| /* |
| * PowerPC gdb server stub |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * Copyright (c) 2013 SUSE LINUX Products GmbH |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/gdbstub.h" |
| #include "gdbstub/helpers.h" |
| #include "internal.h" |
| |
| static int ppc_gdb_register_len_apple(int n) |
| { |
| switch (n) { |
| case 0 ... 31: |
| /* gprs */ |
| return 8; |
| case 32 ... 63: |
| /* fprs */ |
| return 8; |
| case 64 ... 95: |
| return 16; |
| case 64 + 32: /* nip */ |
| case 65 + 32: /* msr */ |
| case 67 + 32: /* lr */ |
| case 68 + 32: /* ctr */ |
| case 70 + 32: /* fpscr */ |
| return 8; |
| case 66 + 32: /* cr */ |
| case 69 + 32: /* xer */ |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static int ppc_gdb_register_len(int n) |
| { |
| switch (n) { |
| case 0 ... 31: |
| /* gprs */ |
| return sizeof(target_ulong); |
| case 66: |
| /* cr */ |
| case 69: |
| /* xer */ |
| return 4; |
| case 64: |
| /* nip */ |
| case 65: |
| /* msr */ |
| case 67: |
| /* lr */ |
| case 68: |
| /* ctr */ |
| return sizeof(target_ulong); |
| default: |
| return 0; |
| } |
| } |
| |
| /* |
| * We need to present the registers to gdb in the "current" memory |
| * ordering. For user-only mode we get this for free; |
| * TARGET_BIG_ENDIAN is set to the proper ordering for the |
| * binary, and cannot be changed. For system mode, |
| * TARGET_BIG_ENDIAN is always set, and we must check the current |
| * mode of the chip to see if we're running in little-endian. |
| */ |
| void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len) |
| { |
| #ifndef CONFIG_USER_ONLY |
| if (!FIELD_EX64(env->msr, MSR, LE)) { |
| /* do nothing */ |
| } else if (len == 4) { |
| bswap32s((uint32_t *)mem_buf); |
| } else if (len == 8) { |
| bswap64s((uint64_t *)mem_buf); |
| } else if (len == 16) { |
| bswap128s((Int128 *)mem_buf); |
| } else { |
| g_assert_not_reached(); |
| } |
| #endif |
| } |
| |
| /* |
| * Old gdb always expects FP registers. Newer (xml-aware) gdb only |
| * expects whatever the target description contains. Due to a |
| * historical mishap the FP registers appear in between core integer |
| * regs and PC, MSR, CR, and so forth. We hack round this by giving |
| * the FP regs zero size when talking to a newer gdb. |
| */ |
| |
| int ppc_cpu_gdb_read_register(CPUState *cs, GByteArray *buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| uint8_t *mem_buf; |
| int r = ppc_gdb_register_len(n); |
| |
| if (!r) { |
| return r; |
| } |
| |
| if (n < 32) { |
| /* gprs */ |
| gdb_get_regl(buf, env->gpr[n]); |
| } else { |
| switch (n) { |
| case 64: |
| gdb_get_regl(buf, env->nip); |
| break; |
| case 65: |
| gdb_get_regl(buf, env->msr); |
| break; |
| case 66: |
| { |
| uint32_t cr = ppc_get_cr(env); |
| gdb_get_reg32(buf, cr); |
| break; |
| } |
| case 67: |
| gdb_get_regl(buf, env->lr); |
| break; |
| case 68: |
| gdb_get_regl(buf, env->ctr); |
| break; |
| case 69: |
| gdb_get_reg32(buf, cpu_read_xer(env)); |
| break; |
| } |
| } |
| mem_buf = buf->data + buf->len - r; |
| ppc_maybe_bswap_register(env, mem_buf, r); |
| return r; |
| } |
| |
| int ppc_cpu_gdb_read_register_apple(CPUState *cs, GByteArray *buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| uint8_t *mem_buf; |
| int r = ppc_gdb_register_len_apple(n); |
| |
| if (!r) { |
| return r; |
| } |
| |
| if (n < 32) { |
| /* gprs */ |
| gdb_get_reg64(buf, env->gpr[n]); |
| } else if (n < 64) { |
| /* fprs */ |
| gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32)); |
| } else if (n < 96) { |
