| /* |
| * Emulation of Linux signals |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/bitops.h" |
| #include <sys/ucontext.h> |
| #include <sys/resource.h> |
| |
| #include "qemu.h" |
| #include "qemu-common.h" |
| #include "target_signal.h" |
| #include "trace.h" |
| |
| static struct target_sigaltstack target_sigaltstack_used = { |
| .ss_sp = 0, |
| .ss_size = 0, |
| .ss_flags = TARGET_SS_DISABLE, |
| }; |
| |
| static struct target_sigaction sigact_table[TARGET_NSIG]; |
| |
| static void host_signal_handler(int host_signum, siginfo_t *info, |
| void *puc); |
| |
| static uint8_t host_to_target_signal_table[_NSIG] = { |
| [SIGHUP] = TARGET_SIGHUP, |
| [SIGINT] = TARGET_SIGINT, |
| [SIGQUIT] = TARGET_SIGQUIT, |
| [SIGILL] = TARGET_SIGILL, |
| [SIGTRAP] = TARGET_SIGTRAP, |
| [SIGABRT] = TARGET_SIGABRT, |
| /* [SIGIOT] = TARGET_SIGIOT,*/ |
| [SIGBUS] = TARGET_SIGBUS, |
| [SIGFPE] = TARGET_SIGFPE, |
| [SIGKILL] = TARGET_SIGKILL, |
| [SIGUSR1] = TARGET_SIGUSR1, |
| [SIGSEGV] = TARGET_SIGSEGV, |
| [SIGUSR2] = TARGET_SIGUSR2, |
| [SIGPIPE] = TARGET_SIGPIPE, |
| [SIGALRM] = TARGET_SIGALRM, |
| [SIGTERM] = TARGET_SIGTERM, |
| #ifdef SIGSTKFLT |
| [SIGSTKFLT] = TARGET_SIGSTKFLT, |
| #endif |
| [SIGCHLD] = TARGET_SIGCHLD, |
| [SIGCONT] = TARGET_SIGCONT, |
| [SIGSTOP] = TARGET_SIGSTOP, |
| [SIGTSTP] = TARGET_SIGTSTP, |
| [SIGTTIN] = TARGET_SIGTTIN, |
| [SIGTTOU] = TARGET_SIGTTOU, |
| [SIGURG] = TARGET_SIGURG, |
| [SIGXCPU] = TARGET_SIGXCPU, |
| [SIGXFSZ] = TARGET_SIGXFSZ, |
| [SIGVTALRM] = TARGET_SIGVTALRM, |
| [SIGPROF] = TARGET_SIGPROF, |
| [SIGWINCH] = TARGET_SIGWINCH, |
| [SIGIO] = TARGET_SIGIO, |
| [SIGPWR] = TARGET_SIGPWR, |
| [SIGSYS] = TARGET_SIGSYS, |
| /* next signals stay the same */ |
| /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with |
| host libpthread signals. This assumes no one actually uses SIGRTMAX :-/ |
| To fix this properly we need to do manual signal delivery multiplexed |
| over a single host signal. */ |
| [__SIGRTMIN] = __SIGRTMAX, |
| [__SIGRTMAX] = __SIGRTMIN, |
| }; |
| static uint8_t target_to_host_signal_table[_NSIG]; |
| |
| static inline int on_sig_stack(unsigned long sp) |
| { |
| return (sp - target_sigaltstack_used.ss_sp |
| < target_sigaltstack_used.ss_size); |
| } |
| |
| static inline int sas_ss_flags(unsigned long sp) |
| { |
| return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE |
| : on_sig_stack(sp) ? SS_ONSTACK : 0); |
| } |
| |
| int host_to_target_signal(int sig) |
| { |
| if (sig < 0 || sig >= _NSIG) |
| return sig; |
| return host_to_target_signal_table[sig]; |
| } |
| |
| int target_to_host_signal(int sig) |
| { |
| if (sig < 0 || sig >= _NSIG) |
| return sig; |
| return target_to_host_signal_table[sig]; |
| } |
| |
| static inline void target_sigemptyset(target_sigset_t *set) |
| { |
| memset(set, 0, sizeof(*set)); |
| } |
| |
| static inline void target_sigaddset(target_sigset_t *set, int signum) |
| { |
| signum--; |
| abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); |
| set->sig[signum / TARGET_NSIG_BPW] |= mask; |
| } |
| |
| static inline int target_sigismember(const target_sigset_t *set, int signum) |
| { |
| signum--; |
| abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); |
| return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); |
| } |
| |
| static void host_to_target_sigset_internal(target_sigset_t *d, |
| const sigset_t *s) |
| { |
| int i; |
| target_sigemptyset(d); |
| for (i = 1; i <= TARGET_NSIG; i++) { |
| if (sigismember(s, i)) { |
| target_sigaddset(d, host_to_target_signal(i)); |
| } |
| } |
| } |
| |
| void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) |
| { |
| target_sigset_t d1; |
| int i; |
| |
| host_to_target_sigset_internal(&d1, s); |
| for(i = 0;i < TARGET_NSIG_WORDS; i++) |
| d->sig[i] = tswapal(d1.sig[i]); |
| } |
| |
| static void target_to_host_sigset_internal(sigset_t *d, |
| const target_sigset_t *s) |
| { |
| int i; |
| sigemptyset(d); |
| for (i = 1; i <= TARGET_NSIG; i++) { |
| if (target_sigismember(s, i)) { |
| sigaddset(d, target_to_host_signal(i)); |
| } |
| } |
| } |
| |
| void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) |
| { |
| target_sigset_t s1; |
| int i; |
| |
| for(i = 0;i < TARGET_NSIG_WORDS; i++) |
| s1.sig[i] = tswapal(s->sig[i]); |
| target_to_host_sigset_internal(d, &s1); |
| } |
| |
| void host_to_target_old_sigset(abi_ulong *old_sigset, |
| const sigset_t *sigset) |
| { |
| target_sigset_t d; |
| host_to_target_sigset(&d, sigset); |
| *old_sigset = d.sig[0]; |
| } |
| |
| void target_to_host_old_sigset(sigset_t *sigset, |
| const abi_ulong *old_sigset) |
| { |
| target_sigset_t d; |
| int i; |
| |
| d.sig[0] = *old_sigset; |
| for(i = 1;i < TARGET_NSIG_WORDS; i++) |
| d.sig[i] = 0; |
| target_to_host_sigset(sigset, &d); |
| } |
| |
| int block_signals(void) |
| { |
| TaskState *ts = (TaskState *)thread_cpu->opaque; |
| sigset_t set; |
| |
| /* It's OK to block everything including SIGSEGV, because we won't |
| * run any further guest code before unblocking signals in |
| * process_pending_signals(). |
| */ |
| sigfillset(&set); |
| sigprocmask(SIG_SETMASK, &set, 0); |
| |
| return atomic_xchg(&ts->signal_pending, 1); |
| } |
| |
| /* Wrapper for sigprocmask function |
| * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset |
| * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if |
| * a signal was already pending and the syscall must be restarted, or |
| * 0 on success. |
| * If set is NULL, this is guaranteed not to fail. |
| */ |
| int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) |
| { |
| TaskState *ts = (TaskState *)thread_cpu->opaque; |
| |
| if (oldset) { |
| *oldset = ts->signal_mask; |
| } |
| |
| if (set) { |
| int i; |
| |
| if (block_signals()) { |
| return -TARGET_ERESTARTSYS; |
| } |
| |
| switch (how) { |
| case SIG_BLOCK: |
| sigorset(&ts->signal_mask, &ts->signal_mask, set); |
| break; |
| case SIG_UNBLOCK: |
| for (i = 1; i <= NSIG; ++i) { |
| if (sigismember(set, i)) { |
| sigdelset(&ts->signal_mask, i); |
| } |
| } |
| break; |
| case SIG_SETMASK: |
| ts->signal_mask = *set; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* Silently ignore attempts to change blocking status of KILL or STOP */ |
| sigdelset(&ts->signal_mask, SIGKILL); |
| sigdelset(&ts->signal_mask, SIGSTOP); |
| } |
| return 0; |
| } |
| |
| #if !defined(TARGET_OPENRISC) && !defined(TARGET_UNICORE32) && \ |
| !defined(TARGET_NIOS2) |
| /* Just set the guest's signal mask to the specified value; the |
| * caller is assumed to have called block_signals() already. |
| */ |
| static void set_sigmask(const sigset_t *set) |
| { |
| TaskState *ts = (TaskState *)thread_cpu->opaque; |
| |
| ts->signal_mask = *set; |
| } |
| #endif |
| |
| /* siginfo conversion */ |
| |
| static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, |
| const siginfo_t *info) |
| { |
| int sig = host_to_target_signal(info->si_signo); |
| int si_code = info->si_code; |
| int si_type; |
| tinfo->si_signo = sig; |
| tinfo->si_errno = 0; |
| tinfo->si_code = info->si_code; |
| |
| /* This memset serves two purposes: |
| * (1) ensure we don't leak random junk to the guest later |
| * (2) placate false positives from gcc about fields |
| * being used uninitialized if it chooses to inline both this |
| * function and tswap_siginfo() into host_to_target_siginfo(). |
| */ |
| memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); |
| |
| /* This is awkward, because we have to use a combination of |
| * the si_code and si_signo to figure out which of the union's |
| * members are valid. (Within the host kernel it is always possible |
| * to tell, but the kernel carefully avoids giving userspace the |
| * high 16 bits of si_code, so we don't have the information to |
| * do this the easy way...) We therefore make our best guess, |
| * bearing in mind that a guest can spoof most of the si_codes |
| * via rt_sigqueueinfo() if it likes. |
| * |
| * Once we have made our guess, we record it in the top 16 bits of |
| * the si_code, so that tswap_siginfo() later can use it. |
| * tswap_siginfo() will strip these top bits out before writing |
| * si_code to the guest (sign-extending the lower bits). |
| */ |
| |
| switch (si_code) { |
| case SI_USER: |
| case SI_TKILL: |
| case SI_KERNEL: |
| /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. |
| * These are the only unspoofable si_code values. |
| */ |
| tinfo->_sifields._kill._pid = info->si_pid; |
| tinfo->_sifields._kill._uid = info->si_uid; |
| si_type = QEMU_SI_KILL; |
| break; |
| default: |
| /* Everything else is spoofable. Make best guess based on signal */ |
| switch (sig) { |
| case TARGET_SIGCHLD: |
| tinfo->_sifields._sigchld._pid = info->si_pid; |
| tinfo->_sifields._sigchld._uid = info->si_uid; |
| tinfo->_sifields._sigchld._status |
| = host_to_target_waitstatus(info->si_status); |
| tinfo->_sifields._sigchld._utime = info->si_utime; |
| tinfo->_sifields._sigchld._stime = info->si_stime; |
| si_type = QEMU_SI_CHLD; |
| break; |
| case TARGET_SIGIO: |
| tinfo->_sifields._sigpoll._band = info->si_band; |
| tinfo->_sifields._sigpoll._fd = info->si_fd; |
| si_type = QEMU_SI_POLL; |
| break; |
| default: |
| /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ |
| tinfo->_sifields._rt._pid = info->si_pid; |
| tinfo->_sifields._rt._uid = info->si_uid; |
| /* XXX: potential problem if 64 bit */ |
| tinfo->_sifields._rt._sigval.sival_ptr |
| = (abi_ulong)(unsigned long)info->si_value.sival_ptr; |
| si_type = QEMU_SI_RT; |
| break; |
| } |
| break; |
| } |
| |
| tinfo->si_code = deposit32(si_code, 16, 16, si_type); |
| } |
| |
| static void tswap_siginfo(target_siginfo_t *tinfo, |
| const target_siginfo_t *info) |
| { |
| int si_type = extract32(info->si_code, 16, 16); |
| int si_code = sextract32(info->si_code, 0, 16); |
| |
| __put_user(info->si_signo, &tinfo->si_signo); |
| __put_user(info->si_errno, &tinfo->si_errno); |
| __put_user(si_code, &tinfo->si_code); |
| |
| /* We can use our internal marker of which fields in the structure |
| * are valid, rather than duplicating the guesswork of |
| * host_to_target_siginfo_noswap() here. |
| */ |
| switch (si_type) { |
| case QEMU_SI_KILL: |
| __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); |
| __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); |
| break; |
| case QEMU_SI_TIMER: |
| __put_user(info->_sifields._timer._timer1, |
| &tinfo->_sifields._timer._timer1); |
| __put_user(info->_sifields._timer._timer2, |
| &tinfo->_sifields._timer._timer2); |
| break; |
| case QEMU_SI_POLL: |
| __put_user(info->_sifields._sigpoll._band, |
| &tinfo->_sifields._sigpoll._band); |
| __put_user(info->_sifields._sigpoll._fd, |
| &tinfo->_sifields._sigpoll._fd); |
| break; |
| case QEMU_SI_FAULT: |
| __put_user(info->_sifields._sigfault._addr, |
| &tinfo->_sifields._sigfault._addr); |
| break; |
| case QEMU_SI_CHLD: |
| __put_user(info->_sifields._sigchld._pid, |
| &tinfo->_sifields._sigchld._pid); |
| __put_user(info->_sifields._sigchld._uid, |
| &tinfo->_sifields._sigchld._uid); |
| __put_user(info->_sifields._sigchld._status, |
| &tinfo->_sifields._sigchld._status); |
| __put_user(info->_sifields._sigchld._utime, |
| &tinfo->_sifields._sigchld._utime); |
| __put_user(info->_sifields._sigchld._stime, |
| &tinfo->_sifields._sigchld._stime); |
| break; |
| case QEMU_SI_RT: |
| __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); |
| __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); |
| __put_user(info->_sifields._rt._sigval.sival_ptr, |
| &tinfo->_sifields._rt._sigval.sival_ptr); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) |
| { |
| target_siginfo_t tgt_tmp; |
| host_to_target_siginfo_noswap(&tgt_tmp, info); |
| tswap_siginfo(tinfo, &tgt_tmp); |
| } |
| |
| /* XXX: we support only POSIX RT signals are used. */ |
| /* XXX: find a solution for 64 bit (additional malloced data is needed) */ |
| void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) |
| { |
| /* This conversion is used only for the rt_sigqueueinfo syscall, |
| * and so we know that the _rt fields are the valid ones. |
| */ |
| abi_ulong sival_ptr; |
| |
| __get_user(info->si_signo, &tinfo->si_signo); |
| __get_user(info->si_errno, &tinfo->si_errno); |
| __get_user(info->si_code, &tinfo->si_code); |
| __get_user(info->si_pid, &tinfo->_sifields._rt._pid); |
| __get_user(info->si_uid, &tinfo->_sifields._rt._uid); |
| __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); |
| info->si_value.sival_ptr = (void *)(long)sival_ptr; |
| } |
| |
| static int fatal_signal (int sig) |
| { |
| switch (sig) { |
| case TARGET_SIGCHLD: |
| case TARGET_SIGURG: |
| case TARGET_SIGWINCH: |
| /* Ignored by default. */ |
| return 0; |
| case TARGET_SIGCONT: |
| case TARGET_SIGSTOP: |
| case TARGET_SIGTSTP: |
| case TARGET_SIGTTIN: |
| case TARGET_SIGTTOU: |
| /* Job control signals. */ |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| /* returns 1 if given signal should dump core if not handled */ |
| static int core_dump_signal(int sig) |
| { |
| switch (sig) { |
| case TARGET_SIGABRT: |
| case TARGET_SIGFPE: |
| case TARGET_SIGILL: |
| case TARGET_SIGQUIT: |
| case TARGET_SIGSEGV: |
| case TARGET_SIGTRAP: |
| case TARGET_SIGBUS: |
| return (1); |
| default: |
| return (0); |
| } |
| } |
| |
| void signal_init(void) |
| { |
| TaskState *ts = (TaskState *)thread_cpu->opaque; |
| struct sigaction act; |
| struct sigaction oact; |
| int i, j; |
| int host_sig; |
| |
| /* generate signal conversion tables */ |
| for(i = 1; i < _NSIG; i++) { |
| if (host_to_target_signal_table[i] == 0) |
| host_to_target_signal_table[i] = i; |
| } |
| for(i = 1; i < _NSIG; i++) { |
| j = host_to_target_signal_table[i]; |
| target_to_host_signal_table[j] = i; |
| } |
| |
| /* Set the signal mask from the host mask. */ |
| sigprocmask(0, 0, &ts->signal_mask); |
| |
| /* set all host signal handlers. ALL signals are blocked during |
| the handlers to serialize them. */ |
| memset(sigact_table, 0, sizeof(sigact_table)); |
| |
| sigfillset(&act.sa_mask); |
| act.sa_flags = SA_SIGINFO; |
| act.sa_sigaction = host_signal_handler; |
| for(i = 1; i <= TARGET_NSIG; i++) { |
| host_sig = target_to_host_signal(i); |
| sigaction(host_sig, NULL, &oact); |
| if (oact.sa_sigaction == (void *)SIG_IGN) { |
| sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; |
| } else if (oact.sa_sigaction == (void *)SIG_DFL) { |
| sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; |
| } |
| /* If there's already a handler installed then something has |
| gone horribly wrong, so don't even try to handle that case. */ |
| /* Install some handlers for our own use. We need at least |
| SIGSEGV and SIGBUS, to detect exceptions. We can not just |
| trap all signals because it affects syscall interrupt |
| behavior. But do trap all default-fatal signals. */ |
| if (fatal_signal (i)) |
| sigaction(host_sig, &act, NULL); |
| } |
| } |
| |
| #ifndef TARGET_UNICORE32 |
| /* Force a synchronously taken signal. The kernel force_sig() function |
| * also forces the signal to "not blocked, not ignored", but for QEMU |
| * that work is done in process_pending_signals(). |
| */ |
| static void force_sig(int sig) |
| { |
| CPUState *cpu = thread_cpu; |
| CPUArchState *env = cpu->env_ptr; |
| target_siginfo_t info; |
| |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_SI_KERNEL; |
| info._sifields._kill._pid = 0; |
| info._sifields._kill._uid = 0; |
| queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); |
| } |
| |
| /* Force a SIGSEGV if we couldn't write to memory trying to set |
| * up the signal frame. oldsig is the signal we were trying to handle |
| * at the point of failure. |
| */ |
| #if !defined(TARGET_RISCV) |
| static void force_sigsegv(int oldsig) |
| { |
| if (oldsig == SIGSEGV) { |
| /* Make sure we don't try to deliver the signal again; this will |
| * end up with handle_pending_signal() calling dump_core_and_abort(). |
| */ |
| sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; |
| } |
| force_sig(TARGET_SIGSEGV); |
| } |
| #endif |
| |
| #endif |
| |
| /* abort execution with signal */ |
| static void QEMU_NORETURN dump_core_and_abort(int target_sig) |
| { |
| CPUState *cpu = thread_cpu; |
| CPUArchState *env = cpu->env_ptr; |
| TaskState *ts = (TaskState *)cpu->opaque; |
| int host_sig, core_dumped = 0; |
| struct sigaction act; |
| |
| host_sig = target_to_host_signal(target_sig); |
| trace_user_force_sig(env, target_sig, host_sig); |
| gdb_signalled(env, target_sig); |
| |
| /* dump core if supported by target binary format */ |
| if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { |
| stop_all_tasks(); |
| core_dumped = |
| ((*ts->bprm->core_dump)(target_sig, env) == 0); |
| } |
| if (core_dumped) { |
| /* we already dumped the core of target process, we don't want |
| * a coredump of qemu itself */ |
| struct rlimit nodump; |
| getrlimit(RLIMIT_CORE, &nodump); |
| nodump.rlim_cur=0; |
| setrlimit(RLIMIT_CORE, &nodump); |
| (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", |
| target_sig, strsignal(host_sig), "core dumped" ); |
| } |
| |
| /* The proper exit code for dying from an uncaught signal is |
| * -<signal>. The kernel doesn't allow exit() or _exit() to pass |
| * a negative value. To get the proper exit code we need to |
| * actually die from an uncaught signal. Here the default signal |
| * handler is installed, we send ourself a signal and we wait for |
| * it to arrive. */ |
| sigfillset(&act.sa_mask); |
| act.sa_handler = SIG_DFL; |
| act.sa_flags = 0; |
| sigaction(host_sig, &act, NULL); |
| |
| /* For some reason raise(host_sig) doesn't send the signal when |
| * statically linked on x86-64. */ |
| kill(getpid(), host_sig); |
| |
| /* Make sure the signal isn't masked (just reuse the mask inside |
| of act) */ |
| sigdelset(&act.sa_mask, host_sig); |
| sigsuspend(&act.sa_mask); |
| |
| /* unreachable */ |
| abort(); |
| } |
| |
| /* queue a signal so that it will be send to the virtual CPU as soon |
| as possible */ |
| int queue_signal(CPUArchState *env, int sig, int si_type, |
| target_siginfo_t *info) |
| { |
| CPUState *cpu = ENV_GET_CPU(env); |
| TaskState *ts = cpu->opaque; |
| |
| trace_user_queue_signal(env, sig); |
| |
| info->si_code = deposit32(info->si_code, 16, 16, si_type); |
| |
| ts->sync_signal.info = *info; |
| ts->sync_signal.pending = sig; |
