| /* |
| * Simple C functions to supplement the C library |
| * |
| * Copyright (c) 2006 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/cutils.h" |
| #include "qemu/bswap.h" |
| |
| static bool |
| buffer_zero_int(const void *buf, size_t len) |
| { |
| if (unlikely(len < 8)) { |
| /* For a very small buffer, simply accumulate all the bytes. */ |
| const unsigned char *p = buf; |
| const unsigned char *e = buf + len; |
| unsigned char t = 0; |
| |
| do { |
| t |= *p++; |
| } while (p < e); |
| |
| return t == 0; |
| } else { |
| /* Otherwise, use the unaligned memory access functions to |
| handle the beginning and end of the buffer, with a couple |
| of loops handling the middle aligned section. */ |
| uint64_t t = ldq_he_p(buf); |
| const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8); |
| const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8); |
| |
| for (; p + 8 <= e; p += 8) { |
| __builtin_prefetch(p + 8); |
| if (t) { |
| return false; |
| } |
| t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7]; |
| } |
| while (p < e) { |
| t |= *p++; |
| } |
| t |= ldq_he_p(buf + len - 8); |
| |
| return t == 0; |
| } |
| } |
| |
| #if defined(CONFIG_AVX2_OPT) || defined(__SSE2__) |
| /* Do not use push_options pragmas unnecessarily, because clang |
| * does not support them. |
| */ |
| #ifdef CONFIG_AVX2_OPT |
| #pragma GCC push_options |
| #pragma GCC target("sse2") |
| #endif |
| #include <emmintrin.h> |
| |
| /* Note that each of these vectorized functions require len >= 64. */ |
| |
| static bool |
| buffer_zero_sse2(const void *buf, size_t len) |
| { |
| __m128i t = _mm_loadu_si128(buf); |
| __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16); |
| __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16); |
| __m128i zero = _mm_setzero_si128(); |
| |
| /* Loop over 16-byte aligned blocks of 64. */ |
| while (likely(p <= e)) { |
| __builtin_prefetch(p); |
| t = _mm_cmpeq_epi8(t, zero); |
| if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) { |
| return false; |
| } |
| t = p[-4] | p[-3] | p[-2] | p[-1]; |
| p += 4; |
| } |
| |
| /* Finish the aligned tail. */ |
| t |= e[-3]; |
| t |= e[-2]; |
| t |= e[-1]; |
| |
| /* Finish the unaligned tail. */ |
| t |= _mm_loadu_si128(buf + len - 16); |
| |
| return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF; |
| } |
| #ifdef CONFIG_AVX2_OPT |
| #pragma GCC pop_options |
| #endif |
| |
| #ifdef CONFIG_AVX2_OPT |
| /* Note that due to restrictions/bugs wrt __builtin functions in gcc <= 4.8, |
| * the includes have to be within the corresponding push_options region, and |
| * therefore the regions themselves have to be ordered with increasing ISA. |
| */ |
| #pragma GCC push_options |
| #pragma GCC target("sse4") |
| #include <smmintrin.h> |
| |
| static bool |
| buffer_zero_sse4(const void *buf, size_t len) |
| { |
| __m128i t = _mm_loadu_si128(buf); |
| __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16); |
| __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16); |
| |
| /* Loop over 16-byte aligned blocks of 64. */ |
| while (likely(p <= e)) { |
| __builtin_prefetch(p); |
| if (unlikely(!_mm_testz_si128(t, t))) { |
| return false; |
| } |
| t = p[-4] | p[-3] | p[-2] | p[-1]; |
| p += 4; |
| } |
| |
| /* Finish the aligned tail. */ |
| t |= e[-3]; |
| t |= e[-2]; |
| t |= e[-1]; |
| |
| /* Finish the unaligned tail. */ |
| t |= _mm_loadu_si128(buf + len - 16); |
| |
| return _mm_testz_si128(t, t); |
| } |
| |
| #pragma GCC pop_options |
| #pragma GCC push_options |
| #pragma GCC target("avx2") |
| #include <immintrin.h> |
| |
| static bool |
| buffer_zero_avx2(const void *buf, size_t len) |
| { |
| /* Begin with an unaligned head of 32 bytes. */ |
| __m256i t = _mm256_loadu_si256(buf); |
| __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32); |
| __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32); |
