blocksize", RISCVCPU, cfg.cboz_blocksize, 64),
DEFINE_PROP_BOOL("zmmul", RISCVCPU, cfg.ext_zmmul, false),
DEFINE_PROP_BOOL("zca", RISCVCPU, cfg.ext_zca, false),
DEFINE_PROP_BOOL("zcb", RISCVCPU, cfg.ext_zcb, false),
DEFINE_PROP_BOOL("zcd", RISCVCPU, cfg.ext_zcd, false),
DEFINE_PROP_BOOL("zce", RISCVCPU, cfg.ext_zce, false),
DEFINE_PROP_BOOL("zcf", RISCVCPU, cfg.ext_zcf, false),
DEFINE_PROP_BOOL("zcmp", RISCVCPU, cfg.ext_zcmp, false),
DEFINE_PROP_BOOL("zcmt", RISCVCPU, cfg.ext_zcmt, false),
/* Vendor-specific custom extensions */
DEFINE_PROP_BOOL("xtheadba", RISCVCPU, cfg.ext_xtheadba, false),
DEFINE_PROP_BOOL("xtheadbb", RISCVCPU, cfg.ext_xtheadbb, false),
DEFINE_PROP_BOOL("xtheadbs", RISCVCPU, cfg.ext_xtheadbs, false),
DEFINE_PROP_BOOL("xtheadcmo", RISCVCPU, cfg.ext_xtheadcmo, false),
DEFINE_PROP_BOOL("xtheadcondmov", RISCVCPU, cfg.ext_xtheadcondmov, false),
DEFINE_PROP_BOOL("xtheadfmemidx", RISCVCPU, cfg.ext_xtheadfmemidx, false),
DEFINE_PROP_BOOL("xtheadfmv", RISCVCPU, cfg.ext_xtheadfmv, false),
DEFINE_PROP_BOOL("xtheadmac", RISCVCPU, cfg.ext_xtheadmac, false),
DEFINE_PROP_BOOL("xtheadmemidx", RISCVCPU, cfg.ext_xtheadmemidx, false),
DEFINE_PROP_BOOL("xtheadmempair", RISCVCPU, cfg.ext_xtheadmempair, false),
DEFINE_PROP_BOOL("xtheadsync", RISCVCPU, cfg.ext_xtheadsync, false),
DEFINE_PROP_BOOL("xventanacondops", RISCVCPU, cfg.ext_XVentanaCondOps, false),
/* These are experimental so mark with 'x-' */
DEFINE_PROP_BOOL("x-zicond", RISCVCPU, cfg.ext_zicond, false),
/* ePMP 0.9.3 */
DEFINE_PROP_BOOL("x-epmp", RISCVCPU, cfg.epmp, false),
DEFINE_PROP_BOOL("x-smaia", RISCVCPU, cfg.ext_smaia, false),
DEFINE_PROP_BOOL("x-ssaia", RISCVCPU, cfg.ext_ssaia, false),
DEFINE_PROP_BOOL("x-zvfh", RISCVCPU, cfg.ext_zvfh, false),
DEFINE_PROP_BOOL("x-zvfhmin", RISCVCPU, cfg.ext_zvfhmin, false),
DEFINE_PROP_END_OF_LIST(),
};
/*
* Add CPU properties with user-facing flags.
*
* This will overwrite existing env->misa_ext values with the
* defaults set via riscv_cpu_add_misa_properties().
*/
static void riscv_cpu_add_user_properties(Object *obj)
{
Property *prop;
DeviceState *dev = DEVICE(obj);
riscv_cpu_add_misa_properties(obj);
for (prop = riscv_cpu_extensions; prop && prop->name; prop++) {
qdev_property_add_static(dev, prop);
}
#ifndef CONFIG_USER_ONLY
riscv_add_satp_mode_properties(obj);
#endif
}
static Property riscv_cpu_properties[] = {
DEFINE_PROP_BOOL("debug", RISCVCPU, cfg.debug, true),
DEFINE_PROP_UINT32("mvendorid", RISCVCPU, cfg.mvendorid, 0),
DEFINE_PROP_UINT64("marchid", RISCVCPU, cfg.marchid, RISCV_CPU_MARCHID),
DEFINE_PROP_UINT64("mimpid", RISCVCPU, cfg.mimpid, RISCV_CPU_MIMPID),
#ifndef CONFIG_USER_ONLY
DEFINE_PROP_UINT64("resetvec", RISCVCPU, env.resetvec, DEFAULT_RSTVEC),
#endif
DEFINE_PROP_BOOL("short-isa-string", RISCVCPU, cfg.short_isa_string, false),
DEFINE_PROP_BOOL("rvv_ta_all_1s", RISCVCPU, cfg.rvv_ta_all_1s, false),
DEFINE_PROP_BOOL("rvv_ma_all_1s", RISCVCPU, cfg.rvv_ma_all_1s, false),
/*
* write_misa() is marked as experimental for now so mark
* it with -x and default to 'false'.