| /* signal that a new signal is pending */ |
| atomic_set(&ts->signal_pending, 1); |
| return 1; /* indicates that the signal was queued */ |
| } |
| |
| #ifndef HAVE_SAFE_SYSCALL |
| static inline void rewind_if_in_safe_syscall(void *puc) |
| { |
| /* Default version: never rewind */ |
| } |
| #endif |
| |
| static void host_signal_handler(int host_signum, siginfo_t *info, |
| void *puc) |
| { |
| CPUArchState *env = thread_cpu->env_ptr; |
| CPUState *cpu = ENV_GET_CPU(env); |
| TaskState *ts = cpu->opaque; |
| |
| int sig; |
| target_siginfo_t tinfo; |
| ucontext_t *uc = puc; |
| struct emulated_sigtable *k; |
| |
| /* the CPU emulator uses some host signals to detect exceptions, |
| we forward to it some signals */ |
| if ((host_signum == SIGSEGV || host_signum == SIGBUS) |
| && info->si_code > 0) { |
| if (cpu_signal_handler(host_signum, info, puc)) |
| return; |
| } |
| |
| /* get target signal number */ |
| sig = host_to_target_signal(host_signum); |
| if (sig < 1 || sig > TARGET_NSIG) |
| return; |
| trace_user_host_signal(env, host_signum, sig); |
| |
| rewind_if_in_safe_syscall(puc); |
| |
| host_to_target_siginfo_noswap(&tinfo, info); |
| k = &ts->sigtab[sig - 1]; |
| k->info = tinfo; |
| k->pending = sig; |
| ts->signal_pending = 1; |
| |
| /* Block host signals until target signal handler entered. We |
| * can't block SIGSEGV or SIGBUS while we're executing guest |
| * code in case the guest code provokes one in the window between |
| * now and it getting out to the main loop. Signals will be |
| * unblocked again in process_pending_signals(). |
| * |
| * WARNING: we cannot use sigfillset() here because the uc_sigmask |
| * field is a kernel sigset_t, which is much smaller than the |
| * libc sigset_t which sigfillset() operates on. Using sigfillset() |
| * would write 0xff bytes off the end of the structure and trash |
| * data on the struct. |
| * We can't use sizeof(uc->uc_sigmask) either, because the libc |
| * headers define the struct field with the wrong (too large) type. |
| */ |
| memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); |
| sigdelset(&uc->uc_sigmask, SIGSEGV); |
| sigdelset(&uc->uc_sigmask, SIGBUS); |
| |
| /* interrupt the virtual CPU as soon as possible */ |
| cpu_exit(thread_cpu); |
| } |
| |
| /* do_sigaltstack() returns target values and errnos. */ |
| /* compare linux/kernel/signal.c:do_sigaltstack() */ |
| abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) |
| { |
| int ret; |
| struct target_sigaltstack oss; |
| |
| /* XXX: test errors */ |
| if(uoss_addr) |
| { |
| __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &oss.ss_size); |
| __put_user(sas_ss_flags(sp), &oss.ss_flags); |
| } |
| |
| if(uss_addr) |
| { |
| struct target_sigaltstack *uss; |
| struct target_sigaltstack ss; |
| size_t minstacksize = TARGET_MINSIGSTKSZ; |
| |
| #if defined(TARGET_PPC64) |
| /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ |
| struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; |
| if (get_ppc64_abi(image) > 1) { |
| minstacksize = 4096; |
| } |
| #endif |
| |
| ret = -TARGET_EFAULT; |
| if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { |
| goto out; |
| } |
| __get_user(ss.ss_sp, &uss->ss_sp); |
| __get_user(ss.ss_size, &uss->ss_size); |
| __get_user(ss.ss_flags, &uss->ss_flags); |
| unlock_user_struct(uss, uss_addr, 0); |
| |
| ret = -TARGET_EPERM; |
| if (on_sig_stack(sp)) |
| goto out; |
| |
| ret = -TARGET_EINVAL; |
| if (ss.ss_flags != TARGET_SS_DISABLE |
| && ss.ss_flags != TARGET_SS_ONSTACK |
| && ss.ss_flags != 0) |
| goto out; |
| |
| if (ss.ss_flags == TARGET_SS_DISABLE) { |
| ss.ss_size = 0; |
| ss.ss_sp = 0; |
| } else { |
| ret = -TARGET_ENOMEM; |
| if (ss.ss_size < minstacksize) { |
| goto out; |
| } |
| } |
| |
| target_sigaltstack_used.ss_sp = ss.ss_sp; |
| target_sigaltstack_used.ss_size = ss.ss_size; |
| } |
| |
| if (uoss_addr) { |
| ret = -TARGET_EFAULT; |
| if (copy_to_user(uoss_addr, &oss, sizeof(oss))) |
| goto out; |
| } |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| /* do_sigaction() return target values and host errnos */ |
| int do_sigaction(int sig, const struct target_sigaction *act, |
| struct target_sigaction *oact) |
| { |
| struct target_sigaction *k; |
| struct sigaction act1; |
| int host_sig; |
| int ret = 0; |
| |
| if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) { |
| return -TARGET_EINVAL; |
| } |
| |
| if (block_signals()) { |
| return -TARGET_ERESTARTSYS; |
| } |
| |
| k = &sigact_table[sig - 1]; |
| if (oact) { |
| __put_user(k->_sa_handler, &oact->_sa_handler); |
| __put_user(k->sa_flags, &oact->sa_flags); |
| #ifdef TARGET_ARCH_HAS_SA_RESTORER |
| __put_user(k->sa_restorer, &oact->sa_restorer); |
| #endif |
| /* Not swapped. */ |
| oact->sa_mask = k->sa_mask; |
| } |
| if (act) { |
| /* FIXME: This is not threadsafe. */ |
| __get_user(k->_sa_handler, &act->_sa_handler); |
| __get_user(k->sa_flags, &act->sa_flags); |
| #ifdef TARGET_ARCH_HAS_SA_RESTORER |
| __get_user(k->sa_restorer, &act->sa_restorer); |
| #endif |
| /* To be swapped in target_to_host_sigset. */ |
| k->sa_mask = act->sa_mask; |
| |
| /* we update the host linux signal state */ |
| host_sig = target_to_host_signal(sig); |
| if (host_sig != SIGSEGV && host_sig != SIGBUS) { |
| sigfillset(&act1.sa_mask); |
| act1.sa_flags = SA_SIGINFO; |
| if (k->sa_flags & TARGET_SA_RESTART) |
| act1.sa_flags |= SA_RESTART; |
| /* NOTE: it is important to update the host kernel signal |
| ignore state to avoid getting unexpected interrupted |
| syscalls */ |
| if (k->_sa_handler == TARGET_SIG_IGN) { |
| act1.sa_sigaction = (void *)SIG_IGN; |
| } else if (k->_sa_handler == TARGET_SIG_DFL) { |
| if (fatal_signal (sig)) |
| act1.sa_sigaction = host_signal_handler; |
| else |
| act1.sa_sigaction = (void *)SIG_DFL; |
| } else { |
| act1.sa_sigaction = host_signal_handler; |
| } |
| ret = sigaction(host_sig, &act1, NULL); |
| } |
| } |
| return ret; |
| } |
| |
| #if defined(TARGET_I386) |
| /* from the Linux kernel - /arch/x86/include/uapi/asm/sigcontext.h */ |
| |
| struct target_fpreg { |
| uint16_t significand[4]; |
| uint16_t exponent; |
| }; |
| |
| struct target_fpxreg { |
| uint16_t significand[4]; |
| uint16_t exponent; |
| uint16_t padding[3]; |
| }; |
| |
| struct target_xmmreg { |
| uint32_t element[4]; |
| }; |
| |
| struct target_fpstate_32 { |
| /* Regular FPU environment */ |
| uint32_t cw; |
| uint32_t sw; |
| uint32_t tag; |
| uint32_t ipoff; |
| uint32_t cssel; |
| uint32_t dataoff; |
| uint32_t datasel; |
| struct target_fpreg st[8]; |
| uint16_t status; |
| uint16_t magic; /* 0xffff = regular FPU data only */ |
| |
| /* FXSR FPU environment */ |
| uint32_t _fxsr_env[6]; /* FXSR FPU env is ignored */ |
| uint32_t mxcsr; |
| uint32_t reserved; |
| struct target_fpxreg fxsr_st[8]; /* FXSR FPU reg data is ignored */ |
| struct target_xmmreg xmm[8]; |
| uint32_t padding[56]; |
| }; |
| |
| struct target_fpstate_64 { |
| /* FXSAVE format */ |
| uint16_t cw; |
| uint16_t sw; |
| uint16_t twd; |
| uint16_t fop; |
| uint64_t rip; |
| uint64_t rdp; |
| uint32_t mxcsr; |
| uint32_t mxcsr_mask; |
| uint32_t st_space[32]; |
| uint32_t xmm_space[64]; |
| uint32_t reserved[24]; |
| }; |
| |
| #ifndef TARGET_X86_64 |
| # define target_fpstate target_fpstate_32 |
| #else |
| # define target_fpstate target_fpstate_64 |
| #endif |
| |
| struct target_sigcontext_32 { |
| uint16_t gs, __gsh; |
| uint16_t fs, __fsh; |
| uint16_t es, __esh; |
| uint16_t ds, __dsh; |
| uint32_t edi; |
| uint32_t esi; |
| uint32_t ebp; |
| uint32_t esp; |
| uint32_t ebx; |
| uint32_t edx; |
| uint32_t ecx; |
| uint32_t eax; |
| uint32_t trapno; |
| uint32_t err; |
| uint32_t eip; |
| uint16_t cs, __csh; |
| uint32_t eflags; |
| uint32_t esp_at_signal; |
| uint16_t ss, __ssh; |
| uint32_t fpstate; /* pointer */ |
| uint32_t oldmask; |
| uint32_t cr2; |
| }; |
| |
| struct target_sigcontext_64 { |
| uint64_t r8; |
| uint64_t r9; |
| uint64_t r10; |
| uint64_t r11; |
| uint64_t r12; |
| uint64_t r13; |
| uint64_t r14; |
| uint64_t r15; |
| |
| uint64_t rdi; |
| uint64_t rsi; |
| uint64_t rbp; |
| uint64_t rbx; |
| uint64_t rdx; |
| uint64_t rax; |
| uint64_t rcx; |
| uint64_t rsp; |
| uint64_t rip; |
| |
| uint64_t eflags; |
| |
| uint16_t cs; |
| uint16_t gs; |
| uint16_t fs; |
| uint16_t ss; |
| |
| uint64_t err; |
| uint64_t trapno; |
| uint64_t oldmask; |
| uint64_t cr2; |
| |
| uint64_t fpstate; /* pointer */ |
| uint64_t padding[8]; |
| }; |
| |
| #ifndef TARGET_X86_64 |
| # define target_sigcontext target_sigcontext_32 |
| #else |
| # define target_sigcontext target_sigcontext_64 |
| #endif |
| |
| /* see Linux/include/uapi/asm-generic/ucontext.h */ |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| #ifndef TARGET_X86_64 |
| struct sigframe { |
| abi_ulong pretcode; |
| int sig; |
| struct target_sigcontext sc; |
| struct target_fpstate fpstate; |
| abi_ulong extramask[TARGET_NSIG_WORDS-1]; |
| char retcode[8]; |
| }; |
| |
| struct rt_sigframe { |
| abi_ulong pretcode; |
| int sig; |
| abi_ulong pinfo; |
| abi_ulong puc; |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| struct target_fpstate fpstate; |
| char retcode[8]; |
| }; |
| |
| #else |
| |
| struct rt_sigframe { |
| abi_ulong pretcode; |
| struct target_ucontext uc; |
| struct target_siginfo info; |
| struct target_fpstate fpstate; |
| }; |
| |
| #endif |
| |
| /* |
| * Set up a signal frame. |
| */ |
| |
| /* XXX: save x87 state */ |
| static void setup_sigcontext(struct target_sigcontext *sc, |
| struct target_fpstate *fpstate, CPUX86State *env, abi_ulong mask, |
| abi_ulong fpstate_addr) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| #ifndef TARGET_X86_64 |
| uint16_t magic; |
| |
| /* already locked in setup_frame() */ |
| __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); |
| __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); |
| __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); |
| __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); |
| __put_user(env->regs[R_EDI], &sc->edi); |
| __put_user(env->regs[R_ESI], &sc->esi); |
| __put_user(env->regs[R_EBP], &sc->ebp); |
| __put_user(env->regs[R_ESP], &sc->esp); |
| __put_user(env->regs[R_EBX], &sc->ebx); |
| __put_user(env->regs[R_EDX], &sc->edx); |
| __put_user(env->regs[R_ECX], &sc->ecx); |
| __put_user(env->regs[R_EAX], &sc->eax); |
| __put_user(cs->exception_index, &sc->trapno); |
| __put_user(env->error_code, &sc->err); |
| __put_user(env->eip, &sc->eip); |
| __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); |
| __put_user(env->eflags, &sc->eflags); |
| __put_user(env->regs[R_ESP], &sc->esp_at_signal); |
| __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); |
| |
| cpu_x86_fsave(env, fpstate_addr, 1); |
| fpstate->status = fpstate->sw; |
| magic = 0xffff; |
| __put_user(magic, &fpstate->magic); |
| __put_user(fpstate_addr, &sc->fpstate); |
| |
| /* non-iBCS2 extensions.. */ |
| __put_user(mask, &sc->oldmask); |
| __put_user(env->cr[2], &sc->cr2); |
| #else |
| __put_user(env->regs[R_EDI], &sc->rdi); |
| __put_user(env->regs[R_ESI], &sc->rsi); |
| __put_user(env->regs[R_EBP], &sc->rbp); |
| __put_user(env->regs[R_ESP], &sc->rsp); |
| __put_user(env->regs[R_EBX], &sc->rbx); |
| __put_user(env->regs[R_EDX], &sc->rdx); |
| __put_user(env->regs[R_ECX], &sc->rcx); |
| __put_user(env->regs[R_EAX], &sc->rax); |
| |
| __put_user(env->regs[8], &sc->r8); |
| __put_user(env->regs[9], &sc->r9); |
| __put_user(env->regs[10], &sc->r10); |
| __put_user(env->regs[11], &sc->r11); |
| __put_user(env->regs[12], &sc->r12); |
| __put_user(env->regs[13], &sc->r13); |
| __put_user(env->regs[14], &sc->r14); |
| __put_user(env->regs[15], &sc->r15); |
| |
| __put_user(cs->exception_index, &sc->trapno); |
| __put_user(env->error_code, &sc->err); |
| __put_user(env->eip, &sc->rip); |
| |
| __put_user(env->eflags, &sc->eflags); |
| __put_user(env->segs[R_CS].selector, &sc->cs); |
| __put_user((uint16_t)0, &sc->gs); |
| __put_user((uint16_t)0, &sc->fs); |
| __put_user(env->segs[R_SS].selector, &sc->ss); |
| |
| __put_user(mask, &sc->oldmask); |
| __put_user(env->cr[2], &sc->cr2); |
| |
| /* fpstate_addr must be 16 byte aligned for fxsave */ |
| assert(!(fpstate_addr & 0xf)); |
| |
| cpu_x86_fxsave(env, fpstate_addr); |
| __put_user(fpstate_addr, &sc->fpstate); |
| #endif |
| } |
| |
| /* |
| * Determine which stack to use.. |
| */ |
| |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUX86State *env, size_t frame_size) |
| { |
| unsigned long esp; |
| |
| /* Default to using normal stack */ |
| esp = env->regs[R_ESP]; |
| #ifdef TARGET_X86_64 |
| esp -= 128; /* this is the redzone */ |
| #endif |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if (ka->sa_flags & TARGET_SA_ONSTACK) { |
| if (sas_ss_flags(esp) == 0) { |
| esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| } else { |
| #ifndef TARGET_X86_64 |
| /* This is the legacy signal stack switching. */ |
| if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && |
| !(ka->sa_flags & TARGET_SA_RESTORER) && |
| ka->sa_restorer) { |
| esp = (unsigned long) ka->sa_restorer; |
| } |
| #endif |
| } |
| |
| #ifndef TARGET_X86_64 |
| return (esp - frame_size) & -8ul; |
| #else |
| return ((esp - frame_size) & (~15ul)) - 8; |
| #endif |
| } |
| |
| #ifndef TARGET_X86_64 |
| /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUX86State *env) |
| { |
| abi_ulong frame_addr; |
| struct sigframe *frame; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_frame(env, frame_addr); |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| __put_user(sig, &frame->sig); |
| |
| setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0], |
| frame_addr + offsetof(struct sigframe, fpstate)); |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->extramask[i - 1]); |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| __put_user(ka->sa_restorer, &frame->pretcode); |
| } else { |
| uint16_t val16; |
| abi_ulong retcode_addr; |
| retcode_addr = frame_addr + offsetof(struct sigframe, retcode); |
| __put_user(retcode_addr, &frame->pretcode); |
| /* This is popl %eax ; movl $,%eax ; int $0x80 */ |
| val16 = 0xb858; |
| __put_user(val16, (uint16_t *)(frame->retcode+0)); |
| __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); |
| val16 = 0x80cd; |
| __put_user(val16, (uint16_t *)(frame->retcode+6)); |
| } |
| |
| /* Set up registers for signal handler */ |
| env->regs[R_ESP] = frame_addr; |
| env->eip = ka->_sa_handler; |
| |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| env->eflags &= ~TF_MASK; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| #endif |
| |
| /* compare linux/arch/x86/kernel/signal.c:setup_rt_frame() */ |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUX86State *env) |
| { |
| abi_ulong frame_addr; |
| #ifndef TARGET_X86_64 |
| abi_ulong addr; |
| #endif |
| struct rt_sigframe *frame; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_rt_frame(env, frame_addr); |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| /* These fields are only in rt_sigframe on 32 bit */ |
| #ifndef TARGET_X86_64 |
| __put_user(sig, &frame->sig); |
| addr = frame_addr + offsetof(struct rt_sigframe, info); |
| __put_user(addr, &frame->pinfo); |
| addr = frame_addr + offsetof(struct rt_sigframe, uc); |
| __put_user(addr, &frame->puc); |
| #endif |
| if (ka->sa_flags & TARGET_SA_SIGINFO) { |
| tswap_siginfo(&frame->info, info); |
| } |
| |
| /* Create the ucontext. */ |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user(0, &frame->uc.tuc_link); |
| __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.tuc_stack.ss_size); |
| setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, env, |
| set->sig[0], frame_addr + offsetof(struct rt_sigframe, fpstate)); |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| #ifndef TARGET_X86_64 |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| __put_user(ka->sa_restorer, &frame->pretcode); |
| } else { |
| uint16_t val16; |
| addr = frame_addr + offsetof(struct rt_sigframe, retcode); |
| __put_user(addr, &frame->pretcode); |
| /* This is movl $,%eax ; int $0x80 */ |
| __put_user(0xb8, (char *)(frame->retcode+0)); |
| __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); |
| val16 = 0x80cd; |
| __put_user(val16, (uint16_t *)(frame->retcode+5)); |
| } |
| #else |
| /* XXX: Would be slightly better to return -EFAULT here if test fails |
| assert(ka->sa_flags & TARGET_SA_RESTORER); */ |
| __put_user(ka->sa_restorer, &frame->pretcode); |
| #endif |
| |
| /* Set up registers for signal handler */ |
| env->regs[R_ESP] = frame_addr; |
| env->eip = ka->_sa_handler; |
| |
| #ifndef TARGET_X86_64 |
| env->regs[R_EAX] = sig; |
| env->regs[R_EDX] = (unsigned long)&frame->info; |
| env->regs[R_ECX] = (unsigned long)&frame->uc; |
| #else |
| env->regs[R_EAX] = 0; |
| env->regs[R_EDI] = sig; |
| env->regs[R_ESI] = (unsigned long)&frame->info; |
| env->regs[R_EDX] = (unsigned long)&frame->uc; |
| #endif |
| |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| env->eflags &= ~TF_MASK; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| |
| static int |
| restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc) |
| { |
| unsigned int err = 0; |
| abi_ulong fpstate_addr; |
| unsigned int tmpflags; |
| |
| #ifndef TARGET_X86_64 |
| cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); |
| cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); |
| cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); |
| cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); |
| |
| env->regs[R_EDI] = tswapl(sc->edi); |
| env->regs[R_ESI] = tswapl(sc->esi); |
| env->regs[R_EBP] = tswapl(sc->ebp); |
| env->regs[R_ESP] = tswapl(sc->esp); |
| env->regs[R_EBX] = tswapl(sc->ebx); |
| env->regs[R_EDX] = tswapl(sc->edx); |
| env->regs[R_ECX] = tswapl(sc->ecx); |
| env->regs[R_EAX] = tswapl(sc->eax); |
| |
| env->eip = tswapl(sc->eip); |
| #else |
| env->regs[8] = tswapl(sc->r8); |
| env->regs[9] = tswapl(sc->r9); |
| env->regs[10] = tswapl(sc->r10); |
| env->regs[11] = tswapl(sc->r11); |
| env->regs[12] = tswapl(sc->r12); |
| env->regs[13] = tswapl(sc->r13); |
| env->regs[14] = tswapl(sc->r14); |
| env->regs[15] = tswapl(sc->r15); |
| |
| env->regs[R_EDI] = tswapl(sc->rdi); |
| env->regs[R_ESI] = tswapl(sc->rsi); |
| env->regs[R_EBP] = tswapl(sc->rbp); |
| env->regs[R_EBX] = tswapl(sc->rbx); |