| |
| if (likely(p <= e)) { |
| /* Loop over 32-byte aligned blocks of 128. */ |
| do { |
| __builtin_prefetch(p); |
| if (unlikely(!_mm256_testz_si256(t, t))) { |
| return false; |
| } |
| t = p[-4] | p[-3] | p[-2] | p[-1]; |
| p += 4; |
| } while (p <= e); |
| } else { |
| t |= _mm256_loadu_si256(buf + 32); |
| if (len <= 128) { |
| goto last2; |
| } |
| } |
| |
| /* Finish the last block of 128 unaligned. */ |
| t |= _mm256_loadu_si256(buf + len - 4 * 32); |
| t |= _mm256_loadu_si256(buf + len - 3 * 32); |
| last2: |
| t |= _mm256_loadu_si256(buf + len - 2 * 32); |
| t |= _mm256_loadu_si256(buf + len - 1 * 32); |
| |
| return _mm256_testz_si256(t, t); |
| } |
| #pragma GCC pop_options |
| #endif /* CONFIG_AVX2_OPT */ |
| |
| /* Note that for test_buffer_is_zero_next_accel, the most preferred |
| * ISA must have the least significant bit. |
| */ |
| #define CACHE_AVX2 1 |
| #define CACHE_SSE4 2 |
| #define CACHE_SSE2 4 |
| |
| /* Make sure that these variables are appropriately initialized when |
| * SSE2 is enabled on the compiler command-line, but the compiler is |
| * too old to support CONFIG_AVX2_OPT. |
| */ |
| #ifdef CONFIG_AVX2_OPT |
| # define INIT_CACHE 0 |
| # define INIT_ACCEL buffer_zero_int |
| #else |
| # ifndef __SSE2__ |
| # error "ISA selection confusion" |
| # endif |
| # define INIT_CACHE CACHE_SSE2 |
| # define INIT_ACCEL buffer_zero_sse2 |
| #endif |
| |
| static unsigned cpuid_cache = INIT_CACHE; |
| static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL; |
| |
| static void init_accel(unsigned cache) |
| { |
| bool (*fn)(const void *, size_t) = buffer_zero_int; |
| if (cache & CACHE_SSE2) { |
| fn = buffer_zero_sse2; |
| } |
| #ifdef CONFIG_AVX2_OPT |
| if (cache & CACHE_SSE4) { |
| fn = buffer_zero_sse4; |
| } |
| if (cache & CACHE_AVX2) { |
| fn = buffer_zero_avx2; |
| } |
| #endif |
| buffer_accel = fn; |
| } |
| |
| #ifdef CONFIG_AVX2_OPT |
| #include "qemu/cpuid.h" |
| |
| static void __attribute__((constructor)) init_cpuid_cache(void) |
| { |
| int max = __get_cpuid_max(0, NULL); |
| int a, b, c, d; |
| unsigned cache = 0; |
| |
| if (max >= 1) { |
| __cpuid(1, a, b, c, d); |
| if (d & bit_SSE2) { |
| cache |= CACHE_SSE2; |
| } |
| if (c & bit_SSE4_1) { |
| cache |= CACHE_SSE4; |
| } |
| |
| /* We must check that AVX is not just available, but usable. */ |
| if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) { |
| int bv; |
| __asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0)); |
| __cpuid_count(7, 0, a, b, c, d); |
| if ((bv & 6) == 6 && (b & bit_AVX2)) { |
| cache |= CACHE_AVX2; |
| } |
| } |
| } |
| cpuid_cache = cache; |
| init_accel(cache); |
| } |
| #endif /* CONFIG_AVX2_OPT */ |
| |
| bool test_buffer_is_zero_next_accel(void) |
| { |
| /* If no bits set, we just tested buffer_zero_int, and there |
| are no more acceleration options to test. */ |
| if (cpuid_cache == 0) { |
| return false; |
| } |
| /* Disable the accelerator we used before and select a new one. */ |
| cpuid_cache &= cpuid_cache - 1; |
| init_accel(cpuid_cache); |
| return true; |
| } |
| |
| static bool select_accel_fn(const void *buf, size_t len) |
| { |
| if (likely(len >= 64)) { |
| return buffer_accel(buf, len); |
| } |
| return buffer_zero_int(buf, len); |
| } |
| |
| #else |
| #define select_accel_fn buffer_zero_int |
| bool test_buffer_is_zero_next_accel(void) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * Checks if a buffer is all zeroes |
| */ |
| bool buffer_is_zero(const void *buf, size_t len) |
| { |
| if (unlikely(len == 0)) { |
| return true; |
| } |
| |
| /* Fetch the beginning of the buffer while we select the accelerator. */ |
| __builtin_prefetch(buf); |
| |
| /* Use an optimized zero check if possible. Note that this also |
| includes a check for an unrolled loop over 64-bit integers. */ |
| return select_accel_fn(buf, len); |
| } |