*/
DEFINE_PROP_BOOL("x-misa-w", RISCVCPU, cfg.misa_w, false),
DEFINE_PROP_END_OF_LIST(),
};
static gchar *riscv_gdb_arch_name(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
switch (riscv_cpu_mxl(env)) {
case MXL_RV32:
return g_strdup("riscv:rv32");
case MXL_RV64:
case MXL_RV128:
return g_strdup("riscv:rv64");
default:
g_assert_not_reached();
}
}
static const char *riscv_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname)
{
RISCVCPU *cpu = RISCV_CPU(cs);
if (strcmp(xmlname, "riscv-csr.xml") == 0) {
return cpu->dyn_csr_xml;
} else if (strcmp(xmlname, "riscv-vector.xml") == 0) {
return cpu->dyn_vreg_xml;
}
return NULL;
}
#ifndef CONFIG_USER_ONLY
static int64_t riscv_get_arch_id(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
return cpu->env.mhartid;
}
#include "hw/core/sysemu-cpu-ops.h"
static const struct SysemuCPUOps riscv_sysemu_ops = {
.get_phys_page_debug = riscv_cpu_get_phys_page_debug,
.write_elf64_note = riscv_cpu_write_elf64_note,
.write_elf32_note = riscv_cpu_write_elf32_note,
.legacy_vmsd = &vmstate_riscv_cpu,
};
#endif
#include "hw/core/tcg-cpu-ops.h"
static const struct TCGCPUOps riscv_tcg_ops = {
.initialize = riscv_translate_init,
.synchronize_from_tb = riscv_cpu_synchronize_from_tb,
.restore_state_to_opc = riscv_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = riscv_cpu_tlb_fill,
.cpu_exec_interrupt = riscv_cpu_exec_interrupt,
.do_interrupt = riscv_cpu_do_interrupt,
.do_transaction_failed = riscv_cpu_do_transaction_failed,
.do_unaligned_access = riscv_cpu_do_unaligned_access,
.debug_excp_handler = riscv_cpu_debug_excp_handler,
.debug_check_breakpoint = riscv_cpu_debug_check_breakpoint,
.debug_check_watchpoint = riscv_cpu_debug_check_watchpoint,
#endif /* !CONFIG_USER_ONLY */
};
static void riscv_cpu_class_init(ObjectClass *c, void *data)
{
RISCVCPUClass *mcc = RISCV_CPU_CLASS(c);
CPUClass *cc = CPU_CLASS(c);
DeviceClass *dc = DEVICE_CLASS(c);
ResettableClass *rc = RESETTABLE_CLASS(c);
device_class_set_parent_realize(dc, riscv_cpu_realize,
&mcc->parent_realize);
resettable_class_set_parent_phases(rc, NULL, riscv_cpu_reset_hold, NULL,
&mcc->parent_phases);
cc->class_by_name = riscv_cpu_class_by_name;
cc->has_work = riscv_cpu_has_work;
cc->dump_state = riscv_cpu_dump_state;
cc->set_pc = riscv_cpu_set_pc;
cc->get_pc = riscv_cpu_get_pc;
cc->gdb_read_register = riscv_cpu_gdb_read_register;
cc->gdb_write_register = riscv_cpu_gdb_write_register;
cc->gdb_num_core_regs = 33;
cc->gdb_stop_before_watchpoint = true;
cc->disas_set_info = riscv_cpu_disas_set_info;
#ifndef CONFIG_USER_ONLY
cc->sysemu_ops = &riscv_sysemu_ops;
cc->get_arch_id = riscv_get_arch_id;
#endif
cc->gdb_arch_name = riscv_gdb_arch_name;
cc->gdb_get_dynamic_xml = riscv_gdb_get_dynamic_xml;
cc->tcg_ops = &riscv_tcg_ops;
device_class_set_props(dc, riscv_cpu_properties);
}
static void riscv_isa_string_ext(RISCVCPU *cpu, char **isa_str,
int max_str_len)
{
char *old = *isa_str;
char *new = *isa_str;
int i;
for (i = 0; i < ARRAY_SIZE(isa_edata_arr); i++) {
if (isa_ext_is_enabled(cpu, &isa_edata_arr[i])) {
new = g_strconcat(old, "_", isa_edata_arr[i].name, NULL);
g_free(old);