| env->regs[R_EDX] = tswapl(sc->rdx); |
| env->regs[R_EAX] = tswapl(sc->rax); |
| env->regs[R_ECX] = tswapl(sc->rcx); |
| env->regs[R_ESP] = tswapl(sc->rsp); |
| |
| env->eip = tswapl(sc->rip); |
| #endif |
| |
| cpu_x86_load_seg(env, R_CS, lduw_p(&sc->cs) | 3); |
| cpu_x86_load_seg(env, R_SS, lduw_p(&sc->ss) | 3); |
| |
| tmpflags = tswapl(sc->eflags); |
| env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); |
| // regs->orig_eax = -1; /* disable syscall checks */ |
| |
| fpstate_addr = tswapl(sc->fpstate); |
| if (fpstate_addr != 0) { |
| if (!access_ok(VERIFY_READ, fpstate_addr, |
| sizeof(struct target_fpstate))) |
| goto badframe; |
| #ifndef TARGET_X86_64 |
| cpu_x86_frstor(env, fpstate_addr, 1); |
| #else |
| cpu_x86_fxrstor(env, fpstate_addr); |
| #endif |
| } |
| |
| return err; |
| badframe: |
| return 1; |
| } |
| |
| /* Note: there is no sigreturn on x86_64, there is only rt_sigreturn */ |
| #ifndef TARGET_X86_64 |
| long do_sigreturn(CPUX86State *env) |
| { |
| struct sigframe *frame; |
| abi_ulong frame_addr = env->regs[R_ESP] - 8; |
| target_sigset_t target_set; |
| sigset_t set; |
| int i; |
| |
| trace_user_do_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| /* set blocked signals */ |
| __get_user(target_set.sig[0], &frame->sc.oldmask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(target_set.sig[i], &frame->extramask[i - 1]); |
| } |
| |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); |
| |
| /* restore registers */ |
| if (restore_sigcontext(env, &frame->sc)) |
| goto badframe; |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| #endif |
| |
| long do_rt_sigreturn(CPUX86State *env) |
| { |
| abi_ulong frame_addr; |
| struct rt_sigframe *frame; |
| sigset_t set; |
| |
| frame_addr = env->regs[R_ESP] - sizeof(abi_ulong); |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| set_sigmask(&set); |
| |
| if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { |
| goto badframe; |
| } |
| |
| if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe, uc.tuc_stack), 0, |
| get_sp_from_cpustate(env)) == -EFAULT) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #elif defined(TARGET_AARCH64) |
| |
| struct target_sigcontext { |
| uint64_t fault_address; |
| /* AArch64 registers */ |
| uint64_t regs[31]; |
| uint64_t sp; |
| uint64_t pc; |
| uint64_t pstate; |
| /* 4K reserved for FP/SIMD state and future expansion */ |
| char __reserved[4096] __attribute__((__aligned__(16))); |
| }; |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| target_sigset_t tuc_sigmask; |
| /* glibc uses a 1024-bit sigset_t */ |
| char __unused[1024 / 8 - sizeof(target_sigset_t)]; |
| /* last for future expansion */ |
| struct target_sigcontext tuc_mcontext; |
| }; |
| |
| /* |
| * Header to be used at the beginning of structures extending the user |
| * context. Such structures must be placed after the rt_sigframe on the stack |
| * and be 16-byte aligned. The last structure must be a dummy one with the |
| * magic and size set to 0. |
| */ |
| struct target_aarch64_ctx { |
| uint32_t magic; |
| uint32_t size; |
| }; |
| |
| #define TARGET_FPSIMD_MAGIC 0x46508001 |
| |
| struct target_fpsimd_context { |
| struct target_aarch64_ctx head; |
| uint32_t fpsr; |
| uint32_t fpcr; |
| uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */ |
| }; |
| |
| #define TARGET_EXTRA_MAGIC 0x45585401 |
| |
| struct target_extra_context { |
| struct target_aarch64_ctx head; |
| uint64_t datap; /* 16-byte aligned pointer to extra space cast to __u64 */ |
| uint32_t size; /* size in bytes of the extra space */ |
| uint32_t reserved[3]; |
| }; |
| |
| #define TARGET_SVE_MAGIC 0x53564501 |
| |
| struct target_sve_context { |
| struct target_aarch64_ctx head; |
| uint16_t vl; |
| uint16_t reserved[3]; |
| /* The actual SVE data immediately follows. It is layed out |
| * according to TARGET_SVE_SIG_{Z,P}REG_OFFSET, based off of |
| * the original struct pointer. |
| */ |
| }; |
| |
| #define TARGET_SVE_VQ_BYTES 16 |
| |
| #define TARGET_SVE_SIG_ZREG_SIZE(VQ) ((VQ) * TARGET_SVE_VQ_BYTES) |
| #define TARGET_SVE_SIG_PREG_SIZE(VQ) ((VQ) * (TARGET_SVE_VQ_BYTES / 8)) |
| |
| #define TARGET_SVE_SIG_REGS_OFFSET \ |
| QEMU_ALIGN_UP(sizeof(struct target_sve_context), TARGET_SVE_VQ_BYTES) |
| #define TARGET_SVE_SIG_ZREG_OFFSET(VQ, N) \ |
| (TARGET_SVE_SIG_REGS_OFFSET + TARGET_SVE_SIG_ZREG_SIZE(VQ) * (N)) |
| #define TARGET_SVE_SIG_PREG_OFFSET(VQ, N) \ |
| (TARGET_SVE_SIG_ZREG_OFFSET(VQ, 32) + TARGET_SVE_SIG_PREG_SIZE(VQ) * (N)) |
| #define TARGET_SVE_SIG_FFR_OFFSET(VQ) \ |
| (TARGET_SVE_SIG_PREG_OFFSET(VQ, 16)) |
| #define TARGET_SVE_SIG_CONTEXT_SIZE(VQ) \ |
| (TARGET_SVE_SIG_PREG_OFFSET(VQ, 17)) |
| |
| struct target_rt_sigframe { |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| }; |
| |
| struct target_rt_frame_record { |
| uint64_t fp; |
| uint64_t lr; |
| uint32_t tramp[2]; |
| }; |
| |
| static void target_setup_general_frame(struct target_rt_sigframe *sf, |
| CPUARMState *env, target_sigset_t *set) |
| { |
| int i; |
| |
| __put_user(0, &sf->uc.tuc_flags); |
| __put_user(0, &sf->uc.tuc_link); |
| |
| __put_user(target_sigaltstack_used.ss_sp, &sf->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(env->xregs[31]), &sf->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, &sf->uc.tuc_stack.ss_size); |
| |
| for (i = 0; i < 31; i++) { |
| __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); |
| } |
| __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); |
| __put_user(env->pc, &sf->uc.tuc_mcontext.pc); |
| __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate); |
| |
| __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address); |
| |
| for (i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]); |
| } |
| } |
| |
| static void target_setup_fpsimd_record(struct target_fpsimd_context *fpsimd, |
| CPUARMState *env) |
| { |
| int i; |
| |
| __put_user(TARGET_FPSIMD_MAGIC, &fpsimd->head.magic); |
| __put_user(sizeof(struct target_fpsimd_context), &fpsimd->head.size); |
| __put_user(vfp_get_fpsr(env), &fpsimd->fpsr); |
| __put_user(vfp_get_fpcr(env), &fpsimd->fpcr); |
| |
| for (i = 0; i < 32; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| #ifdef TARGET_WORDS_BIGENDIAN |
| __put_user(q[0], &fpsimd->vregs[i * 2 + 1]); |
| __put_user(q[1], &fpsimd->vregs[i * 2]); |
| #else |
| __put_user(q[0], &fpsimd->vregs[i * 2]); |
| __put_user(q[1], &fpsimd->vregs[i * 2 + 1]); |
| #endif |
| } |
| } |
| |
| static void target_setup_extra_record(struct target_extra_context *extra, |
| uint64_t datap, uint32_t extra_size) |
| { |
| __put_user(TARGET_EXTRA_MAGIC, &extra->head.magic); |
| __put_user(sizeof(struct target_extra_context), &extra->head.size); |
| __put_user(datap, &extra->datap); |
| __put_user(extra_size, &extra->size); |
| } |
| |
| static void target_setup_end_record(struct target_aarch64_ctx *end) |
| { |
| __put_user(0, &end->magic); |
| __put_user(0, &end->size); |
| } |
| |
| static void target_setup_sve_record(struct target_sve_context *sve, |
| CPUARMState *env, int vq, int size) |
| { |
| int i, j; |
| |
| __put_user(TARGET_SVE_MAGIC, &sve->head.magic); |
| __put_user(size, &sve->head.size); |
| __put_user(vq * TARGET_SVE_VQ_BYTES, &sve->vl); |
| |
| /* Note that SVE regs are stored as a byte stream, with each byte element |
| * at a subsequent address. This corresponds to a little-endian store |
| * of our 64-bit hunks. |
| */ |
| for (i = 0; i < 32; ++i) { |
| uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); |
| for (j = 0; j < vq * 2; ++j) { |
| __put_user_e(env->vfp.zregs[i].d[j], z + j, le); |
| } |
| } |
| for (i = 0; i <= 16; ++i) { |
| uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); |
| for (j = 0; j < vq; ++j) { |
| uint64_t r = env->vfp.pregs[i].p[j >> 2]; |
| __put_user_e(r >> ((j & 3) * 16), p + j, le); |
| } |
| } |
| } |
| |
| static void target_restore_general_frame(CPUARMState *env, |
| struct target_rt_sigframe *sf) |
| { |
| sigset_t set; |
| uint64_t pstate; |
| int i; |
| |
| target_to_host_sigset(&set, &sf->uc.tuc_sigmask); |
| set_sigmask(&set); |
| |
| for (i = 0; i < 31; i++) { |
| __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); |
| } |
| |
| __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); |
| __get_user(env->pc, &sf->uc.tuc_mcontext.pc); |
| __get_user(pstate, &sf->uc.tuc_mcontext.pstate); |
| pstate_write(env, pstate); |
| } |
| |
| static void target_restore_fpsimd_record(CPUARMState *env, |
| struct target_fpsimd_context *fpsimd) |
| { |
| uint32_t fpsr, fpcr; |
| int i; |
| |
| __get_user(fpsr, &fpsimd->fpsr); |
| vfp_set_fpsr(env, fpsr); |
| __get_user(fpcr, &fpsimd->fpcr); |
| vfp_set_fpcr(env, fpcr); |
| |
| for (i = 0; i < 32; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| #ifdef TARGET_WORDS_BIGENDIAN |
| __get_user(q[0], &fpsimd->vregs[i * 2 + 1]); |
| __get_user(q[1], &fpsimd->vregs[i * 2]); |
| #else |
| __get_user(q[0], &fpsimd->vregs[i * 2]); |
| __get_user(q[1], &fpsimd->vregs[i * 2 + 1]); |
| #endif |
| } |
| } |
| |
| static void target_restore_sve_record(CPUARMState *env, |
| struct target_sve_context *sve, int vq) |
| { |
| int i, j; |
| |
| /* Note that SVE regs are stored as a byte stream, with each byte element |
| * at a subsequent address. This corresponds to a little-endian load |
| * of our 64-bit hunks. |
| */ |
| for (i = 0; i < 32; ++i) { |
| uint64_t *z = (void *)sve + TARGET_SVE_SIG_ZREG_OFFSET(vq, i); |
| for (j = 0; j < vq * 2; ++j) { |
| __get_user_e(env->vfp.zregs[i].d[j], z + j, le); |
| } |
| } |
| for (i = 0; i <= 16; ++i) { |
| uint16_t *p = (void *)sve + TARGET_SVE_SIG_PREG_OFFSET(vq, i); |
| for (j = 0; j < vq; ++j) { |
| uint16_t r; |
| __get_user_e(r, p + j, le); |
| if (j & 3) { |
| env->vfp.pregs[i].p[j >> 2] |= (uint64_t)r << ((j & 3) * 16); |
| } else { |
| env->vfp.pregs[i].p[j >> 2] = r; |
| } |
| } |
| } |
| } |
| |
| static int target_restore_sigframe(CPUARMState *env, |
| struct target_rt_sigframe *sf) |
| { |
| struct target_aarch64_ctx *ctx, *extra = NULL; |
| struct target_fpsimd_context *fpsimd = NULL; |
| struct target_sve_context *sve = NULL; |
| uint64_t extra_datap = 0; |
| bool used_extra = false; |
| bool err = false; |
| int vq = 0, sve_size = 0; |
| |
| target_restore_general_frame(env, sf); |
| |
| ctx = (struct target_aarch64_ctx *)sf->uc.tuc_mcontext.__reserved; |
| while (ctx) { |
| uint32_t magic, size, extra_size; |
| |
| __get_user(magic, &ctx->magic); |
| __get_user(size, &ctx->size); |
| switch (magic) { |
| case 0: |
| if (size != 0) { |
| err = true; |
| goto exit; |
| } |
| if (used_extra) { |
| ctx = NULL; |
| } else { |
| ctx = extra; |
| used_extra = true; |
| } |
| continue; |
| |
| case TARGET_FPSIMD_MAGIC: |
| if (fpsimd || size != sizeof(struct target_fpsimd_context)) { |
| err = true; |
| goto exit; |
| } |
| fpsimd = (struct target_fpsimd_context *)ctx; |
| break; |
| |
| case TARGET_SVE_MAGIC: |
| if (arm_feature(env, ARM_FEATURE_SVE)) { |
| vq = (env->vfp.zcr_el[1] & 0xf) + 1; |
| sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(vq), 16); |
| if (!sve && size == sve_size) { |
| sve = (struct target_sve_context *)ctx; |
| break; |
| } |
| } |
| err = true; |
| goto exit; |
| |
| case TARGET_EXTRA_MAGIC: |
| if (extra || size != sizeof(struct target_extra_context)) { |
| err = true; |
| goto exit; |
| } |
| __get_user(extra_datap, |
| &((struct target_extra_context *)ctx)->datap); |
| __get_user(extra_size, |
| &((struct target_extra_context *)ctx)->size); |
| extra = lock_user(VERIFY_READ, extra_datap, extra_size, 0); |
| break; |
| |
| default: |
| /* Unknown record -- we certainly didn't generate it. |
| * Did we in fact get out of sync? |
| */ |
| err = true; |
| goto exit; |
| } |
| ctx = (void *)ctx + size; |
| } |
| |
| /* Require FPSIMD always. */ |
| if (fpsimd) { |
| target_restore_fpsimd_record(env, fpsimd); |
| } else { |
| err = true; |
| } |
| |
| /* SVE data, if present, overwrites FPSIMD data. */ |
| if (sve) { |
| target_restore_sve_record(env, sve, vq); |
| } |
| |
| exit: |
| unlock_user(extra, extra_datap, 0); |
| return err; |
| } |
| |
| static abi_ulong get_sigframe(struct target_sigaction *ka, |
| CPUARMState *env, int size) |
| { |
| abi_ulong sp; |
| |
| sp = env->xregs[31]; |
| |
| /* |
| * This is the X/Open sanctioned signal stack switching. |
| */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| sp = (sp - size) & ~15; |
| |
| return sp; |
| } |
| |
| typedef struct { |
| int total_size; |
| int extra_base; |
| int extra_size; |
| int std_end_ofs; |
| int extra_ofs; |
| int extra_end_ofs; |
| } target_sigframe_layout; |
| |
| static int alloc_sigframe_space(int this_size, target_sigframe_layout *l) |
| { |
| /* Make sure there will always be space for the end marker. */ |
| const int std_size = sizeof(struct target_rt_sigframe) |
| - sizeof(struct target_aarch64_ctx); |
| int this_loc = l->total_size; |
| |
| if (l->extra_base) { |
| /* Once we have begun an extra space, all allocations go there. */ |
| l->extra_size += this_size; |
| } else if (this_size + this_loc > std_size) { |
| /* This allocation does not fit in the standard space. */ |
| /* Allocate the extra record. */ |
| l->extra_ofs = this_loc; |
| l->total_size += sizeof(struct target_extra_context); |
| |
| /* Allocate the standard end record. */ |
| l->std_end_ofs = l->total_size; |
| l->total_size += sizeof(struct target_aarch64_ctx); |
| |
| /* Allocate the requested record. */ |
| l->extra_base = this_loc = l->total_size; |
| l->extra_size = this_size; |
| } |
| l->total_size += this_size; |
| |
| return this_loc; |
| } |
| |
| static void target_setup_frame(int usig, struct target_sigaction *ka, |
| target_siginfo_t *info, target_sigset_t *set, |
| CPUARMState *env) |
| { |
| target_sigframe_layout layout = { |
| /* Begin with the size pointing to the reserved space. */ |
| .total_size = offsetof(struct target_rt_sigframe, |
| uc.tuc_mcontext.__reserved), |
| }; |
| int fpsimd_ofs, fr_ofs, sve_ofs = 0, vq = 0, sve_size = 0; |
| struct target_rt_sigframe *frame; |
| struct target_rt_frame_record *fr; |
| abi_ulong frame_addr, return_addr; |
| |
| /* FPSIMD record is always in the standard space. */ |
| fpsimd_ofs = alloc_sigframe_space(sizeof(struct target_fpsimd_context), |
| &layout); |
| |
| /* SVE state needs saving only if it exists. */ |
| if (arm_feature(env, ARM_FEATURE_SVE)) { |
| vq = (env->vfp.zcr_el[1] & 0xf) + 1; |
| sve_size = QEMU_ALIGN_UP(TARGET_SVE_SIG_CONTEXT_SIZE(vq), 16); |
| sve_ofs = alloc_sigframe_space(sve_size, &layout); |
| } |
| |
| if (layout.extra_ofs) { |
| /* Reserve space for the extra end marker. The standard end marker |
| * will have been allocated when we allocated the extra record. |
| */ |
| layout.extra_end_ofs |
| = alloc_sigframe_space(sizeof(struct target_aarch64_ctx), &layout); |
| } else { |
| /* Reserve space for the standard end marker. |
| * Do not use alloc_sigframe_space because we cheat |
| * std_size therein to reserve space for this. |
| */ |
| layout.std_end_ofs = layout.total_size; |
| layout.total_size += sizeof(struct target_aarch64_ctx); |
| } |
| |
| /* Reserve space for the return code. On a real system this would |
| * be within the VDSO. So, despite the name this is not a "real" |
| * record within the frame. |
| */ |
| fr_ofs = layout.total_size; |
| layout.total_size += sizeof(struct target_rt_frame_record); |
| |
| frame_addr = get_sigframe(ka, env, layout.total_size); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| target_setup_general_frame(frame, env, set); |
| target_setup_fpsimd_record((void *)frame + fpsimd_ofs, env); |
| target_setup_end_record((void *)frame + layout.std_end_ofs); |
| if (layout.extra_ofs) { |
| target_setup_extra_record((void *)frame + layout.extra_ofs, |
| frame_addr + layout.extra_base, |
| layout.extra_size); |
| target_setup_end_record((void *)frame + layout.extra_end_ofs); |
| } |
| if (sve_ofs) { |
| target_setup_sve_record((void *)frame + sve_ofs, env, vq, sve_size); |
| } |
| |
| /* Set up the stack frame for unwinding. */ |
| fr = (void *)frame + fr_ofs; |
| __put_user(env->xregs[29], &fr->fp); |
| __put_user(env->xregs[30], &fr->lr); |
| |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| return_addr = ka->sa_restorer; |
| } else { |
| /* |
| * mov x8,#__NR_rt_sigreturn; svc #0 |
| * Since these are instructions they need to be put as little-endian |
| * regardless of target default or current CPU endianness. |
| */ |
| __put_user_e(0xd2801168, &fr->tramp[0], le); |
| __put_user_e(0xd4000001, &fr->tramp[1], le); |
| return_addr = frame_addr + fr_ofs |
| + offsetof(struct target_rt_frame_record, tramp); |
| } |
| env->xregs[0] = usig; |
| env->xregs[31] = frame_addr; |
| env->xregs[29] = frame_addr + fr_ofs; |
| env->pc = ka->_sa_handler; |
| env->xregs[30] = return_addr; |
| if (info) { |
| tswap_siginfo(&frame->info, info); |
| env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info); |
| env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc); |
| } |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(usig); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, target_sigset_t *set, |
| CPUARMState *env) |
| { |
| target_setup_frame(sig, ka, info, set, env); |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUARMState *env) |
| { |
| target_setup_frame(sig, ka, 0, set, env); |
| } |
| |
| long do_rt_sigreturn(CPUARMState *env) |
| { |
| struct target_rt_sigframe *frame = NULL; |
| abi_ulong frame_addr = env->xregs[31]; |
| |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (frame_addr & 15) { |
| goto badframe; |
| } |
| |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| if (target_restore_sigframe(env, frame)) { |
| goto badframe; |
| } |
| |
| if (do_sigaltstack(frame_addr + |
| offsetof(struct target_rt_sigframe, uc.tuc_stack), |
| 0, get_sp_from_cpustate(env)) == -EFAULT) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_sigreturn(CPUARMState *env) |
| { |
| return do_rt_sigreturn(env); |
| } |
| |
| #elif defined(TARGET_ARM) |
| |
| struct target_sigcontext { |
| abi_ulong trap_no; |
| abi_ulong error_code; |
| abi_ulong oldmask; |
| abi_ulong arm_r0; |
| abi_ulong arm_r1; |
| abi_ulong arm_r2; |
| abi_ulong arm_r3; |
| abi_ulong arm_r4; |
| abi_ulong arm_r5; |
| abi_ulong arm_r6; |
| abi_ulong arm_r7; |
| abi_ulong arm_r8; |
| abi_ulong arm_r9; |