| /* Altivec */ |
| gdb_get_reg64(buf, n - 64); |
| gdb_get_reg64(buf, 0); |
| } else { |
| switch (n) { |
| case 64 + 32: |
| gdb_get_reg64(buf, env->nip); |
| break; |
| case 65 + 32: |
| gdb_get_reg64(buf, env->msr); |
| break; |
| case 66 + 32: |
| { |
| uint32_t cr = ppc_get_cr(env); |
| gdb_get_reg32(buf, cr); |
| break; |
| } |
| case 67 + 32: |
| gdb_get_reg64(buf, env->lr); |
| break; |
| case 68 + 32: |
| gdb_get_reg64(buf, env->ctr); |
| break; |
| case 69 + 32: |
| gdb_get_reg32(buf, cpu_read_xer(env)); |
| break; |
| case 70 + 32: |
| gdb_get_reg64(buf, env->fpscr); |
| break; |
| } |
| } |
| mem_buf = buf->data + buf->len - r; |
| ppc_maybe_bswap_register(env, mem_buf, r); |
| return r; |
| } |
| |
| int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| int r = ppc_gdb_register_len(n); |
| |
| if (!r) { |
| return r; |
| } |
| ppc_maybe_bswap_register(env, mem_buf, r); |
| if (n < 32) { |
| /* gprs */ |
| env->gpr[n] = ldtul_p(mem_buf); |
| } else if (n < 64) { |
| /* fprs */ |
| *cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf); |
| } else { |
| switch (n) { |
| case 64: |
| env->nip = ldtul_p(mem_buf); |
| break; |
| case 65: |
| ppc_store_msr(env, ldtul_p(mem_buf)); |
| break; |
| case 66: |
| { |
| uint32_t cr = ldl_p(mem_buf); |
| ppc_set_cr(env, cr); |
| break; |
| } |
| case 67: |
| env->lr = ldtul_p(mem_buf); |
| break; |
| case 68: |
| env->ctr = ldtul_p(mem_buf); |
| break; |
| case 69: |
| cpu_write_xer(env, ldl_p(mem_buf)); |
| break; |
| case 70: |
| /* fpscr */ |
| ppc_store_fpscr(env, ldtul_p(mem_buf)); |
| break; |
| } |
| } |
| return r; |
| } |
| int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| int r = ppc_gdb_register_len_apple(n); |
| |
| if (!r) { |
| return r; |
| } |
| ppc_maybe_bswap_register(env, mem_buf, r); |
| if (n < 32) { |
| /* gprs */ |
| env->gpr[n] = ldq_p(mem_buf); |
| } else if (n < 64) { |
| /* fprs */ |
| *cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf); |
| } else { |
| switch (n) { |
| case 64 + 32: |
| env->nip = ldq_p(mem_buf); |
| break; |
| case 65 + 32: |
| ppc_store_msr(env, ldq_p(mem_buf)); |
| break; |
| case 66 + 32: |
| { |
| uint32_t cr = ldl_p(mem_buf); |
| ppc_set_cr(env, cr); |
| break; |
| } |
| case 67 + 32: |
| env->lr = ldq_p(mem_buf); |
| break; |
| case 68 + 32: |
| env->ctr = ldq_p(mem_buf); |
| break; |
| case 69 + 32: |
| cpu_write_xer(env, ldl_p(mem_buf)); |
| break; |
| case 70 + 32: |
| /* fpscr */ |
| ppc_store_fpscr(env, ldq_p(mem_buf)); |
| break; |
| } |
| } |
| return r; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void gdb_gen_spr_feature(CPUState *cs) |
| { |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| GDBFeatureBuilder builder; |
| unsigned int num_regs = 0; |
| int i; |
| |
| if (pcc->gdb_spr.xml) { |
| return; |
| } |
| |
| gdb_feature_builder_init(&builder, &pcc->gdb_spr, |
| "org.qemu.power.spr", "power-spr.xml", |
| cs->gdb_num_regs); |
| |
| for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) { |
| ppc_spr_t *spr = &env->spr_cb[i]; |
| |
| if (!spr->name) { |
| continue; |
| } |
| |
| /* |
| * GDB identifies registers based on the order they are |
| * presented in the XML. These ids will not match QEMU's |
| * representation (which follows the PowerISA). |
| * |
| * Store the position of the current register description so |
| * we can make the correspondence later. |
| */ |
| spr->gdb_id = num_regs; |
| num_regs++; |
| |
| gdb_feature_builder_append_reg(&builder, g_ascii_strdown(spr->name, -1), |