old = new;
}
}
*isa_str = new;
}
char *riscv_isa_string(RISCVCPU *cpu)
{
int i;
const size_t maxlen = sizeof("rv128") + sizeof(riscv_single_letter_exts);
char *isa_str = g_new(char, maxlen);
char *p = isa_str + snprintf(isa_str, maxlen, "rv%d", TARGET_LONG_BITS);
for (i = 0; i < sizeof(riscv_single_letter_exts) - 1; i++) {
if (cpu->env.misa_ext & RV(riscv_single_letter_exts[i])) {
*p++ = qemu_tolower(riscv_single_letter_exts[i]);
}
}
*p = '\0';
if (!cpu->cfg.short_isa_string) {
riscv_isa_string_ext(cpu, &isa_str, maxlen);
}
return isa_str;
}
static gint riscv_cpu_list_compare(gconstpointer a, gconstpointer b)
{
ObjectClass *class_a = (ObjectClass *)a;
ObjectClass *class_b = (ObjectClass *)b;
const char *name_a, *name_b;
name_a = object_class_get_name(class_a);
name_b = object_class_get_name(class_b);
return strcmp(name_a, name_b);
}
static void riscv_cpu_list_entry(gpointer data, gpointer user_data)
{
const char *typename = object_class_get_name(OBJECT_CLASS(data));
int len = strlen(typename) - strlen(RISCV_CPU_TYPE_SUFFIX);
qemu_printf("%.*s\n", len, typename);
}
void riscv_cpu_list(void)
{
GSList *list;
list = object_class_get_list(TYPE_RISCV_CPU, false);
list = g_slist_sort(list, riscv_cpu_list_compare);
g_slist_foreach(list, riscv_cpu_list_entry, NULL);
g_slist_free(list);
}
#define DEFINE_CPU(type_name, initfn) \
{ \
.name = type_name, \
.parent = TYPE_RISCV_CPU, \
.instance_init = initfn \
}
#define DEFINE_DYNAMIC_CPU(type_name, initfn) \
{ \
.name = type_name, \
.parent = TYPE_RISCV_DYNAMIC_CPU, \
.instance_init = initfn \
}
static const TypeInfo riscv_cpu_type_infos[] = {
{
.name = TYPE_RISCV_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(RISCVCPU),
.instance_align = __alignof__(RISCVCPU),
.instance_init = riscv_cpu_init,
.abstract = true,
.class_size = sizeof(RISCVCPUClass),
.class_init = riscv_cpu_class_init,
},
{
.name = TYPE_RISCV_DYNAMIC_CPU,
.parent = TYPE_RISCV_CPU,
.abstract = true,
},
DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_ANY, riscv_any_cpu_init),
#if defined(CONFIG_KVM)
DEFINE_CPU(TYPE_RISCV_CPU_HOST, riscv_host_cpu_init),
#endif
#if defined(TARGET_RISCV32)
DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE32, rv32_base_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_IBEX, rv32_ibex_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E31, rv32_sifive_e_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E34, rv32_imafcu_nommu_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U34, rv32_sifive_u_cpu_init),
#elif defined(TARGET_RISCV64)
DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE64, rv64_base_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E51, rv64_sifive_e_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U54, rv64_sifive_u_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_SHAKTI_C, rv64_sifive_u_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_THEAD_C906, rv64_thead_c906_cpu_init),
DEFINE_CPU(TYPE_RISCV_CPU_VEYRON_V1, rv64_veyron_v1_cpu_init),
DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE128, rv128_base_cpu_init),
#endif
};
DEFINE_TYPES(riscv_cpu_type_infos)