| abi_ulong arm_r10; |
| abi_ulong arm_fp; |
| abi_ulong arm_ip; |
| abi_ulong arm_sp; |
| abi_ulong arm_lr; |
| abi_ulong arm_pc; |
| abi_ulong arm_cpsr; |
| abi_ulong fault_address; |
| }; |
| |
| struct target_ucontext_v1 { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct target_ucontext_v2 { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| char __unused[128 - sizeof(target_sigset_t)]; |
| abi_ulong tuc_regspace[128] __attribute__((__aligned__(8))); |
| }; |
| |
| struct target_user_vfp { |
| uint64_t fpregs[32]; |
| abi_ulong fpscr; |
| }; |
| |
| struct target_user_vfp_exc { |
| abi_ulong fpexc; |
| abi_ulong fpinst; |
| abi_ulong fpinst2; |
| }; |
| |
| struct target_vfp_sigframe { |
| abi_ulong magic; |
| abi_ulong size; |
| struct target_user_vfp ufp; |
| struct target_user_vfp_exc ufp_exc; |
| } __attribute__((__aligned__(8))); |
| |
| struct target_iwmmxt_sigframe { |
| abi_ulong magic; |
| abi_ulong size; |
| uint64_t regs[16]; |
| /* Note that not all the coprocessor control registers are stored here */ |
| uint32_t wcssf; |
| uint32_t wcasf; |
| uint32_t wcgr0; |
| uint32_t wcgr1; |
| uint32_t wcgr2; |
| uint32_t wcgr3; |
| } __attribute__((__aligned__(8))); |
| |
| #define TARGET_VFP_MAGIC 0x56465001 |
| #define TARGET_IWMMXT_MAGIC 0x12ef842a |
| |
| struct sigframe_v1 |
| { |
| struct target_sigcontext sc; |
| abi_ulong extramask[TARGET_NSIG_WORDS-1]; |
| abi_ulong retcode; |
| }; |
| |
| struct sigframe_v2 |
| { |
| struct target_ucontext_v2 uc; |
| abi_ulong retcode; |
| }; |
| |
| struct rt_sigframe_v1 |
| { |
| abi_ulong pinfo; |
| abi_ulong puc; |
| struct target_siginfo info; |
| struct target_ucontext_v1 uc; |
| abi_ulong retcode; |
| }; |
| |
| struct rt_sigframe_v2 |
| { |
| struct target_siginfo info; |
| struct target_ucontext_v2 uc; |
| abi_ulong retcode; |
| }; |
| |
| #define TARGET_CONFIG_CPU_32 1 |
| |
| /* |
| * For ARM syscalls, we encode the syscall number into the instruction. |
| */ |
| #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) |
| #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) |
| |
| /* |
| * For Thumb syscalls, we pass the syscall number via r7. We therefore |
| * need two 16-bit instructions. |
| */ |
| #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) |
| #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) |
| |
| static const abi_ulong retcodes[4] = { |
| SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, |
| SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN |
| }; |
| |
| |
| static inline int valid_user_regs(CPUARMState *regs) |
| { |
| return 1; |
| } |
| |
| static void |
| setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ |
| CPUARMState *env, abi_ulong mask) |
| { |
| __put_user(env->regs[0], &sc->arm_r0); |
| __put_user(env->regs[1], &sc->arm_r1); |
| __put_user(env->regs[2], &sc->arm_r2); |
| __put_user(env->regs[3], &sc->arm_r3); |
| __put_user(env->regs[4], &sc->arm_r4); |
| __put_user(env->regs[5], &sc->arm_r5); |
| __put_user(env->regs[6], &sc->arm_r6); |
| __put_user(env->regs[7], &sc->arm_r7); |
| __put_user(env->regs[8], &sc->arm_r8); |
| __put_user(env->regs[9], &sc->arm_r9); |
| __put_user(env->regs[10], &sc->arm_r10); |
| __put_user(env->regs[11], &sc->arm_fp); |
| __put_user(env->regs[12], &sc->arm_ip); |
| __put_user(env->regs[13], &sc->arm_sp); |
| __put_user(env->regs[14], &sc->arm_lr); |
| __put_user(env->regs[15], &sc->arm_pc); |
| #ifdef TARGET_CONFIG_CPU_32 |
| __put_user(cpsr_read(env), &sc->arm_cpsr); |
| #endif |
| |
| __put_user(/* current->thread.trap_no */ 0, &sc->trap_no); |
| __put_user(/* current->thread.error_code */ 0, &sc->error_code); |
| __put_user(/* current->thread.address */ 0, &sc->fault_address); |
| __put_user(mask, &sc->oldmask); |
| } |
| |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUARMState *regs, int framesize) |
| { |
| unsigned long sp = regs->regs[13]; |
| |
| /* |
| * This is the X/Open sanctioned signal stack switching. |
| */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| /* |
| * ATPCS B01 mandates 8-byte alignment |
| */ |
| return (sp - framesize) & ~7; |
| } |
| |
| static void |
| setup_return(CPUARMState *env, struct target_sigaction *ka, |
| abi_ulong *rc, abi_ulong frame_addr, int usig, abi_ulong rc_addr) |
| { |
| abi_ulong handler = ka->_sa_handler; |
| abi_ulong retcode; |
| int thumb = handler & 1; |
| uint32_t cpsr = cpsr_read(env); |
| |
| cpsr &= ~CPSR_IT; |
| if (thumb) { |
| cpsr |= CPSR_T; |
| } else { |
| cpsr &= ~CPSR_T; |
| } |
| |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| retcode = ka->sa_restorer; |
| } else { |
| unsigned int idx = thumb; |
| |
| if (ka->sa_flags & TARGET_SA_SIGINFO) { |
| idx += 2; |
| } |
| |
| __put_user(retcodes[idx], rc); |
| |
| retcode = rc_addr + thumb; |
| } |
| |
| env->regs[0] = usig; |
| env->regs[13] = frame_addr; |
| env->regs[14] = retcode; |
| env->regs[15] = handler & (thumb ? ~1 : ~3); |
| cpsr_write(env, cpsr, CPSR_IT | CPSR_T, CPSRWriteByInstr); |
| } |
| |
| static abi_ulong *setup_sigframe_v2_vfp(abi_ulong *regspace, CPUARMState *env) |
| { |
| int i; |
| struct target_vfp_sigframe *vfpframe; |
| vfpframe = (struct target_vfp_sigframe *)regspace; |
| __put_user(TARGET_VFP_MAGIC, &vfpframe->magic); |
| __put_user(sizeof(*vfpframe), &vfpframe->size); |
| for (i = 0; i < 32; i++) { |
| __put_user(*aa32_vfp_dreg(env, i), &vfpframe->ufp.fpregs[i]); |
| } |
| __put_user(vfp_get_fpscr(env), &vfpframe->ufp.fpscr); |
| __put_user(env->vfp.xregs[ARM_VFP_FPEXC], &vfpframe->ufp_exc.fpexc); |
| __put_user(env->vfp.xregs[ARM_VFP_FPINST], &vfpframe->ufp_exc.fpinst); |
| __put_user(env->vfp.xregs[ARM_VFP_FPINST2], &vfpframe->ufp_exc.fpinst2); |
| return (abi_ulong*)(vfpframe+1); |
| } |
| |
| static abi_ulong *setup_sigframe_v2_iwmmxt(abi_ulong *regspace, |
| CPUARMState *env) |
| { |
| int i; |
| struct target_iwmmxt_sigframe *iwmmxtframe; |
| iwmmxtframe = (struct target_iwmmxt_sigframe *)regspace; |
| __put_user(TARGET_IWMMXT_MAGIC, &iwmmxtframe->magic); |
| __put_user(sizeof(*iwmmxtframe), &iwmmxtframe->size); |
| for (i = 0; i < 16; i++) { |
| __put_user(env->iwmmxt.regs[i], &iwmmxtframe->regs[i]); |
| } |
| __put_user(env->vfp.xregs[ARM_IWMMXT_wCSSF], &iwmmxtframe->wcssf); |
| __put_user(env->vfp.xregs[ARM_IWMMXT_wCASF], &iwmmxtframe->wcssf); |
| __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR0], &iwmmxtframe->wcgr0); |
| __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR1], &iwmmxtframe->wcgr1); |
| __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR2], &iwmmxtframe->wcgr2); |
| __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR3], &iwmmxtframe->wcgr3); |
| return (abi_ulong*)(iwmmxtframe+1); |
| } |
| |
| static void setup_sigframe_v2(struct target_ucontext_v2 *uc, |
| target_sigset_t *set, CPUARMState *env) |
| { |
| struct target_sigaltstack stack; |
| int i; |
| abi_ulong *regspace; |
| |
| /* Clear all the bits of the ucontext we don't use. */ |
| memset(uc, 0, offsetof(struct target_ucontext_v2, tuc_mcontext)); |
| |
| memset(&stack, 0, sizeof(stack)); |
| __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); |
| memcpy(&uc->tuc_stack, &stack, sizeof(stack)); |
| |
| setup_sigcontext(&uc->tuc_mcontext, env, set->sig[0]); |
| /* Save coprocessor signal frame. */ |
| regspace = uc->tuc_regspace; |
| if (arm_feature(env, ARM_FEATURE_VFP)) { |
| regspace = setup_sigframe_v2_vfp(regspace, env); |
| } |
| if (arm_feature(env, ARM_FEATURE_IWMMXT)) { |
| regspace = setup_sigframe_v2_iwmmxt(regspace, env); |
| } |
| |
| /* Write terminating magic word */ |
| __put_user(0, regspace); |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &uc->tuc_sigmask.sig[i]); |
| } |
| } |
| |
| /* compare linux/arch/arm/kernel/signal.c:setup_frame() */ |
| static void setup_frame_v1(int usig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUARMState *regs) |
| { |
| struct sigframe_v1 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); |
| int i; |
| |
| trace_user_setup_frame(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto sigsegv; |
| } |
| |
| setup_sigcontext(&frame->sc, regs, set->sig[0]); |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->extramask[i - 1]); |
| } |
| |
| setup_return(regs, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct sigframe_v1, retcode)); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| sigsegv: |
| force_sigsegv(usig); |
| } |
| |
| static void setup_frame_v2(int usig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUARMState *regs) |
| { |
| struct sigframe_v2 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); |
| |
| trace_user_setup_frame(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto sigsegv; |
| } |
| |
| setup_sigframe_v2(&frame->uc, set, regs); |
| |
| setup_return(regs, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct sigframe_v2, retcode)); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| sigsegv: |
| force_sigsegv(usig); |
| } |
| |
| static void setup_frame(int usig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUARMState *regs) |
| { |
| if (get_osversion() >= 0x020612) { |
| setup_frame_v2(usig, ka, set, regs); |
| } else { |
| setup_frame_v1(usig, ka, set, regs); |
| } |
| } |
| |
| /* compare linux/arch/arm/kernel/signal.c:setup_rt_frame() */ |
| static void setup_rt_frame_v1(int usig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUARMState *env) |
| { |
| struct rt_sigframe_v1 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| struct target_sigaltstack stack; |
| int i; |
| abi_ulong info_addr, uc_addr; |
| |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto sigsegv; |
| } |
| |
| info_addr = frame_addr + offsetof(struct rt_sigframe_v1, info); |
| __put_user(info_addr, &frame->pinfo); |
| uc_addr = frame_addr + offsetof(struct rt_sigframe_v1, uc); |
| __put_user(uc_addr, &frame->puc); |
| tswap_siginfo(&frame->info, info); |
| |
| /* Clear all the bits of the ucontext we don't use. */ |
| memset(&frame->uc, 0, offsetof(struct target_ucontext_v1, tuc_mcontext)); |
| |
| memset(&stack, 0, sizeof(stack)); |
| __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); |
| memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack)); |
| |
| setup_sigcontext(&frame->uc.tuc_mcontext, env, set->sig[0]); |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| setup_return(env, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct rt_sigframe_v1, retcode)); |
| |
| env->regs[1] = info_addr; |
| env->regs[2] = uc_addr; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| sigsegv: |
| force_sigsegv(usig); |
| } |
| |
| static void setup_rt_frame_v2(int usig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUARMState *env) |
| { |
| struct rt_sigframe_v2 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| abi_ulong info_addr, uc_addr; |
| |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto sigsegv; |
| } |
| |
| info_addr = frame_addr + offsetof(struct rt_sigframe_v2, info); |
| uc_addr = frame_addr + offsetof(struct rt_sigframe_v2, uc); |
| tswap_siginfo(&frame->info, info); |
| |
| setup_sigframe_v2(&frame->uc, set, env); |
| |
| setup_return(env, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct rt_sigframe_v2, retcode)); |
| |
| env->regs[1] = info_addr; |
| env->regs[2] = uc_addr; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| sigsegv: |
| force_sigsegv(usig); |
| } |
| |
| static void setup_rt_frame(int usig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUARMState *env) |
| { |
| if (get_osversion() >= 0x020612) { |
| setup_rt_frame_v2(usig, ka, info, set, env); |
| } else { |
| setup_rt_frame_v1(usig, ka, info, set, env); |
| } |
| } |
| |
| static int |
| restore_sigcontext(CPUARMState *env, struct target_sigcontext *sc) |
| { |
| int err = 0; |
| uint32_t cpsr; |
| |
| __get_user(env->regs[0], &sc->arm_r0); |
| __get_user(env->regs[1], &sc->arm_r1); |
| __get_user(env->regs[2], &sc->arm_r2); |
| __get_user(env->regs[3], &sc->arm_r3); |
| __get_user(env->regs[4], &sc->arm_r4); |
| __get_user(env->regs[5], &sc->arm_r5); |
| __get_user(env->regs[6], &sc->arm_r6); |
| __get_user(env->regs[7], &sc->arm_r7); |
| __get_user(env->regs[8], &sc->arm_r8); |
| __get_user(env->regs[9], &sc->arm_r9); |
| __get_user(env->regs[10], &sc->arm_r10); |
| __get_user(env->regs[11], &sc->arm_fp); |
| __get_user(env->regs[12], &sc->arm_ip); |
| __get_user(env->regs[13], &sc->arm_sp); |
| __get_user(env->regs[14], &sc->arm_lr); |
| __get_user(env->regs[15], &sc->arm_pc); |
| #ifdef TARGET_CONFIG_CPU_32 |
| __get_user(cpsr, &sc->arm_cpsr); |
| cpsr_write(env, cpsr, CPSR_USER | CPSR_EXEC, CPSRWriteByInstr); |
| #endif |
| |
| err |= !valid_user_regs(env); |
| |
| return err; |
| } |
| |
| static long do_sigreturn_v1(CPUARMState *env) |
| { |
| abi_ulong frame_addr; |
| struct sigframe_v1 *frame = NULL; |
| target_sigset_t set; |
| sigset_t host_set; |
| int i; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| frame_addr = env->regs[13]; |
| trace_user_do_sigreturn(env, frame_addr); |
| if (frame_addr & 7) { |
| goto badframe; |
| } |
| |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| __get_user(set.sig[0], &frame->sc.oldmask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(set.sig[i], &frame->extramask[i - 1]); |
| } |
| |
| target_to_host_sigset_internal(&host_set, &set); |
| set_sigmask(&host_set); |
| |
| if (restore_sigcontext(env, &frame->sc)) { |
| goto badframe; |
| } |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| static abi_ulong *restore_sigframe_v2_vfp(CPUARMState *env, abi_ulong *regspace) |
| { |
| int i; |
| abi_ulong magic, sz; |
| uint32_t fpscr, fpexc; |
| struct target_vfp_sigframe *vfpframe; |
| vfpframe = (struct target_vfp_sigframe *)regspace; |
| |
| __get_user(magic, &vfpframe->magic); |
| __get_user(sz, &vfpframe->size); |
| if (magic != TARGET_VFP_MAGIC || sz != sizeof(*vfpframe)) { |
| return 0; |
| } |
| for (i = 0; i < 32; i++) { |
| __get_user(*aa32_vfp_dreg(env, i), &vfpframe->ufp.fpregs[i]); |
| } |
| __get_user(fpscr, &vfpframe->ufp.fpscr); |
| vfp_set_fpscr(env, fpscr); |
| __get_user(fpexc, &vfpframe->ufp_exc.fpexc); |
| /* Sanitise FPEXC: ensure VFP is enabled, FPINST2 is invalid |
| * and the exception flag is cleared |
| */ |
| fpexc |= (1 << 30); |
| fpexc &= ~((1 << 31) | (1 << 28)); |
| env->vfp.xregs[ARM_VFP_FPEXC] = fpexc; |
| __get_user(env->vfp.xregs[ARM_VFP_FPINST], &vfpframe->ufp_exc.fpinst); |
| __get_user(env->vfp.xregs[ARM_VFP_FPINST2], &vfpframe->ufp_exc.fpinst2); |
| return (abi_ulong*)(vfpframe + 1); |
| } |
| |
| static abi_ulong *restore_sigframe_v2_iwmmxt(CPUARMState *env, |
| abi_ulong *regspace) |
| { |
| int i; |
| abi_ulong magic, sz; |
| struct target_iwmmxt_sigframe *iwmmxtframe; |
| iwmmxtframe = (struct target_iwmmxt_sigframe *)regspace; |
| |
| __get_user(magic, &iwmmxtframe->magic); |
| __get_user(sz, &iwmmxtframe->size); |
| if (magic != TARGET_IWMMXT_MAGIC || sz != sizeof(*iwmmxtframe)) { |
| return 0; |
| } |
| for (i = 0; i < 16; i++) { |
| __get_user(env->iwmmxt.regs[i], &iwmmxtframe->regs[i]); |
| } |
| __get_user(env->vfp.xregs[ARM_IWMMXT_wCSSF], &iwmmxtframe->wcssf); |
| __get_user(env->vfp.xregs[ARM_IWMMXT_wCASF], &iwmmxtframe->wcssf); |
| __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR0], &iwmmxtframe->wcgr0); |
| __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR1], &iwmmxtframe->wcgr1); |
| __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR2], &iwmmxtframe->wcgr2); |
| __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR3], &iwmmxtframe->wcgr3); |
| return (abi_ulong*)(iwmmxtframe + 1); |
| } |
| |
| static int do_sigframe_return_v2(CPUARMState *env, |
| target_ulong context_addr, |
| struct target_ucontext_v2 *uc) |
| { |
| sigset_t host_set; |
| abi_ulong *regspace; |
| |
| target_to_host_sigset(&host_set, &uc->tuc_sigmask); |
| set_sigmask(&host_set); |
| |
| if (restore_sigcontext(env, &uc->tuc_mcontext)) |
| return 1; |
| |
| /* Restore coprocessor signal frame */ |
| regspace = uc->tuc_regspace; |
| if (arm_feature(env, ARM_FEATURE_VFP)) { |
| regspace = restore_sigframe_v2_vfp(env, regspace); |
| if (!regspace) { |
| return 1; |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_IWMMXT)) { |
| regspace = restore_sigframe_v2_iwmmxt(env, regspace); |
| if (!regspace) { |
| return 1; |
| } |
| } |
| |
| if (do_sigaltstack(context_addr |
| + offsetof(struct target_ucontext_v2, tuc_stack), |
| 0, get_sp_from_cpustate(env)) == -EFAULT) { |
| return 1; |
| } |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| |
| return 0; |
| } |
| |
| static long do_sigreturn_v2(CPUARMState *env) |
| { |
| abi_ulong frame_addr; |
| struct sigframe_v2 *frame = NULL; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| frame_addr = env->regs[13]; |
| trace_user_do_sigreturn(env, frame_addr); |
| if (frame_addr & 7) { |
| goto badframe; |
| } |
| |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| if (do_sigframe_return_v2(env, |
| frame_addr |
| + offsetof(struct sigframe_v2, uc), |
| &frame->uc)) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_sigreturn(CPUARMState *env) |
| { |
| if (get_osversion() >= 0x020612) { |
| return do_sigreturn_v2(env); |
| } else { |
| return do_sigreturn_v1(env); |
| } |
| } |
| |
| static long do_rt_sigreturn_v1(CPUARMState *env) |
| { |
| abi_ulong frame_addr; |
| struct rt_sigframe_v1 *frame = NULL; |
| sigset_t host_set; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| frame_addr = env->regs[13]; |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (frame_addr & 7) { |
| goto badframe; |
| } |
| |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask); |
| set_sigmask(&host_set); |
| |
| if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { |
| goto badframe; |
| } |
| |
| if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe_v1, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) |
| goto badframe; |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| static long do_rt_sigreturn_v2(CPUARMState *env) |
| { |
| abi_ulong frame_addr; |
| struct rt_sigframe_v2 *frame = NULL; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| frame_addr = env->regs[13]; |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (frame_addr & 7) { |
| goto badframe; |
| } |
| |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| if (do_sigframe_return_v2(env, |