| TARGET_LONG_BITS, num_regs, |
| "int", "spr"); |
| } |
| |
| gdb_feature_builder_end(&builder); |
| } |
| |
| const char *ppc_gdb_get_dynamic_xml(CPUState *cs, const char *xml_name) |
| { |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
| |
| if (strcmp(xml_name, "power-spr.xml") == 0) { |
| return pcc->gdb_spr.xml; |
| } |
| return NULL; |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static int gdb_find_spr_idx(CPUPPCState *env, int n) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) { |
| ppc_spr_t *spr = &env->spr_cb[i]; |
| |
| if (spr->name && spr->gdb_id == n) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| static int gdb_get_spr_reg(CPUState *cs, GByteArray *buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| int reg; |
| int len; |
| |
| reg = gdb_find_spr_idx(env, n); |
| if (reg < 0) { |
| return 0; |
| } |
| |
| len = TARGET_LONG_SIZE; |
| |
| /* Handle those SPRs that are not part of the env->spr[] array */ |
| target_ulong val; |
| switch (reg) { |
| #if defined(TARGET_PPC64) |
| case SPR_CFAR: |
| val = env->cfar; |
| break; |
| #endif |
| case SPR_HDEC: |
| val = cpu_ppc_load_hdecr(env); |
| break; |
| case SPR_TBL: |
| val = cpu_ppc_load_tbl(env); |
| break; |
| case SPR_TBU: |
| val = cpu_ppc_load_tbu(env); |
| break; |
| case SPR_DECR: |
| val = cpu_ppc_load_decr(env); |
| break; |
| default: |
| val = env->spr[reg]; |
| } |
| gdb_get_regl(buf, val); |
| |
| ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, len), len); |
| return len; |
| } |
| |
| static int gdb_set_spr_reg(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| int reg; |
| int len; |
| |
| reg = gdb_find_spr_idx(env, n); |
| if (reg < 0) { |
| return 0; |
| } |
| |
| len = TARGET_LONG_SIZE; |
| ppc_maybe_bswap_register(env, mem_buf, len); |
| |
| /* Handle those SPRs that are not part of the env->spr[] array */ |
| target_ulong val = ldn_p(mem_buf, len); |
| switch (reg) { |
| #if defined(TARGET_PPC64) |
| case SPR_CFAR: |
| env->cfar = val; |
| break; |
| #endif |
| default: |
| env->spr[reg] = val; |
| } |
| |
| return len; |
| } |
| #endif |
| |
| static int gdb_get_float_reg(CPUState *cs, GByteArray *buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| uint8_t *mem_buf; |
| if (n < 32) { |
| gdb_get_reg64(buf, *cpu_fpr_ptr(env, n)); |
| mem_buf = gdb_get_reg_ptr(buf, 8); |
| ppc_maybe_bswap_register(env, mem_buf, 8); |
| return 8; |
| } |
| if (n == 32) { |
| gdb_get_reg32(buf, env->fpscr); |
| mem_buf = gdb_get_reg_ptr(buf, 4); |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int gdb_set_float_reg(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| if (n < 32) { |
| ppc_maybe_bswap_register(env, mem_buf, 8); |
| *cpu_fpr_ptr(env, n) = ldq_p(mem_buf); |
| return 8; |
| } |
| if (n == 32) { |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| ppc_store_fpscr(env, ldl_p(mem_buf)); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int gdb_get_avr_reg(CPUState *cs, GByteArray *buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| uint8_t *mem_buf; |
| |
| if (n < 32) { |
| ppc_avr_t *avr = cpu_avr_ptr(env, n); |
| gdb_get_reg128(buf, avr->VsrD(0), avr->VsrD(1)); |
| mem_buf = gdb_get_reg_ptr(buf, 16); |
| ppc_maybe_bswap_register(env, mem_buf, 16); |
| return 16; |
| } |
| if (n == 32) { |
| gdb_get_reg32(buf, ppc_get_vscr(env)); |
| mem_buf = gdb_get_reg_ptr(buf, 4); |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| return 4; |
| } |
| if (n == 33) { |
| gdb_get_reg32(buf, (uint32_t)env->spr[SPR_VRSAVE]); |