| frame_addr |
| + offsetof(struct rt_sigframe_v2, uc), |
| &frame->uc)) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUARMState *env) |
| { |
| if (get_osversion() >= 0x020612) { |
| return do_rt_sigreturn_v2(env); |
| } else { |
| return do_rt_sigreturn_v1(env); |
| } |
| } |
| |
| #elif defined(TARGET_SPARC) |
| |
| #define __SUNOS_MAXWIN 31 |
| |
| /* This is what SunOS does, so shall I. */ |
| struct target_sigcontext { |
| abi_ulong sigc_onstack; /* state to restore */ |
| |
| abi_ulong sigc_mask; /* sigmask to restore */ |
| abi_ulong sigc_sp; /* stack pointer */ |
| abi_ulong sigc_pc; /* program counter */ |
| abi_ulong sigc_npc; /* next program counter */ |
| abi_ulong sigc_psr; /* for condition codes etc */ |
| abi_ulong sigc_g1; /* User uses these two registers */ |
| abi_ulong sigc_o0; /* within the trampoline code. */ |
| |
| /* Now comes information regarding the users window set |
| * at the time of the signal. |
| */ |
| abi_ulong sigc_oswins; /* outstanding windows */ |
| |
| /* stack ptrs for each regwin buf */ |
| char *sigc_spbuf[__SUNOS_MAXWIN]; |
| |
| /* Windows to restore after signal */ |
| struct { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| } sigc_wbuf[__SUNOS_MAXWIN]; |
| }; |
| /* A Sparc stack frame */ |
| struct sparc_stackf { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| /* It's simpler to treat fp and callers_pc as elements of ins[] |
| * since we never need to access them ourselves. |
| */ |
| char *structptr; |
| abi_ulong xargs[6]; |
| abi_ulong xxargs[1]; |
| }; |
| |
| typedef struct { |
| struct { |
| abi_ulong psr; |
| abi_ulong pc; |
| abi_ulong npc; |
| abi_ulong y; |
| abi_ulong u_regs[16]; /* globals and ins */ |
| } si_regs; |
| int si_mask; |
| } __siginfo_t; |
| |
| typedef struct { |
| abi_ulong si_float_regs[32]; |
| unsigned long si_fsr; |
| unsigned long si_fpqdepth; |
| struct { |
| unsigned long *insn_addr; |
| unsigned long insn; |
| } si_fpqueue [16]; |
| } qemu_siginfo_fpu_t; |
| |
| |
| struct target_signal_frame { |
| struct sparc_stackf ss; |
| __siginfo_t info; |
| abi_ulong fpu_save; |
| abi_ulong insns[2] __attribute__ ((aligned (8))); |
| abi_ulong extramask[TARGET_NSIG_WORDS - 1]; |
| abi_ulong extra_size; /* Should be 0 */ |
| qemu_siginfo_fpu_t fpu_state; |
| }; |
| struct target_rt_signal_frame { |
| struct sparc_stackf ss; |
| siginfo_t info; |
| abi_ulong regs[20]; |
| sigset_t mask; |
| abi_ulong fpu_save; |
| unsigned int insns[2]; |
| stack_t stack; |
| unsigned int extra_size; /* Should be 0 */ |
| qemu_siginfo_fpu_t fpu_state; |
| }; |
| |
| #define UREG_O0 16 |
| #define UREG_O6 22 |
| #define UREG_I0 0 |
| #define UREG_I1 1 |
| #define UREG_I2 2 |
| #define UREG_I3 3 |
| #define UREG_I4 4 |
| #define UREG_I5 5 |
| #define UREG_I6 6 |
| #define UREG_I7 7 |
| #define UREG_L0 8 |
| #define UREG_FP UREG_I6 |
| #define UREG_SP UREG_O6 |
| |
| static inline abi_ulong get_sigframe(struct target_sigaction *sa, |
| CPUSPARCState *env, |
| unsigned long framesize) |
| { |
| abi_ulong sp; |
| |
| sp = env->regwptr[UREG_FP]; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if (sa->sa_flags & TARGET_SA_ONSTACK) { |
| if (!on_sig_stack(sp) |
| && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| } |
| return sp - framesize; |
| } |
| |
| static int |
| setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask) |
| { |
| int err = 0, i; |
| |
| __put_user(env->psr, &si->si_regs.psr); |
| __put_user(env->pc, &si->si_regs.pc); |
| __put_user(env->npc, &si->si_regs.npc); |
| __put_user(env->y, &si->si_regs.y); |
| for (i=0; i < 8; i++) { |
| __put_user(env->gregs[i], &si->si_regs.u_regs[i]); |
| } |
| for (i=0; i < 8; i++) { |
| __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); |
| } |
| __put_user(mask, &si->si_mask); |
| return err; |
| } |
| |
| #if 0 |
| static int |
| setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ |
| CPUSPARCState *env, unsigned long mask) |
| { |
| int err = 0; |
| |
| __put_user(mask, &sc->sigc_mask); |
| __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); |
| __put_user(env->pc, &sc->sigc_pc); |
| __put_user(env->npc, &sc->sigc_npc); |
| __put_user(env->psr, &sc->sigc_psr); |
| __put_user(env->gregs[1], &sc->sigc_g1); |
| __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); |
| |
| return err; |
| } |
| #endif |
| #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUSPARCState *env) |
| { |
| abi_ulong sf_addr; |
| struct target_signal_frame *sf; |
| int sigframe_size, err, i; |
| |
| /* 1. Make sure everything is clean */ |
| //synchronize_user_stack(); |
| |
| sigframe_size = NF_ALIGNEDSZ; |
| sf_addr = get_sigframe(ka, env, sigframe_size); |
| trace_user_setup_frame(env, sf_addr); |
| |
| sf = lock_user(VERIFY_WRITE, sf_addr, |
| sizeof(struct target_signal_frame), 0); |
| if (!sf) { |
| goto sigsegv; |
| } |
| #if 0 |
| if (invalid_frame_pointer(sf, sigframe_size)) |
| goto sigill_and_return; |
| #endif |
| /* 2. Save the current process state */ |
| err = setup___siginfo(&sf->info, env, set->sig[0]); |
| __put_user(0, &sf->extra_size); |
| |
| //save_fpu_state(regs, &sf->fpu_state); |
| //__put_user(&sf->fpu_state, &sf->fpu_save); |
| |
| __put_user(set->sig[0], &sf->info.si_mask); |
| for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { |
| __put_user(set->sig[i + 1], &sf->extramask[i]); |
| } |
| |
| for (i = 0; i < 8; i++) { |
| __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); |
| } |
| for (i = 0; i < 8; i++) { |
| __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); |
| } |
| if (err) |
| goto sigsegv; |
| |
| /* 3. signal handler back-trampoline and parameters */ |
| env->regwptr[UREG_FP] = sf_addr; |
| env->regwptr[UREG_I0] = sig; |
| env->regwptr[UREG_I1] = sf_addr + |
| offsetof(struct target_signal_frame, info); |
| env->regwptr[UREG_I2] = sf_addr + |
| offsetof(struct target_signal_frame, info); |
| |
| /* 4. signal handler */ |
| env->pc = ka->_sa_handler; |
| env->npc = (env->pc + 4); |
| /* 5. return to kernel instructions */ |
| if (ka->sa_restorer) { |
| env->regwptr[UREG_I7] = ka->sa_restorer; |
| } else { |
| uint32_t val32; |
| |
| env->regwptr[UREG_I7] = sf_addr + |
| offsetof(struct target_signal_frame, insns) - 2 * 4; |
| |
| /* mov __NR_sigreturn, %g1 */ |
| val32 = 0x821020d8; |
| __put_user(val32, &sf->insns[0]); |
| |
| /* t 0x10 */ |
| val32 = 0x91d02010; |
| __put_user(val32, &sf->insns[1]); |
| if (err) |
| goto sigsegv; |
| |
| /* Flush instruction space. */ |
| // flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); |
| // tb_flush(env); |
| } |
| unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); |
| return; |
| #if 0 |
| sigill_and_return: |
| force_sig(TARGET_SIGILL); |
| #endif |
| sigsegv: |
| unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); |
| force_sigsegv(sig); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUSPARCState *env) |
| { |
| fprintf(stderr, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUSPARCState *env) |
| { |
| abi_ulong sf_addr; |
| struct target_signal_frame *sf; |
| uint32_t up_psr, pc, npc; |
| target_sigset_t set; |
| sigset_t host_set; |
| int err=0, i; |
| |
| sf_addr = env->regwptr[UREG_FP]; |
| trace_user_do_sigreturn(env, sf_addr); |
| if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { |
| goto segv_and_exit; |
| } |
| |
| /* 1. Make sure we are not getting garbage from the user */ |
| |
| if (sf_addr & 3) |
| goto segv_and_exit; |
| |
| __get_user(pc, &sf->info.si_regs.pc); |
| __get_user(npc, &sf->info.si_regs.npc); |
| |
| if ((pc | npc) & 3) { |
| goto segv_and_exit; |
| } |
| |
| /* 2. Restore the state */ |
| __get_user(up_psr, &sf->info.si_regs.psr); |
| |
| /* User can only change condition codes and FPU enabling in %psr. */ |
| env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) |
| | (env->psr & ~(PSR_ICC /* | PSR_EF */)); |
| |
| env->pc = pc; |
| env->npc = npc; |
| __get_user(env->y, &sf->info.si_regs.y); |
| for (i=0; i < 8; i++) { |
| __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); |
| } |
| for (i=0; i < 8; i++) { |
| __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); |
| } |
| |
| /* FIXME: implement FPU save/restore: |
| * __get_user(fpu_save, &sf->fpu_save); |
| * if (fpu_save) |
| * err |= restore_fpu_state(env, fpu_save); |
| */ |
| |
| /* This is pretty much atomic, no amount locking would prevent |
| * the races which exist anyways. |
| */ |
| __get_user(set.sig[0], &sf->info.si_mask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(set.sig[i], &sf->extramask[i - 1]); |
| } |
| |
| target_to_host_sigset_internal(&host_set, &set); |
| set_sigmask(&host_set); |
| |
| if (err) { |
| goto segv_and_exit; |
| } |
| unlock_user_struct(sf, sf_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| segv_and_exit: |
| unlock_user_struct(sf, sf_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUSPARCState *env) |
| { |
| trace_user_do_rt_sigreturn(env, 0); |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
| #define SPARC_MC_TSTATE 0 |
| #define SPARC_MC_PC 1 |
| #define SPARC_MC_NPC 2 |
| #define SPARC_MC_Y 3 |
| #define SPARC_MC_G1 4 |
| #define SPARC_MC_G2 5 |
| #define SPARC_MC_G3 6 |
| #define SPARC_MC_G4 7 |
| #define SPARC_MC_G5 8 |
| #define SPARC_MC_G6 9 |
| #define SPARC_MC_G7 10 |
| #define SPARC_MC_O0 11 |
| #define SPARC_MC_O1 12 |
| #define SPARC_MC_O2 13 |
| #define SPARC_MC_O3 14 |
| #define SPARC_MC_O4 15 |
| #define SPARC_MC_O5 16 |
| #define SPARC_MC_O6 17 |
| #define SPARC_MC_O7 18 |
| #define SPARC_MC_NGREG 19 |
| |
| typedef abi_ulong target_mc_greg_t; |
| typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; |
| |
| struct target_mc_fq { |
| abi_ulong *mcfq_addr; |
| uint32_t mcfq_insn; |
| }; |
| |
| struct target_mc_fpu { |
| union { |
| uint32_t sregs[32]; |
| uint64_t dregs[32]; |
| //uint128_t qregs[16]; |
| } mcfpu_fregs; |
| abi_ulong mcfpu_fsr; |
| abi_ulong mcfpu_fprs; |
| abi_ulong mcfpu_gsr; |
| struct target_mc_fq *mcfpu_fq; |
| unsigned char mcfpu_qcnt; |
| unsigned char mcfpu_qentsz; |
| unsigned char mcfpu_enab; |
| }; |
| typedef struct target_mc_fpu target_mc_fpu_t; |
| |
| typedef struct { |
| target_mc_gregset_t mc_gregs; |
| target_mc_greg_t mc_fp; |
| target_mc_greg_t mc_i7; |
| target_mc_fpu_t mc_fpregs; |
| } target_mcontext_t; |
| |
| struct target_ucontext { |
| struct target_ucontext *tuc_link; |
| abi_ulong tuc_flags; |
| target_sigset_t tuc_sigmask; |
| target_mcontext_t tuc_mcontext; |
| }; |
| |
| /* A V9 register window */ |
| struct target_reg_window { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| }; |
| |
| #define TARGET_STACK_BIAS 2047 |
| |
| /* {set, get}context() needed for 64-bit SparcLinux userland. */ |
| void sparc64_set_context(CPUSPARCState *env) |
| { |
| abi_ulong ucp_addr; |
| struct target_ucontext *ucp; |
| target_mc_gregset_t *grp; |
| abi_ulong pc, npc, tstate; |
| abi_ulong fp, i7, w_addr; |
| unsigned int i; |
| |
| ucp_addr = env->regwptr[UREG_I0]; |
| if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { |
| goto do_sigsegv; |
| } |
| grp = &ucp->tuc_mcontext.mc_gregs; |
| __get_user(pc, &((*grp)[SPARC_MC_PC])); |
| __get_user(npc, &((*grp)[SPARC_MC_NPC])); |
| if ((pc | npc) & 3) { |
| goto do_sigsegv; |
| } |
| if (env->regwptr[UREG_I1]) { |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| if (TARGET_NSIG_WORDS == 1) { |
| __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); |
| } else { |
| abi_ulong *src, *dst; |
| src = ucp->tuc_sigmask.sig; |
| dst = target_set.sig; |
| for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { |
| __get_user(*dst, src); |
| } |
| } |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); |
| } |
| env->pc = pc; |
| env->npc = npc; |
| __get_user(env->y, &((*grp)[SPARC_MC_Y])); |
| __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); |
| env->asi = (tstate >> 24) & 0xff; |
| cpu_put_ccr(env, tstate >> 32); |
| cpu_put_cwp64(env, tstate & 0x1f); |
| __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); |
| __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); |
| __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); |
| __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); |
| __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); |
| __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); |
| __get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7])); |
| __get_user(env->regwptr[UREG_I0], (&(*grp)[SPARC_MC_O0])); |
| __get_user(env->regwptr[UREG_I1], (&(*grp)[SPARC_MC_O1])); |
| __get_user(env->regwptr[UREG_I2], (&(*grp)[SPARC_MC_O2])); |
| __get_user(env->regwptr[UREG_I3], (&(*grp)[SPARC_MC_O3])); |
| __get_user(env->regwptr[UREG_I4], (&(*grp)[SPARC_MC_O4])); |
| __get_user(env->regwptr[UREG_I5], (&(*grp)[SPARC_MC_O5])); |
| __get_user(env->regwptr[UREG_I6], (&(*grp)[SPARC_MC_O6])); |
| __get_user(env->regwptr[UREG_I7], (&(*grp)[SPARC_MC_O7])); |
| |
| __get_user(fp, &(ucp->tuc_mcontext.mc_fp)); |
| __get_user(i7, &(ucp->tuc_mcontext.mc_i7)); |
| |
| w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; |
| if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| /* FIXME this does not match how the kernel handles the FPU in |
| * its sparc64_set_context implementation. In particular the FPU |
| * is only restored if fenab is non-zero in: |
| * __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab)); |
| */ |
| __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs)); |
| { |
| uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; |
| for (i = 0; i < 64; i++, src++) { |
| if (i & 1) { |
| __get_user(env->fpr[i/2].l.lower, src); |
| } else { |
| __get_user(env->fpr[i/2].l.upper, src); |
| } |
| } |
| } |
| __get_user(env->fsr, |
| &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr)); |
| __get_user(env->gsr, |
| &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr)); |
| unlock_user_struct(ucp, ucp_addr, 0); |
| return; |
| do_sigsegv: |
| unlock_user_struct(ucp, ucp_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| void sparc64_get_context(CPUSPARCState *env) |
| { |
| abi_ulong ucp_addr; |
| struct target_ucontext *ucp; |
| target_mc_gregset_t *grp; |
| target_mcontext_t *mcp; |
| abi_ulong fp, i7, w_addr; |
| int err; |
| unsigned int i; |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| ucp_addr = env->regwptr[UREG_I0]; |
| if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { |
| goto do_sigsegv; |
| } |
| |
| mcp = &ucp->tuc_mcontext; |
| grp = &mcp->mc_gregs; |
| |
| /* Skip over the trap instruction, first. */ |
| env->pc = env->npc; |
| env->npc += 4; |
| |
| /* If we're only reading the signal mask then do_sigprocmask() |
| * is guaranteed not to fail, which is important because we don't |
| * have any way to signal a failure or restart this operation since |
| * this is not a normal syscall. |
| */ |
| err = do_sigprocmask(0, NULL, &set); |
| assert(err == 0); |
| host_to_target_sigset_internal(&target_set, &set); |
| if (TARGET_NSIG_WORDS == 1) { |
| __put_user(target_set.sig[0], |
| (abi_ulong *)&ucp->tuc_sigmask); |
| } else { |
| abi_ulong *src, *dst; |
| src = target_set.sig; |
| dst = ucp->tuc_sigmask.sig; |
| for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { |
| __put_user(*src, dst); |
| } |
| if (err) |
| goto do_sigsegv; |
| } |
| |
| /* XXX: tstate must be saved properly */ |
| // __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE])); |
| __put_user(env->pc, &((*grp)[SPARC_MC_PC])); |
| __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); |
| __put_user(env->y, &((*grp)[SPARC_MC_Y])); |
| __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); |
| __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); |
| __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); |
| __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); |
| __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); |
| __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); |
| __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); |
| __put_user(env->regwptr[UREG_I0], &((*grp)[SPARC_MC_O0])); |
| __put_user(env->regwptr[UREG_I1], &((*grp)[SPARC_MC_O1])); |
| __put_user(env->regwptr[UREG_I2], &((*grp)[SPARC_MC_O2])); |
| __put_user(env->regwptr[UREG_I3], &((*grp)[SPARC_MC_O3])); |
| __put_user(env->regwptr[UREG_I4], &((*grp)[SPARC_MC_O4])); |
| __put_user(env->regwptr[UREG_I5], &((*grp)[SPARC_MC_O5])); |
| __put_user(env->regwptr[UREG_I6], &((*grp)[SPARC_MC_O6])); |
| __put_user(env->regwptr[UREG_I7], &((*grp)[SPARC_MC_O7])); |
| |
| w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; |
| fp = i7 = 0; |
| if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| __put_user(fp, &(mcp->mc_fp)); |
| __put_user(i7, &(mcp->mc_i7)); |
| |
| { |
| uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; |
| for (i = 0; i < 64; i++, dst++) { |
| if (i & 1) { |
| __put_user(env->fpr[i/2].l.lower, dst); |
| } else { |
| __put_user(env->fpr[i/2].l.upper, dst); |
| } |
| } |
| } |
| __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); |
| __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); |
| __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); |
| |
| if (err) |
| goto do_sigsegv; |
| unlock_user_struct(ucp, ucp_addr, 1); |
| return; |
| do_sigsegv: |
| unlock_user_struct(ucp, ucp_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| } |
| #endif |
| #elif defined(TARGET_MIPS) || defined(TARGET_MIPS64) |
| |
| # if defined(TARGET_ABI_MIPSO32) |
| struct target_sigcontext { |
| uint32_t sc_regmask; /* Unused */ |
| uint32_t sc_status; |
| uint64_t sc_pc; |
| uint64_t sc_regs[32]; |
| uint64_t sc_fpregs[32]; |
| uint32_t sc_ownedfp; /* Unused */ |
| uint32_t sc_fpc_csr; |
| uint32_t sc_fpc_eir; /* Unused */ |
| uint32_t sc_used_math; |
| uint32_t sc_dsp; /* dsp status, was sc_ssflags */ |
| uint32_t pad0; |
| uint64_t sc_mdhi; |
| uint64_t sc_mdlo; |
| target_ulong sc_hi1; /* Was sc_cause */ |
| target_ulong sc_lo1; /* Was sc_badvaddr */ |
| target_ulong sc_hi2; /* Was sc_sigset[4] */ |
| target_ulong sc_lo2; |
| target_ulong sc_hi3; |
| target_ulong sc_lo3; |
| }; |
| # else /* N32 || N64 */ |
| struct target_sigcontext { |
| uint64_t sc_regs[32]; |
| uint64_t sc_fpregs[32]; |
| uint64_t sc_mdhi; |
| uint64_t sc_hi1; |
| uint64_t sc_hi2; |
| uint64_t sc_hi3; |
| uint64_t sc_mdlo; |
| uint64_t sc_lo1; |
| uint64_t sc_lo2; |
| uint64_t sc_lo3; |