| mem_buf = gdb_get_reg_ptr(buf, 4); |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int gdb_set_avr_reg(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| if (n < 32) { |
| ppc_avr_t *avr = cpu_avr_ptr(env, n); |
| ppc_maybe_bswap_register(env, mem_buf, 16); |
| avr->VsrD(0) = ldq_p(mem_buf); |
| avr->VsrD(1) = ldq_p(mem_buf + 8); |
| return 16; |
| } |
| if (n == 32) { |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| ppc_store_vscr(env, ldl_p(mem_buf)); |
| return 4; |
| } |
| if (n == 33) { |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| env->spr[SPR_VRSAVE] = (target_ulong)ldl_p(mem_buf); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int gdb_get_spe_reg(CPUState *cs, GByteArray *buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| if (n < 32) { |
| #if defined(TARGET_PPC64) |
| gdb_get_reg32(buf, env->gpr[n] >> 32); |
| ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4); |
| #else |
| gdb_get_reg32(buf, env->gprh[n]); |
| #endif |
| return 4; |
| } |
| if (n == 32) { |
| gdb_get_reg64(buf, env->spe_acc); |
| ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8); |
| return 8; |
| } |
| if (n == 33) { |
| gdb_get_reg32(buf, env->spe_fscr); |
| ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int gdb_set_spe_reg(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| if (n < 32) { |
| #if defined(TARGET_PPC64) |
| target_ulong lo = (uint32_t)env->gpr[n]; |
| target_ulong hi; |
| |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| |
| hi = (target_ulong)ldl_p(mem_buf) << 32; |
| env->gpr[n] = lo | hi; |
| #else |
| env->gprh[n] = ldl_p(mem_buf); |
| #endif |
| return 4; |
| } |
| if (n == 32) { |
| ppc_maybe_bswap_register(env, mem_buf, 8); |
| env->spe_acc = ldq_p(mem_buf); |
| return 8; |
| } |
| if (n == 33) { |
| ppc_maybe_bswap_register(env, mem_buf, 4); |
| env->spe_fscr = ldl_p(mem_buf); |
| return 4; |
| } |
| return 0; |
| } |
| |
| static int gdb_get_vsx_reg(CPUState *cs, GByteArray *buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| if (n < 32) { |
| gdb_get_reg64(buf, *cpu_vsrl_ptr(env, n)); |
| ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8); |
| return 8; |
| } |
| return 0; |
| } |
| |
| static int gdb_set_vsx_reg(CPUState *cs, uint8_t *mem_buf, int n) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| if (n < 32) { |
| ppc_maybe_bswap_register(env, mem_buf, 8); |
| *cpu_vsrl_ptr(env, n) = ldq_p(mem_buf); |
| return 8; |
| } |
| return 0; |
| } |
| |
| const gchar *ppc_gdb_arch_name(CPUState *cs) |
| { |
| #if defined(TARGET_PPC64) |
| return "powerpc:common64"; |
| #else |
| return "powerpc:common"; |
| #endif |
| } |
| |
| void ppc_gdb_init(CPUState *cs, PowerPCCPUClass *pcc) |
| { |
| if (pcc->insns_flags & PPC_FLOAT) { |
| gdb_register_coprocessor(cs, gdb_get_float_reg, gdb_set_float_reg, |
| gdb_find_static_feature("power-fpu.xml"), 0); |
| } |
| if (pcc->insns_flags & PPC_ALTIVEC) { |
| gdb_register_coprocessor(cs, gdb_get_avr_reg, gdb_set_avr_reg, |
| gdb_find_static_feature("power-altivec.xml"), |
| 0); |
| } |
| if (pcc->insns_flags & PPC_SPE) { |
| gdb_register_coprocessor(cs, gdb_get_spe_reg, gdb_set_spe_reg, |
| gdb_find_static_feature("power-spe.xml"), 0); |
| } |
| if (pcc->insns_flags2 & PPC2_VSX) { |
| gdb_register_coprocessor(cs, gdb_get_vsx_reg, gdb_set_vsx_reg, |
| gdb_find_static_feature("power-vsx.xml"), 0); |
| } |
| #ifndef CONFIG_USER_ONLY |
| gdb_gen_spr_feature(cs); |
| gdb_register_coprocessor(cs, gdb_get_spr_reg, gdb_set_spr_reg, |
| &pcc->gdb_spr, 0); |
| #endif |
| } |