| uint64_t sc_pc; |
| uint32_t sc_fpc_csr; |
| uint32_t sc_used_math; |
| uint32_t sc_dsp; |
| uint32_t sc_reserved; |
| }; |
| # endif /* O32 */ |
| |
| struct sigframe { |
| uint32_t sf_ass[4]; /* argument save space for o32 */ |
| uint32_t sf_code[2]; /* signal trampoline */ |
| struct target_sigcontext sf_sc; |
| target_sigset_t sf_mask; |
| }; |
| |
| struct target_ucontext { |
| target_ulong tuc_flags; |
| target_ulong tuc_link; |
| target_stack_t tuc_stack; |
| target_ulong pad0; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; |
| }; |
| |
| struct target_rt_sigframe { |
| uint32_t rs_ass[4]; /* argument save space for o32 */ |
| uint32_t rs_code[2]; /* signal trampoline */ |
| struct target_siginfo rs_info; |
| struct target_ucontext rs_uc; |
| }; |
| |
| /* Install trampoline to jump back from signal handler */ |
| static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall) |
| { |
| int err = 0; |
| |
| /* |
| * Set up the return code ... |
| * |
| * li v0, __NR__foo_sigreturn |
| * syscall |
| */ |
| |
| __put_user(0x24020000 + syscall, tramp + 0); |
| __put_user(0x0000000c , tramp + 1); |
| return err; |
| } |
| |
| static inline void setup_sigcontext(CPUMIPSState *regs, |
| struct target_sigcontext *sc) |
| { |
| int i; |
| |
| __put_user(exception_resume_pc(regs), &sc->sc_pc); |
| regs->hflags &= ~MIPS_HFLAG_BMASK; |
| |
| __put_user(0, &sc->sc_regs[0]); |
| for (i = 1; i < 32; ++i) { |
| __put_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); |
| } |
| |
| __put_user(regs->active_tc.HI[0], &sc->sc_mdhi); |
| __put_user(regs->active_tc.LO[0], &sc->sc_mdlo); |
| |
| /* Rather than checking for dsp existence, always copy. The storage |
| would just be garbage otherwise. */ |
| __put_user(regs->active_tc.HI[1], &sc->sc_hi1); |
| __put_user(regs->active_tc.HI[2], &sc->sc_hi2); |
| __put_user(regs->active_tc.HI[3], &sc->sc_hi3); |
| __put_user(regs->active_tc.LO[1], &sc->sc_lo1); |
| __put_user(regs->active_tc.LO[2], &sc->sc_lo2); |
| __put_user(regs->active_tc.LO[3], &sc->sc_lo3); |
| { |
| uint32_t dsp = cpu_rddsp(0x3ff, regs); |
| __put_user(dsp, &sc->sc_dsp); |
| } |
| |
| __put_user(1, &sc->sc_used_math); |
| |
| for (i = 0; i < 32; ++i) { |
| __put_user(regs->active_fpu.fpr[i].d, &sc->sc_fpregs[i]); |
| } |
| } |
| |
| static inline void |
| restore_sigcontext(CPUMIPSState *regs, struct target_sigcontext *sc) |
| { |
| int i; |
| |
| __get_user(regs->CP0_EPC, &sc->sc_pc); |
| |
| __get_user(regs->active_tc.HI[0], &sc->sc_mdhi); |
| __get_user(regs->active_tc.LO[0], &sc->sc_mdlo); |
| |
| for (i = 1; i < 32; ++i) { |
| __get_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); |
| } |
| |
| __get_user(regs->active_tc.HI[1], &sc->sc_hi1); |
| __get_user(regs->active_tc.HI[2], &sc->sc_hi2); |
| __get_user(regs->active_tc.HI[3], &sc->sc_hi3); |
| __get_user(regs->active_tc.LO[1], &sc->sc_lo1); |
| __get_user(regs->active_tc.LO[2], &sc->sc_lo2); |
| __get_user(regs->active_tc.LO[3], &sc->sc_lo3); |
| { |
| uint32_t dsp; |
| __get_user(dsp, &sc->sc_dsp); |
| cpu_wrdsp(dsp, 0x3ff, regs); |
| } |
| |
| for (i = 0; i < 32; ++i) { |
| __get_user(regs->active_fpu.fpr[i].d, &sc->sc_fpregs[i]); |
| } |
| } |
| |
| /* |
| * Determine which stack to use.. |
| */ |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUMIPSState *regs, size_t frame_size) |
| { |
| unsigned long sp; |
| |
| /* Default to using normal stack */ |
| sp = regs->active_tc.gpr[29]; |
| |
| /* |
| * FPU emulator may have its own trampoline active just |
| * above the user stack, 16-bytes before the next lowest |
| * 16 byte boundary. Try to avoid trashing it. |
| */ |
| sp -= 32; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| return (sp - frame_size) & ~7; |
| } |
| |
| static void mips_set_hflags_isa_mode_from_pc(CPUMIPSState *env) |
| { |
| if (env->insn_flags & (ASE_MIPS16 | ASE_MICROMIPS)) { |
| env->hflags &= ~MIPS_HFLAG_M16; |
| env->hflags |= (env->active_tc.PC & 1) << MIPS_HFLAG_M16_SHIFT; |
| env->active_tc.PC &= ~(target_ulong) 1; |
| } |
| } |
| |
| # if defined(TARGET_ABI_MIPSO32) |
| /* compare linux/arch/mips/kernel/signal.c:setup_frame() */ |
| static void setup_frame(int sig, struct target_sigaction * ka, |
| target_sigset_t *set, CPUMIPSState *regs) |
| { |
| struct sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| frame_addr = get_sigframe(ka, regs, sizeof(*frame)); |
| trace_user_setup_frame(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| install_sigtramp(frame->sf_code, TARGET_NR_sigreturn); |
| |
| setup_sigcontext(regs, &frame->sf_sc); |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->sf_mask.sig[i]); |
| } |
| |
| /* |
| * Arguments to signal handler: |
| * |
| * a0 = signal number |
| * a1 = 0 (should be cause) |
| * a2 = pointer to struct sigcontext |
| * |
| * $25 and PC point to the signal handler, $29 points to the |
| * struct sigframe. |
| */ |
| regs->active_tc.gpr[ 4] = sig; |
| regs->active_tc.gpr[ 5] = 0; |
| regs->active_tc.gpr[ 6] = frame_addr + offsetof(struct sigframe, sf_sc); |
| regs->active_tc.gpr[29] = frame_addr; |
| regs->active_tc.gpr[31] = frame_addr + offsetof(struct sigframe, sf_code); |
| /* The original kernel code sets CP0_EPC to the handler |
| * since it returns to userland using eret |
| * we cannot do this here, and we must set PC directly */ |
| regs->active_tc.PC = regs->active_tc.gpr[25] = ka->_sa_handler; |
| mips_set_hflags_isa_mode_from_pc(regs); |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| |
| long do_sigreturn(CPUMIPSState *regs) |
| { |
| struct sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| target_sigset_t target_set; |
| int i; |
| |
| frame_addr = regs->active_tc.gpr[29]; |
| trace_user_do_sigreturn(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(target_set.sig[i], &frame->sf_mask.sig[i]); |
| } |
| |
| target_to_host_sigset_internal(&blocked, &target_set); |
| set_sigmask(&blocked); |
| |
| restore_sigcontext(regs, &frame->sf_sc); |
| |
| #if 0 |
| /* |
| * Don't let your children do this ... |
| */ |
| __asm__ __volatile__( |
| "move\t$29, %0\n\t" |
| "j\tsyscall_exit" |
| :/* no outputs */ |
| :"r" (®s)); |
| /* Unreached */ |
| #endif |
| |
| regs->active_tc.PC = regs->CP0_EPC; |
| mips_set_hflags_isa_mode_from_pc(regs); |
| /* I am not sure this is right, but it seems to work |
| * maybe a problem with nested signals ? */ |
| regs->CP0_EPC = 0; |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| # endif /* O32 */ |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUMIPSState *env) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| install_sigtramp(frame->rs_code, TARGET_NR_rt_sigreturn); |
| |
| tswap_siginfo(&frame->rs_info, info); |
| |
| __put_user(0, &frame->rs_uc.tuc_flags); |
| __put_user(0, &frame->rs_uc.tuc_link); |
| __put_user(target_sigaltstack_used.ss_sp, &frame->rs_uc.tuc_stack.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &frame->rs_uc.tuc_stack.ss_size); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), |
| &frame->rs_uc.tuc_stack.ss_flags); |
| |
| setup_sigcontext(env, &frame->rs_uc.tuc_mcontext); |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->rs_uc.tuc_sigmask.sig[i]); |
| } |
| |
| /* |
| * Arguments to signal handler: |
| * |
| * a0 = signal number |
| * a1 = pointer to siginfo_t |
| * a2 = pointer to ucontext_t |
| * |
| * $25 and PC point to the signal handler, $29 points to the |
| * struct sigframe. |
| */ |
| env->active_tc.gpr[ 4] = sig; |
| env->active_tc.gpr[ 5] = frame_addr |
| + offsetof(struct target_rt_sigframe, rs_info); |
| env->active_tc.gpr[ 6] = frame_addr |
| + offsetof(struct target_rt_sigframe, rs_uc); |
| env->active_tc.gpr[29] = frame_addr; |
| env->active_tc.gpr[31] = frame_addr |
| + offsetof(struct target_rt_sigframe, rs_code); |
| /* The original kernel code sets CP0_EPC to the handler |
| * since it returns to userland using eret |
| * we cannot do this here, and we must set PC directly */ |
| env->active_tc.PC = env->active_tc.gpr[25] = ka->_sa_handler; |
| mips_set_hflags_isa_mode_from_pc(env); |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(sig); |
| } |
| |
| long do_rt_sigreturn(CPUMIPSState *env) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| |
| frame_addr = env->active_tc.gpr[29]; |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| target_to_host_sigset(&blocked, &frame->rs_uc.tuc_sigmask); |
| set_sigmask(&blocked); |
| |
| restore_sigcontext(env, &frame->rs_uc.tuc_mcontext); |
| |
| if (do_sigaltstack(frame_addr + |
| offsetof(struct target_rt_sigframe, rs_uc.tuc_stack), |
| 0, get_sp_from_cpustate(env)) == -EFAULT) |
| goto badframe; |
| |
| env->active_tc.PC = env->CP0_EPC; |
| mips_set_hflags_isa_mode_from_pc(env); |
| /* I am not sure this is right, but it seems to work |
| * maybe a problem with nested signals ? */ |
| env->CP0_EPC = 0; |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #elif defined(TARGET_SH4) |
| |
| /* |
| * code and data structures from linux kernel: |
| * include/asm-sh/sigcontext.h |
| * arch/sh/kernel/signal.c |
| */ |
| |
| struct target_sigcontext { |
| target_ulong oldmask; |
| |
| /* CPU registers */ |
| target_ulong sc_gregs[16]; |
| target_ulong sc_pc; |
| target_ulong sc_pr; |
| target_ulong sc_sr; |
| target_ulong sc_gbr; |
| target_ulong sc_mach; |
| target_ulong sc_macl; |
| |
| /* FPU registers */ |
| target_ulong sc_fpregs[16]; |
| target_ulong sc_xfpregs[16]; |
| unsigned int sc_fpscr; |
| unsigned int sc_fpul; |
| unsigned int sc_ownedfp; |
| }; |
| |
| struct target_sigframe |
| { |
| struct target_sigcontext sc; |
| target_ulong extramask[TARGET_NSIG_WORDS-1]; |
| uint16_t retcode[3]; |
| }; |
| |
| |
| struct target_ucontext { |
| target_ulong tuc_flags; |
| struct target_ucontext *tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct target_rt_sigframe |
| { |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| uint16_t retcode[3]; |
| }; |
| |
| |
| #define MOVW(n) (0x9300|((n)-2)) /* Move mem word at PC+n to R3 */ |
| #define TRAP_NOARG 0xc310 /* Syscall w/no args (NR in R3) SH3/4 */ |
| |
| static abi_ulong get_sigframe(struct target_sigaction *ka, |
| unsigned long sp, size_t frame_size) |
| { |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(sp) == 0)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| return (sp - frame_size) & -8ul; |
| } |
| |
| /* Notice when we're in the middle of a gUSA region and reset. |
| Note that this will only occur for !parallel_cpus, as we will |
| translate such sequences differently in a parallel context. */ |
| static void unwind_gusa(CPUSH4State *regs) |
| { |
| /* If the stack pointer is sufficiently negative, and we haven't |
| completed the sequence, then reset to the entry to the region. */ |
| /* ??? The SH4 kernel checks for and address above 0xC0000000. |
| However, the page mappings in qemu linux-user aren't as restricted |
| and we wind up with the normal stack mapped above 0xF0000000. |
| That said, there is no reason why the kernel should be allowing |
| a gUSA region that spans 1GB. Use a tighter check here, for what |
| can actually be enabled by the immediate move. */ |
| if (regs->gregs[15] >= -128u && regs->pc < regs->gregs[0]) { |
| /* Reset the PC to before the gUSA region, as computed from |
| R0 = region end, SP = -(region size), plus one more for the |
| insn that actually initializes SP to the region size. */ |
| regs->pc = regs->gregs[0] + regs->gregs[15] - 2; |
| |
| /* Reset the SP to the saved version in R1. */ |
| regs->gregs[15] = regs->gregs[1]; |
| } |
| } |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, |
| CPUSH4State *regs, unsigned long mask) |
| { |
| int i; |
| |
| #define COPY(x) __put_user(regs->x, &sc->sc_##x) |
| COPY(gregs[0]); COPY(gregs[1]); |
| COPY(gregs[2]); COPY(gregs[3]); |
| COPY(gregs[4]); COPY(gregs[5]); |
| COPY(gregs[6]); COPY(gregs[7]); |
| COPY(gregs[8]); COPY(gregs[9]); |
| COPY(gregs[10]); COPY(gregs[11]); |
| COPY(gregs[12]); COPY(gregs[13]); |
| COPY(gregs[14]); COPY(gregs[15]); |
| COPY(gbr); COPY(mach); |
| COPY(macl); COPY(pr); |
| COPY(sr); COPY(pc); |
| #undef COPY |
| |
| for (i=0; i<16; i++) { |
| __put_user(regs->fregs[i], &sc->sc_fpregs[i]); |
| } |
| __put_user(regs->fpscr, &sc->sc_fpscr); |
| __put_user(regs->fpul, &sc->sc_fpul); |
| |
| /* non-iBCS2 extensions.. */ |
| __put_user(mask, &sc->oldmask); |
| } |
| |
| static void restore_sigcontext(CPUSH4State *regs, struct target_sigcontext *sc) |
| { |
| int i; |
| |
| #define COPY(x) __get_user(regs->x, &sc->sc_##x) |
| COPY(gregs[0]); COPY(gregs[1]); |
| COPY(gregs[2]); COPY(gregs[3]); |
| COPY(gregs[4]); COPY(gregs[5]); |
| COPY(gregs[6]); COPY(gregs[7]); |
| COPY(gregs[8]); COPY(gregs[9]); |
| COPY(gregs[10]); COPY(gregs[11]); |
| COPY(gregs[12]); COPY(gregs[13]); |
| COPY(gregs[14]); COPY(gregs[15]); |
| COPY(gbr); COPY(mach); |
| COPY(macl); COPY(pr); |
| COPY(sr); COPY(pc); |
| #undef COPY |
| |
| for (i=0; i<16; i++) { |
| __get_user(regs->fregs[i], &sc->sc_fpregs[i]); |
| } |
| __get_user(regs->fpscr, &sc->sc_fpscr); |
| __get_user(regs->fpul, &sc->sc_fpul); |
| |
| regs->tra = -1; /* disable syscall checks */ |
| regs->flags &= ~(DELAY_SLOT_MASK | GUSA_MASK); |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUSH4State *regs) |
| { |
| struct target_sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| unwind_gusa(regs); |
| |
| frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); |
| trace_user_setup_frame(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| setup_sigcontext(&frame->sc, regs, set->sig[0]); |
| |
| for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { |
| __put_user(set->sig[i + 1], &frame->extramask[i]); |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| regs->pr = (unsigned long) ka->sa_restorer; |
| } else { |
| /* Generate return code (system call to sigreturn) */ |
| abi_ulong retcode_addr = frame_addr + |
| offsetof(struct target_sigframe, retcode); |
| __put_user(MOVW(2), &frame->retcode[0]); |
| __put_user(TRAP_NOARG, &frame->retcode[1]); |
| __put_user((TARGET_NR_sigreturn), &frame->retcode[2]); |
| regs->pr = (unsigned long) retcode_addr; |
| } |
| |
| /* Set up registers for signal handler */ |
| regs->gregs[15] = frame_addr; |
| regs->gregs[4] = sig; /* Arg for signal handler */ |
| regs->gregs[5] = 0; |
| regs->gregs[6] = frame_addr += offsetof(typeof(*frame), sc); |
| regs->pc = (unsigned long) ka->_sa_handler; |
| regs->flags &= ~(DELAY_SLOT_MASK | GUSA_MASK); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(sig); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUSH4State *regs) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| unwind_gusa(regs); |
| |
| frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); |
| trace_user_setup_rt_frame(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| tswap_siginfo(&frame->info, info); |
| |
| /* Create the ucontext. */ |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user(0, (unsigned long *)&frame->uc.tuc_link); |
| __put_user((unsigned long)target_sigaltstack_used.ss_sp, |
| &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(regs->gregs[15]), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.tuc_stack.ss_size); |
| setup_sigcontext(&frame->uc.tuc_mcontext, |
| regs, set->sig[0]); |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| regs->pr = (unsigned long) ka->sa_restorer; |
| } else { |
| /* Generate return code (system call to sigreturn) */ |
| abi_ulong retcode_addr = frame_addr + |
| offsetof(struct target_rt_sigframe, retcode); |
| __put_user(MOVW(2), &frame->retcode[0]); |
| __put_user(TRAP_NOARG, &frame->retcode[1]); |
| __put_user((TARGET_NR_rt_sigreturn), &frame->retcode[2]); |
| regs->pr = (unsigned long) retcode_addr; |
| } |
| |
| /* Set up registers for signal handler */ |
| regs->gregs[15] = frame_addr; |
| regs->gregs[4] = sig; /* Arg for signal handler */ |
| regs->gregs[5] = frame_addr + offsetof(typeof(*frame), info); |
| regs->gregs[6] = frame_addr + offsetof(typeof(*frame), uc); |
| regs->pc = (unsigned long) ka->_sa_handler; |
| regs->flags &= ~(DELAY_SLOT_MASK | GUSA_MASK); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(sig); |
| } |
| |
| long do_sigreturn(CPUSH4State *regs) |
| { |
| struct target_sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| target_sigset_t target_set; |
| int i; |
| int err = 0; |
| |
| frame_addr = regs->gregs[15]; |
| trace_user_do_sigreturn(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| __get_user(target_set.sig[0], &frame->sc.oldmask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(target_set.sig[i], &frame->extramask[i - 1]); |
| } |
| |
| if (err) |
| goto badframe; |
| |
| target_to_host_sigset_internal(&blocked, &target_set); |
| set_sigmask(&blocked); |
| |
| restore_sigcontext(regs, &frame->sc); |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUSH4State *regs) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| |
| frame_addr = regs->gregs[15]; |
| trace_user_do_rt_sigreturn(regs, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| target_to_host_sigset(&blocked, &frame->uc.tuc_sigmask); |
| set_sigmask(&blocked); |
| |
| restore_sigcontext(regs, &frame->uc.tuc_mcontext); |
| |
| if (do_sigaltstack(frame_addr + |
| offsetof(struct target_rt_sigframe, uc.tuc_stack), |
| 0, get_sp_from_cpustate(regs)) == -EFAULT) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| #elif defined(TARGET_MICROBLAZE) |
| |
| struct target_sigcontext { |
| struct target_pt_regs regs; /* needs to be first */ |
| uint32_t oldmask; |
| }; |
| |
| struct target_stack_t { |
| abi_ulong ss_sp; |
| int ss_flags; |
| unsigned int ss_size; |
| }; |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| struct target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| uint32_t tuc_extramask[TARGET_NSIG_WORDS - 1]; |
| }; |
| |
| /* Signal frames. */ |
| struct target_signal_frame { |
| struct target_ucontext uc; |
| uint32_t extramask[TARGET_NSIG_WORDS - 1]; |
| uint32_t tramp[2]; |
| }; |
| |
| struct rt_signal_frame { |
| siginfo_t info; |
| ucontext_t uc; |
| uint32_t tramp[2]; |
| }; |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPUMBState *env) |
| { |
| __put_user(env->regs[0], &sc->regs.r0); |
| __put_user(env->regs[1], &sc->regs.r1); |
| __put_user(env->regs[2], &sc->regs.r2); |
| __put_user(env->regs[3], &sc->regs.r3); |
| __put_user(env->regs[4], &sc->regs.r4); |
| __put_user(env->regs[5], &sc->regs.r5); |
| __put_user(env->regs[6], &sc->regs.r6); |
| __put_user(env->regs[7], &sc->regs.r7); |
| __put_user(env->regs[8], &sc->regs.r8); |
| __put_user(env->regs[9], &sc->regs.r9); |
| __put_user(env->regs[10], &sc->regs.r10); |
| __put_user(env->regs[11], &sc->regs.r11); |
| __put_user(env->regs[12], &sc->regs.r12); |
| __put_user(env->regs[13], &sc->regs.r13); |
| __put_user(env->regs[14], &sc->regs.r14); |
| __put_user(env->regs[15], &sc->regs.r15); |
| __put_user(env->regs[16], &sc->regs.r16); |
| __put_user(env->regs[17], &sc->regs.r17); |
| __put_user(env->regs[18], &sc->regs.r18); |
| __put_user(env->regs[19], &sc->regs.r19); |
| __put_user(env->regs[20], &sc->regs.r20); |
| __put_user(env->regs[21], &sc->regs.r21); |
| __put_user(env->regs[22], &sc->regs.r22); |
| __put_user(env->regs[23], &sc->regs.r23); |
| __put_user(env->regs[24], &sc->regs.r24); |
| __put_user(env->regs[25], &sc->regs.r25); |
| __put_user(env->regs[26], &sc->regs.r26); |
| __put_user(env->regs[27], &sc->regs.r27); |
| __put_user(env->regs[28], &sc->regs.r28); |
| __put_user(env->regs[29], &sc->regs.r29); |
| __put_user(env->regs[30], &sc->regs.r30); |
| __put_user(env->regs[31], &sc->regs.r31); |
| __put_user(env->sregs[SR_PC], &sc->regs.pc); |
| } |
| |
| static void restore_sigcontext(struct target_sigcontext *sc, CPUMBState *env) |
| { |
| __get_user(env->regs[0], &sc->regs.r0); |
| __get_user(env->regs[1], &sc->regs.r1); |
| __get_user(env->regs[2], &sc->regs.r2); |
| __get_user(env->regs[3], &sc->regs.r3); |
| __get_user(env->regs[4], &sc->regs.r4); |
| __get_user(env->regs[5], &sc->regs.r5); |
| __get_user(env->regs[6], &sc->regs.r6); |
| __get_user(env->regs[7], &sc->regs.r7); |
| __get_user(env->regs[8], &sc->regs.r8); |
| __get_user(env->regs[9], &sc->regs.r9); |
| __get_user(env->regs[10], &sc->regs.r10); |
| __get_user(env->regs[11], &sc->regs.r11); |
| __get_user(env->regs[12], &sc->regs.r12); |
| __get_user(env->regs[13], &sc->regs.r13); |
| __get_user(env->regs[14], &sc->regs.r14); |
| __get_user(env->regs[15], &sc->regs.r15); |
| __get_user(env->regs[16], &sc->regs.r16); |
| __get_user(env->regs[17], &sc->regs.r17); |
| __get_user(env->regs[18], &sc->regs.r18); |
| __get_user(env->regs[19], &sc->regs.r19); |
| __get_user(env->regs[20], &sc->regs.r20); |
| __get_user(env->regs[21], &sc->regs.r21); |
| __get_user(env->regs[22], &sc->regs.r22); |
| __get_user(env->regs[23], &sc->regs.r23); |
| __get_user(env->regs[24], &sc->regs.r24); |
| __get_user(env->regs[25], &sc->regs.r25); |
| __get_user(env->regs[26], &sc->regs.r26); |
| __get_user(env->regs[27], &sc->regs.r27); |
| __get_user(env->regs[28], &sc->regs.r28); |
| __get_user(env->regs[29], &sc->regs.r29); |
| __get_user(env->regs[30], &sc->regs.r30); |
| __get_user(env->regs[31], &sc->regs.r31); |
| __get_user(env->sregs[SR_PC], &sc->regs.pc); |
| } |
| |
| static abi_ulong get_sigframe(struct target_sigaction *ka, |
| CPUMBState *env, int frame_size) |
| { |
| abi_ulong sp = env->regs[1]; |
| |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) != 0 && !on_sig_stack(sp)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| return ((sp - frame_size) & -8UL); |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUMBState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof *frame); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto badframe; |
| |
| /* Save the mask. */ |
| __put_user(set->sig[0], &frame->uc.tuc_mcontext.oldmask); |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->extramask[i - 1]); |
| } |
| |
| setup_sigcontext(&frame->uc.tuc_mcontext, env); |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| /* minus 8 is offset to cater for "rtsd r15,8" offset */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| env->regs[15] = ((unsigned long)ka->sa_restorer)-8; |
| } else { |
| uint32_t t; |
| /* Note, these encodings are _big endian_! */ |
| /* addi r12, r0, __NR_sigreturn */ |
| t = 0x31800000UL | TARGET_NR_sigreturn; |
| __put_user(t, frame->tramp + 0); |
| /* brki r14, 0x8 */ |
| t = 0xb9cc0008UL; |
| __put_user(t, frame->tramp + 1); |
| |
| /* Return from sighandler will jump to the tramp. |
| Negative 8 offset because return is rtsd r15, 8 */ |
| env->regs[15] = frame_addr + offsetof(struct target_signal_frame, tramp) |
| - 8; |
| } |
| |
| /* Set up registers for signal handler */ |
| env->regs[1] = frame_addr; |
| /* Signal handler args: */ |
| env->regs[5] = sig; /* Arg 0: signum */ |
| env->regs[6] = 0; |
| /* arg 1: sigcontext */ |
| env->regs[7] = frame_addr += offsetof(typeof(*frame), uc); |
| |
| /* Offset of 4 to handle microblaze rtid r14, 0 */ |
| env->sregs[SR_PC] = (unsigned long)ka->_sa_handler; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| badframe: |
| force_sigsegv(sig); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUMBState *env) |
| { |
| fprintf(stderr, "Microblaze setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUMBState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| target_sigset_t target_set; |
| sigset_t set; |
| int i; |
| |
| frame_addr = env->regs[R_SP]; |
| trace_user_do_sigreturn(env, frame_addr); |
| /* Make sure the guest isn't playing games. */ |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) |
| goto badframe; |
| |
| /* Restore blocked signals */ |
| __get_user(target_set.sig[0], &frame->uc.tuc_mcontext.oldmask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(target_set.sig[i], &frame->extramask[i - 1]); |
| } |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); |
| |
| restore_sigcontext(&frame->uc.tuc_mcontext, env); |
| /* We got here through a sigreturn syscall, our path back is via an |
| rtb insn so setup r14 for that. */ |
| env->regs[14] = env->sregs[SR_PC]; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUMBState *env) |
| { |
| trace_user_do_rt_sigreturn(env, 0); |
| fprintf(stderr, "Microblaze do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #elif defined(TARGET_CRIS) |
| |
| struct target_sigcontext { |
| struct target_pt_regs regs; /* needs to be first */ |
| uint32_t oldmask; |
| uint32_t usp; /* usp before stacking this gunk on it */ |
| }; |
| |
| /* Signal frames. */ |
| struct target_signal_frame { |
| struct target_sigcontext sc; |
| uint32_t extramask[TARGET_NSIG_WORDS - 1]; |
| uint16_t retcode[4]; /* Trampoline code. */ |
| }; |
| |
| struct rt_signal_frame { |
| siginfo_t *pinfo; |
| void *puc; |
| siginfo_t info; |
| ucontext_t uc; |
| uint16_t retcode[4]; /* Trampoline code. */ |
| }; |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPUCRISState *env) |
| { |
| __put_user(env->regs[0], &sc->regs.r0); |
| __put_user(env->regs[1], &sc->regs.r1); |
| __put_user(env->regs[2], &sc->regs.r2); |
| __put_user(env->regs[3], &sc->regs.r3); |
| __put_user(env->regs[4], &sc->regs.r4); |
| __put_user(env->regs[5], &sc->regs.r5); |
| __put_user(env->regs[6], &sc->regs.r6); |
| __put_user(env->regs[7], &sc->regs.r7); |
| __put_user(env->regs[8], &sc->regs.r8); |
| __put_user(env->regs[9], &sc->regs.r9); |
| __put_user(env->regs[10], &sc->regs.r10); |
| __put_user(env->regs[11], &sc->regs.r11); |
| __put_user(env->regs[12], &sc->regs.r12); |
| __put_user(env->regs[13], &sc->regs.r13); |
| __put_user(env->regs[14], &sc->usp); |
| __put_user(env->regs[15], &sc->regs.acr); |
| __put_user(env->pregs[PR_MOF], &sc->regs.mof); |
| __put_user(env->pregs[PR_SRP], &sc->regs.srp); |
| __put_user(env->pc, &sc->regs.erp); |
| } |
| |
| static void restore_sigcontext(struct target_sigcontext *sc, CPUCRISState *env) |
| { |
| __get_user(env->regs[0], &sc->regs.r0); |
| __get_user(env->regs[1], &sc->regs.r1); |
| __get_user(env->regs[2], &sc->regs.r2); |
| __get_user(env->regs[3], &sc->regs.r3); |
| __get_user(env->regs[4], &sc->regs.r4); |
| __get_user(env->regs[5], &sc->regs.r5); |
| __get_user(env->regs[6], &sc->regs.r6); |
| __get_user(env->regs[7], &sc->regs.r7); |
| __get_user(env->regs[8], &sc->regs.r8); |
| __get_user(env->regs[9], &sc->regs.r9); |
| __get_user(env->regs[10], &sc->regs.r10); |
| __get_user(env->regs[11], &sc->regs.r11); |
| __get_user(env->regs[12], &sc->regs.r12); |
| __get_user(env->regs[13], &sc->regs.r13); |
| __get_user(env->regs[14], &sc->usp); |
| __get_user(env->regs[15], &sc->regs.acr); |
| __get_user(env->pregs[PR_MOF], &sc->regs.mof); |
| __get_user(env->pregs[PR_SRP], &sc->regs.srp); |
| __get_user(env->pc, &sc->regs.erp); |
| } |
| |
| static abi_ulong get_sigframe(CPUCRISState *env, int framesize) |
| { |
| abi_ulong sp; |
| /* Align the stack downwards to 4. */ |
| sp = (env->regs[R_SP] & ~3); |
| return sp - framesize; |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUCRISState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| frame_addr = get_sigframe(env, sizeof *frame); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto badframe; |
| |
| /* |
| * The CRIS signal return trampoline. A real linux/CRIS kernel doesn't |
| * use this trampoline anymore but it sets it up for GDB. |
| * In QEMU, using the trampoline simplifies things a bit so we use it. |
| * |
| * This is movu.w __NR_sigreturn, r9; break 13; |
| */ |
| __put_user(0x9c5f, frame->retcode+0); |
| __put_user(TARGET_NR_sigreturn, |
| frame->retcode + 1); |
| __put_user(0xe93d, frame->retcode + 2); |
| |
| /* Save the mask. */ |
| __put_user(set->sig[0], &frame->sc.oldmask); |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->extramask[i - 1]); |
| } |
| |
| setup_sigcontext(&frame->sc, env); |
| |
| /* Move the stack and setup the arguments for the handler. */ |
| env->regs[R_SP] = frame_addr; |
| env->regs[10] = sig; |
| env->pc = (unsigned long) ka->_sa_handler; |
| /* Link SRP so the guest returns through the trampoline. */ |
| env->pregs[PR_SRP] = frame_addr + offsetof(typeof(*frame), retcode); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| badframe: |
| force_sigsegv(sig); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUCRISState *env) |
| { |
| fprintf(stderr, "CRIS setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUCRISState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| target_sigset_t target_set; |
| sigset_t set; |
| int i; |
| |
| frame_addr = env->regs[R_SP]; |
| trace_user_do_sigreturn(env, frame_addr); |
| /* Make sure the guest isn't playing games. */ |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| /* Restore blocked signals */ |
| __get_user(target_set.sig[0], &frame->sc.oldmask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(target_set.sig[i], &frame->extramask[i - 1]); |
| } |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); |
| |
| restore_sigcontext(&frame->sc, env); |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUCRISState *env) |
| { |
| trace_user_do_rt_sigreturn(env, 0); |
| fprintf(stderr, "CRIS do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #elif defined(TARGET_NIOS2) |
| |
| #define MCONTEXT_VERSION 2 |
| |
| struct target_sigcontext { |
| int version; |
| unsigned long gregs[32]; |
| }; |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct target_rt_sigframe { |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| }; |
| |
| static unsigned long sigsp(unsigned long sp, struct target_sigaction *ka) |
| { |
| if (unlikely((ka->sa_flags & SA_ONSTACK)) && !sas_ss_flags(sp)) { |
| #ifdef CONFIG_STACK_GROWSUP |
| return target_sigaltstack_used.ss_sp; |
| #else |
| return target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| #endif |
| } |
| return sp; |
| } |
| |
| static int rt_setup_ucontext(struct target_ucontext *uc, CPUNios2State *env) |
| { |
| unsigned long *gregs = uc->tuc_mcontext.gregs; |
| |
| __put_user(MCONTEXT_VERSION, &uc->tuc_mcontext.version); |
| __put_user(env->regs[1], &gregs[0]); |
| __put_user(env->regs[2], &gregs[1]); |
| __put_user(env->regs[3], &gregs[2]); |
| __put_user(env->regs[4], &gregs[3]); |
| __put_user(env->regs[5], &gregs[4]); |
| __put_user(env->regs[6], &gregs[5]); |
| __put_user(env->regs[7], &gregs[6]); |
| __put_user(env->regs[8], &gregs[7]); |
| __put_user(env->regs[9], &gregs[8]); |
| __put_user(env->regs[10], &gregs[9]); |
| __put_user(env->regs[11], &gregs[10]); |
| __put_user(env->regs[12], &gregs[11]); |
| __put_user(env->regs[13], &gregs[12]); |
| __put_user(env->regs[14], &gregs[13]); |
| __put_user(env->regs[15], &gregs[14]); |
| __put_user(env->regs[16], &gregs[15]); |
| __put_user(env->regs[17], &gregs[16]); |
| __put_user(env->regs[18], &gregs[17]); |
| __put_user(env->regs[19], &gregs[18]); |
| __put_user(env->regs[20], &gregs[19]); |
| __put_user(env->regs[21], &gregs[20]); |
| __put_user(env->regs[22], &gregs[21]); |
| __put_user(env->regs[23], &gregs[22]); |
| __put_user(env->regs[R_RA], &gregs[23]); |
| __put_user(env->regs[R_FP], &gregs[24]); |
| __put_user(env->regs[R_GP], &gregs[25]); |
| __put_user(env->regs[R_EA], &gregs[27]); |
| __put_user(env->regs[R_SP], &gregs[28]); |
| |
| return 0; |
| } |
| |
| static int rt_restore_ucontext(CPUNios2State *env, struct target_ucontext *uc, |
| int *pr2) |
| { |
| int temp; |
| abi_ulong off, frame_addr = env->regs[R_SP]; |
| unsigned long *gregs = uc->tuc_mcontext.gregs; |
| int err; |
| |
| /* Always make any pending restarted system calls return -EINTR */ |
| /* current->restart_block.fn = do_no_restart_syscall; */ |
| |
| __get_user(temp, &uc->tuc_mcontext.version); |
| if (temp != MCONTEXT_VERSION) { |
| return 1; |
| } |
| |
| /* restore passed registers */ |
| __get_user(env->regs[1], &gregs[0]); |
| __get_user(env->regs[2], &gregs[1]); |
| __get_user(env->regs[3], &gregs[2]); |
| __get_user(env->regs[4], &gregs[3]); |
| __get_user(env->regs[5], &gregs[4]); |
| __get_user(env->regs[6], &gregs[5]); |
| __get_user(env->regs[7], &gregs[6]); |
| __get_user(env->regs[8], &gregs[7]); |
| __get_user(env->regs[9], &gregs[8]); |
| __get_user(env->regs[10], &gregs[9]); |
| __get_user(env->regs[11], &gregs[10]); |
| __get_user(env->regs[12], &gregs[11]); |
| __get_user(env->regs[13], &gregs[12]); |
| __get_user(env->regs[14], &gregs[13]); |
| __get_user(env->regs[15], &gregs[14]); |
| __get_user(env->regs[16], &gregs[15]); |
| __get_user(env->regs[17], &gregs[16]); |
| __get_user(env->regs[18], &gregs[17]); |
| __get_user(env->regs[19], &gregs[18]); |
| __get_user(env->regs[20], &gregs[19]); |
| __get_user(env->regs[21], &gregs[20]); |
| __get_user(env->regs[22], &gregs[21]); |
| __get_user(env->regs[23], &gregs[22]); |
| /* gregs[23] is handled below */ |
| /* Verify, should this be settable */ |
| __get_user(env->regs[R_FP], &gregs[24]); |
| /* Verify, should this be settable */ |
| __get_user(env->regs[R_GP], &gregs[25]); |
| /* Not really necessary no user settable bits */ |
| __get_user(temp, &gregs[26]); |
| __get_user(env->regs[R_EA], &gregs[27]); |
| |
| __get_user(env->regs[R_RA], &gregs[23]); |
| __get_user(env->regs[R_SP], &gregs[28]); |
| |
| off = offsetof(struct target_rt_sigframe, uc.tuc_stack); |
| err = do_sigaltstack(frame_addr + off, 0, get_sp_from_cpustate(env)); |
| if (err == -EFAULT) { |
| return 1; |
| } |
| |
| *pr2 = env->regs[2]; |
| return 0; |
| } |
| |
| static void *get_sigframe(struct target_sigaction *ka, CPUNios2State *env, |
| size_t frame_size) |
| { |
| unsigned long usp; |
| |
| /* Default to using normal stack. */ |
| usp = env->regs[R_SP]; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| usp = sigsp(usp, ka); |
| |
| /* Verify, is it 32 or 64 bit aligned */ |
| return (void *)((usp - frame_size) & -8UL); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, |
| CPUNios2State *env) |
| { |
| struct target_rt_sigframe *frame; |
| int i, err = 0; |
| |
| frame = get_sigframe(ka, env, sizeof(*frame)); |
| |
| if (ka->sa_flags & SA_SIGINFO) { |
| tswap_siginfo(&frame->info, info); |
| } |
| |
| /* Create the ucontext. */ |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user(0, &frame->uc.tuc_link); |
| __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(env->regs[R_SP]), &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); |
| err |= rt_setup_ucontext(&frame->uc, env); |
| for (i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user((abi_ulong)set->sig[i], |
| (abi_ulong *)&frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| if (err) { |
| goto give_sigsegv; |
| } |
| |
| /* Set up to return from userspace; jump to fixed address sigreturn |
| trampoline on kuser page. */ |
| env->regs[R_RA] = (unsigned long) (0x1044); |
| |
| /* Set up registers for signal handler */ |
| env->regs[R_SP] = (unsigned long) frame; |
| env->regs[4] = (unsigned long) sig; |
| env->regs[5] = (unsigned long) &frame->info; |
| env->regs[6] = (unsigned long) &frame->uc; |
| env->regs[R_EA] = (unsigned long) ka->_sa_handler; |
| return; |
| |
| give_sigsegv: |
| if (sig == TARGET_SIGSEGV) { |
| ka->_sa_handler = TARGET_SIG_DFL; |
| } |
| force_sigsegv(sig); |
| return; |
| } |
| |
| long do_sigreturn(CPUNios2State *env) |
| { |
| trace_user_do_sigreturn(env, 0); |
| fprintf(stderr, "do_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| long do_rt_sigreturn(CPUNios2State *env) |
| { |
| /* Verify, can we follow the stack back */ |
| abi_ulong frame_addr = env->regs[R_SP]; |
| struct target_rt_sigframe *frame; |
| sigset_t set; |
| int rval; |
| |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| do_sigprocmask(SIG_SETMASK, &set, NULL); |
| |
| if (rt_restore_ucontext(env, &frame->uc, &rval)) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return rval; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| /* TARGET_NIOS2 */ |
| |
| #elif defined(TARGET_OPENRISC) |
| |
| struct target_sigcontext { |
| struct target_pt_regs regs; |
| abi_ulong oldmask; |
| abi_ulong usp; |
| }; |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct target_rt_sigframe { |
| abi_ulong pinfo; |
| uint64_t puc; |
| struct target_siginfo info; |
| struct target_sigcontext sc; |
| struct target_ucontext uc; |
| unsigned char retcode[16]; /* trampoline code */ |
| }; |
| |
| /* This is the asm-generic/ucontext.h version */ |
| #if 0 |
| static int restore_sigcontext(CPUOpenRISCState *regs, |
| struct target_sigcontext *sc) |
| { |
| unsigned int err = 0; |
| unsigned long old_usp; |
| |
| /* Alwys make any pending restarted system call return -EINTR */ |
| current_thread_info()->restart_block.fn = do_no_restart_syscall; |
| |
| /* restore the regs from &sc->regs (same as sc, since regs is first) |
| * (sc is already checked for VERIFY_READ since the sigframe was |
| * checked in sys_sigreturn previously) |
| */ |
| |
| if (copy_from_user(regs, &sc, sizeof(struct target_pt_regs))) { |
| goto badframe; |
| } |
| |
| /* make sure the U-flag is set so user-mode cannot fool us */ |
| |
| regs->sr &= ~SR_SM; |
| |
| /* restore the old USP as it was before we stacked the sc etc. |
| * (we cannot just pop the sigcontext since we aligned the sp and |
| * stuff after pushing it) |
| */ |
| |
| __get_user(old_usp, &sc->usp); |
| phx_signal("old_usp 0x%lx", old_usp); |
| |
| __PHX__ REALLY /* ??? */ |
| wrusp(old_usp); |
| regs->gpr[1] = old_usp; |
| |
| /* TODO: the other ports use regs->orig_XX to disable syscall checks |
| * after this completes, but we don't use that mechanism. maybe we can |
| * use it now ? |
| */ |
| |
| return err; |
| |
| badframe: |
| return 1; |
| } |
| #endif |
| |
| /* Set up a signal frame. */ |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, |
| CPUOpenRISCState *regs, |
| unsigned long mask) |
| { |
| unsigned long usp = cpu_get_gpr(regs, 1); |
| |
| /* copy the regs. they are first in sc so we can use sc directly */ |
| |
| /*copy_to_user(&sc, regs, sizeof(struct target_pt_regs));*/ |
| |
| /* Set the frametype to CRIS_FRAME_NORMAL for the execution of |
| the signal handler. The frametype will be restored to its previous |
| value in restore_sigcontext. */ |
| /*regs->frametype = CRIS_FRAME_NORMAL;*/ |
| |
| /* then some other stuff */ |
| __put_user(mask, &sc->oldmask); |
| __put_user(usp, &sc->usp); |
| } |
| |
| static inline unsigned long align_sigframe(unsigned long sp) |
| { |
| return sp & ~3UL; |
| } |
| |
| static inline abi_ulong get_sigframe(struct target_sigaction *ka, |
| CPUOpenRISCState *regs, |
| size_t frame_size) |
| { |
| unsigned long sp = cpu_get_gpr(regs, 1); |
| int onsigstack = on_sig_stack(sp); |
| |
| /* redzone */ |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) != 0 && !onsigstack) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| sp = align_sigframe(sp - frame_size); |
| |
| /* |
| * If we are on the alternate signal stack and would overflow it, don't. |
| * Return an always-bogus address instead so we will die with SIGSEGV. |
| */ |
| |
| if (onsigstack && !likely(on_sig_stack(sp))) { |
| return -1L; |
| } |
| |
| return sp; |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUOpenRISCState *env) |
| { |
| int err = 0; |
| abi_ulong frame_addr; |
| unsigned long return_ip; |
| struct target_rt_sigframe *frame; |
| abi_ulong info_addr, uc_addr; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| info_addr = frame_addr + offsetof(struct target_rt_sigframe, info); |
| __put_user(info_addr, &frame->pinfo); |
| uc_addr = frame_addr + offsetof(struct target_rt_sigframe, uc); |
| __put_user(uc_addr, &frame->puc); |
| |
| if (ka->sa_flags & SA_SIGINFO) { |
| tswap_siginfo(&frame->info, info); |
| } |
| |
| /*err |= __clear_user(&frame->uc, offsetof(ucontext_t, uc_mcontext));*/ |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user(0, &frame->uc.tuc_link); |
| __put_user(target_sigaltstack_used.ss_sp, |
| &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(cpu_get_gpr(env, 1)), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.tuc_stack.ss_size); |
| setup_sigcontext(&frame->sc, env, set->sig[0]); |
| |
| /*err |= copy_to_user(frame->uc.tuc_sigmask, set, sizeof(*set));*/ |
| |
| /* trampoline - the desired return ip is the retcode itself */ |
| return_ip = (unsigned long)&frame->retcode; |
| /* This is l.ori r11,r0,__NR_sigreturn, l.sys 1 */ |
| __put_user(0xa960, (short *)(frame->retcode + 0)); |
| __put_user(TARGET_NR_rt_sigreturn, (short *)(frame->retcode + 2)); |
| __put_user(0x20000001, (unsigned long *)(frame->retcode + 4)); |
| __put_user(0x15000000, (unsigned long *)(frame->retcode + 8)); |
| |
| if (err) { |
| goto give_sigsegv; |
| } |
| |
| /* TODO what is the current->exec_domain stuff and invmap ? */ |
| |
| /* Set up registers for signal handler */ |
| env->pc = (unsigned long)ka->_sa_handler; /* what we enter NOW */ |
| cpu_set_gpr(env, 9, (unsigned long)return_ip); /* what we enter LATER */ |
| cpu_set_gpr(env, 3, (unsigned long)sig); /* arg 1: signo */ |
| cpu_set_gpr(env, 4, (unsigned long)&frame->info); /* arg 2: (siginfo_t*) */ |
| cpu_set_gpr(env, 5, (unsigned long)&frame->uc); /* arg 3: ucontext */ |
| |
| /* actually move the usp to reflect the stacked frame */ |
| cpu_set_gpr(env, 1, (unsigned long)frame); |
| |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(sig); |
| } |
| |
| long do_sigreturn(CPUOpenRISCState *env) |
| { |
| trace_user_do_sigreturn(env, 0); |
| fprintf(stderr, "do_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| long do_rt_sigreturn(CPUOpenRISCState *env) |
| { |
| trace_user_do_rt_sigreturn(env, 0); |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| /* TARGET_OPENRISC */ |
| |
| #elif defined(TARGET_S390X) |
| |
| #define __NUM_GPRS 16 |
| #define __NUM_FPRS 16 |
| #define __NUM_ACRS 16 |
| |
| #define S390_SYSCALL_SIZE 2 |
| #define __SIGNAL_FRAMESIZE 160 /* FIXME: 31-bit mode -> 96 */ |
| |
| #define _SIGCONTEXT_NSIG 64 |
| #define _SIGCONTEXT_NSIG_BPW 64 /* FIXME: 31-bit mode -> 32 */ |
| #define _SIGCONTEXT_NSIG_WORDS (_SIGCONTEXT_NSIG / _SIGCONTEXT_NSIG_BPW) |
| #define _SIGMASK_COPY_SIZE (sizeof(unsigned long)*_SIGCONTEXT_NSIG_WORDS) |
| #define PSW_ADDR_AMODE 0x0000000000000000UL /* 0x80000000UL for 31-bit */ |
| #define S390_SYSCALL_OPCODE ((uint16_t)0x0a00) |
| |
| typedef struct { |
| target_psw_t psw; |
| target_ulong gprs[__NUM_GPRS]; |
| unsigned int acrs[__NUM_ACRS]; |
| } target_s390_regs_common; |
| |
| typedef struct { |
| unsigned int fpc; |
| double fprs[__NUM_FPRS]; |
| } target_s390_fp_regs; |
| |
| typedef struct { |
| target_s390_regs_common regs; |
| target_s390_fp_regs fpregs; |
| } target_sigregs; |
| |
| struct target_sigcontext { |
| target_ulong oldmask[_SIGCONTEXT_NSIG_WORDS]; |
| target_sigregs *sregs; |
| }; |
| |
| typedef struct { |
| uint8_t callee_used_stack[__SIGNAL_FRAMESIZE]; |
| struct target_sigcontext sc; |
| target_sigregs sregs; |
| int signo; |
| uint8_t retcode[S390_SYSCALL_SIZE]; |
| } sigframe; |
| |
| struct target_ucontext { |
| target_ulong tuc_flags; |
| struct target_ucontext *tuc_link; |
| target_stack_t tuc_stack; |
| target_sigregs tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| typedef struct { |
| uint8_t callee_used_stack[__SIGNAL_FRAMESIZE]; |
| uint8_t retcode[S390_SYSCALL_SIZE]; |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| } rt_sigframe; |
| |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUS390XState *env, size_t frame_size) |
| { |
| abi_ulong sp; |
| |
| /* Default to using normal stack */ |
| sp = env->regs[15]; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if (ka->sa_flags & TARGET_SA_ONSTACK) { |
| if (!sas_ss_flags(sp)) { |
| sp = target_sigaltstack_used.ss_sp + |
| target_sigaltstack_used.ss_size; |
| } |
| } |
| |
| /* This is the legacy signal stack switching. */ |
| else if (/* FIXME !user_mode(regs) */ 0 && |
| !(ka->sa_flags & TARGET_SA_RESTORER) && |
| ka->sa_restorer) { |
| sp = (abi_ulong) ka->sa_restorer; |
| } |
| |
| return (sp - frame_size) & -8ul; |
| } |
| |
| static void save_sigregs(CPUS390XState *env, target_sigregs *sregs) |
| { |
| int i; |
| //save_access_regs(current->thread.acrs); FIXME |
| |
| /* Copy a 'clean' PSW mask to the user to avoid leaking |
| information about whether PER is currently on. */ |
| __put_user(env->psw.mask, &sregs->regs.psw.mask); |
| __put_user(env->psw.addr, &sregs->regs.psw.addr); |
| for (i = 0; i < 16; i++) { |
| __put_user(env->regs[i], &sregs->regs.gprs[i]); |
| } |
| for (i = 0; i < 16; i++) { |
| __put_user(env->aregs[i], &sregs->regs.acrs[i]); |
| } |
| /* |
| * We have to store the fp registers to current->thread.fp_regs |
| * to merge them with the emulated registers. |
| */ |
| //save_fp_regs(¤t->thread.fp_regs); FIXME |
| for (i = 0; i < 16; i++) { |
| __put_user(get_freg(env, i)->ll, &sregs->fpregs.fprs[i]); |
| } |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUS390XState *env) |
| { |
| sigframe *frame; |
| abi_ulong frame_addr; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| __put_user(set->sig[0], &frame->sc.oldmask[0]); |
| |
| save_sigregs(env, &frame->sregs); |
| |
| __put_user((abi_ulong)(unsigned long)&frame->sregs, |
| (abi_ulong *)&frame->sc.sregs); |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| env->regs[14] = (unsigned long) |
| ka->sa_restorer | PSW_ADDR_AMODE; |
| } else { |
| env->regs[14] = (frame_addr + offsetof(sigframe, retcode)) |
| | PSW_ADDR_AMODE; |
| __put_user(S390_SYSCALL_OPCODE | TARGET_NR_sigreturn, |
| (uint16_t *)(frame->retcode)); |
| } |
| |
| /* Set up backchain. */ |
| __put_user(env->regs[15], (abi_ulong *) frame); |
| |
| /* Set up registers for signal handler */ |
| env->regs[15] = frame_addr; |
| env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE; |
| |
| env->regs[2] = sig; //map_signal(sig); |
| env->regs[3] = frame_addr += offsetof(typeof(*frame), sc); |
| |
| /* We forgot to include these in the sigcontext. |
| To avoid breaking binary compatibility, they are passed as args. */ |
| env->regs[4] = 0; // FIXME: no clue... current->thread.trap_no; |
| env->regs[5] = 0; // FIXME: no clue... current->thread.prot_addr; |
| |
| /* Place signal number on stack to allow backtrace from handler. */ |
| __put_user(env->regs[2], &frame->signo); |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUS390XState *env) |
| { |
| int i; |
| rt_sigframe *frame; |
| abi_ulong frame_addr; |
| |
| frame_addr = get_sigframe(ka, env, sizeof *frame); |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| tswap_siginfo(&frame->info, info); |
| |
| /* Create the ucontext. */ |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user((abi_ulong)0, (abi_ulong *)&frame->uc.tuc_link); |
| __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); |
| save_sigregs(env, &frame->uc.tuc_mcontext); |
| for (i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user((abi_ulong)set->sig[i], |
| (abi_ulong *)&frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| env->regs[14] = (unsigned long) ka->sa_restorer | PSW_ADDR_AMODE; |
| } else { |
| env->regs[14] = (unsigned long) frame->retcode | PSW_ADDR_AMODE; |
| __put_user(S390_SYSCALL_OPCODE | TARGET_NR_rt_sigreturn, |
| (uint16_t *)(frame->retcode)); |
| } |
| |
| /* Set up backchain. */ |
| __put_user(env->regs[15], (abi_ulong *) frame); |
| |
| /* Set up registers for signal handler */ |
| env->regs[15] = frame_addr; |
| env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE; |
| |
| env->regs[2] = sig; //map_signal(sig); |
| env->regs[3] = frame_addr + offsetof(typeof(*frame), info); |
| env->regs[4] = frame_addr + offsetof(typeof(*frame), uc); |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| |
| static int |
| restore_sigregs(CPUS390XState *env, target_sigregs *sc) |
| { |
| int err = 0; |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| __get_user(env->regs[i], &sc->regs.gprs[i]); |
| } |
| |
| __get_user(env->psw.mask, &sc->regs.psw.mask); |
| trace_user_s390x_restore_sigregs(env, (unsigned long long)sc->regs.psw.addr, |
| (unsigned long long)env->psw.addr); |
| __get_user(env->psw.addr, &sc->regs.psw.addr); |
| /* FIXME: 31-bit -> | PSW_ADDR_AMODE */ |
| |
| for (i = 0; i < 16; i++) { |
| __get_user(env->aregs[i], &sc->regs.acrs[i]); |
| } |
| for (i = 0; i < 16; i++) { |
| __get_user(get_freg(env, i)->ll, &sc->fpregs.fprs[i]); |
| } |
| |
| return err; |
| } |
| |
| long do_sigreturn(CPUS390XState *env) |
| { |
| sigframe *frame; |
| abi_ulong frame_addr = env->regs[15]; |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| trace_user_do_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| __get_user(target_set.sig[0], &frame->sc.oldmask[0]); |
| |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); /* ~_BLOCKABLE? */ |
| |
| if (restore_sigregs(env, &frame->sregs)) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUS390XState *env) |
| { |
| rt_sigframe *frame; |
| abi_ulong frame_addr = env->regs[15]; |
| sigset_t set; |
| |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| |
| set_sigmask(&set); /* ~_BLOCKABLE? */ |
| |
| if (restore_sigregs(env, &frame->uc.tuc_mcontext)) { |
| goto badframe; |
| } |
| |
| if (do_sigaltstack(frame_addr + offsetof(rt_sigframe, uc.tuc_stack), 0, |
| get_sp_from_cpustate(env)) == -EFAULT) { |
| goto badframe; |
| } |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #elif defined(TARGET_PPC) |
| |
| /* Size of dummy stack frame allocated when calling signal handler. |
| See arch/powerpc/include/asm/ptrace.h. */ |
| #if defined(TARGET_PPC64) |
| #define SIGNAL_FRAMESIZE 128 |
| #else |
| #define SIGNAL_FRAMESIZE 64 |
| #endif |
| |
| /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; |
| on 64-bit PPC, sigcontext and mcontext are one and the same. */ |
| struct target_mcontext { |
| target_ulong mc_gregs[48]; |
| /* Includes fpscr. */ |
| uint64_t mc_fregs[33]; |
| #if defined(TARGET_PPC64) |
| /* Pointer to the vector regs */ |
| target_ulong v_regs; |
| #else |
| target_ulong mc_pad[2]; |
| #endif |
| /* We need to handle Altivec and SPE at the same time, which no |
| kernel needs to do. Fortunately, the kernel defines this bit to |
| be Altivec-register-large all the time, rather than trying to |
| twiddle it based on the specific platform. */ |
| union { |
| /* SPE vector registers. One extra for SPEFSCR. */ |
| uint32_t spe[33]; |
| /* Altivec vector registers. The packing of VSCR and VRSAVE |
| varies depending on whether we're PPC64 or not: PPC64 splits |
| them apart; PPC32 stuffs them together. |
| We also need to account for the VSX registers on PPC64 |
| */ |
| #if defined(TARGET_PPC64) |
| #define QEMU_NVRREG (34 + 16) |
| /* On ppc64, this mcontext structure is naturally *unaligned*, |
| * or rather it is aligned on a 8 bytes boundary but not on |
| * a 16 bytes one. This pad fixes it up. This is also why the |
| * vector regs are referenced by the v_regs pointer above so |
| * any amount of padding can be added here |
| */ |
| target_ulong pad; |
| #else |
| /* On ppc32, we are already aligned to 16 bytes */ |
| #define QEMU_NVRREG 33 |
| #endif |
| /* We cannot use ppc_avr_t here as we do *not* want the implied |
| * 16-bytes alignment that would result from it. This would have |
| * the effect of making the whole struct target_mcontext aligned |
| * which breaks the layout of struct target_ucontext on ppc64. |
| */ |
| uint64_t altivec[QEMU_NVRREG][2]; |
| #undef QEMU_NVRREG |
| } mc_vregs; |
| }; |
| |
| /* See arch/powerpc/include/asm/sigcontext.h. */ |
| struct target_sigcontext { |
| target_ulong _unused[4]; |
| int32_t signal; |
| #if defined(TARGET_PPC64) |
| int32_t pad0; |
| #endif |
| target_ulong handler; |
| target_ulong oldmask; |
| target_ulong regs; /* struct pt_regs __user * */ |
| #if defined(TARGET_PPC64) |
| struct target_mcontext mcontext; |
| #endif |
| }; |
| |
| /* Indices for target_mcontext.mc_gregs, below. |
| See arch/powerpc/include/asm/ptrace.h for details. */ |
| enum { |
| TARGET_PT_R0 = 0, |
| TARGET_PT_R1 = 1, |
| TARGET_PT_R2 = 2, |
| TARGET_PT_R3 = 3, |
| TARGET_PT_R4 = 4, |
| TARGET_PT_R5 = 5, |
| TARGET_PT_R6 = 6, |
| TARGET_PT_R7 = 7, |
| TARGET_PT_R8 = 8, |
| TARGET_PT_R9 = 9, |
| TARGET_PT_R10 = 10, |
| TARGET_PT_R11 = 11, |
| TARGET_PT_R12 = 12, |
| TARGET_PT_R13 = 13, |
| TARGET_PT_R14 = 14, |
| TARGET_PT_R15 = 15, |
| TARGET_PT_R16 = 16, |
| TARGET_PT_R17 = 17, |
| TARGET_PT_R18 = 18, |
| TARGET_PT_R19 = 19, |
| TARGET_PT_R20 = 20, |
| TARGET_PT_R21 = 21, |
| TARGET_PT_R22 = 22, |
| TARGET_PT_R23 = 23, |
| TARGET_PT_R24 = 24, |
| TARGET_PT_R25 = 25, |
| TARGET_PT_R26 = 26, |
| TARGET_PT_R27 = 27, |
| TARGET_PT_R28 = 28, |
| TARGET_PT_R29 = 29, |
| TARGET_PT_R30 = 30, |
| TARGET_PT_R31 = 31, |
| TARGET_PT_NIP = 32, |
| TARGET_PT_MSR = 33, |
| TARGET_PT_ORIG_R3 = 34, |
| TARGET_PT_CTR = 35, |
| TARGET_PT_LNK = 36, |
| TARGET_PT_XER = 37, |
| TARGET_PT_CCR = 38, |
| /* Yes, there are two registers with #39. One is 64-bit only. */ |
| TARGET_PT_MQ = 39, |
| TARGET_PT_SOFTE = 39, |
| TARGET_PT_TRAP = 40, |
| TARGET_PT_DAR = 41, |
| TARGET_PT_DSISR = 42, |
| TARGET_PT_RESULT = 43, |
| TARGET_PT_REGS_COUNT = 44 |
| }; |
| |
| |
| struct target_ucontext { |
| target_ulong tuc_flags; |
| target_ulong tuc_link; /* ucontext_t __user * */ |
| struct target_sigaltstack tuc_stack; |
| #if !defined(TARGET_PPC64) |
| int32_t tuc_pad[7]; |
| target_ulong tuc_regs; /* struct mcontext __user * |
| points to uc_mcontext field */ |
| #endif |
| target_sigset_t tuc_sigmask; |
| #if defined(TARGET_PPC64) |
| target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ |
| struct target_sigcontext tuc_sigcontext; |
| #else |
| int32_t tuc_maskext[30]; |
| int32_t tuc_pad2[3]; |
| struct target_mcontext tuc_mcontext; |
| #endif |
| }; |
| |
| /* See arch/powerpc/kernel/signal_32.c. */ |
| struct target_sigframe { |
| struct target_sigcontext sctx; |
| struct target_mcontext mctx; |
| int32_t abigap[56]; |
| }; |
| |
| #if defined(TARGET_PPC64) |
| |
| #define TARGET_TRAMP_SIZE 6 |
| |
| struct target_rt_sigframe { |
| /* sys_rt_sigreturn requires the ucontext be the first field */ |
| struct target_ucontext uc; |
| target_ulong _unused[2]; |
| uint32_t trampoline[TARGET_TRAMP_SIZE]; |
| target_ulong pinfo; /* struct siginfo __user * */ |
| target_ulong puc; /* void __user * */ |
| struct target_siginfo info; |
| /* 64 bit ABI allows for 288 bytes below sp before decrementing it. */ |
| char abigap[288]; |
| } __attribute__((aligned(16))); |
| |
| #else |
| |
| struct target_rt_sigframe { |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| int32_t abigap[56]; |
| }; |
| |
| #endif |
| |
| #if defined(TARGET_PPC64) |
| |
| struct target_func_ptr { |
| target_ulong entry; |
| target_ulong toc; |
| }; |
| |
| #endif |
| |
| /* We use the mc_pad field for the signal return trampoline. */ |
| #define tramp mc_pad |
| |
| /* See arch/powerpc/kernel/signal.c. */ |
| static target_ulong get_sigframe(struct target_sigaction *ka, |
| CPUPPCState *env, |
| int frame_size) |
| { |
| target_ulong oldsp; |
| |
| oldsp = env->gpr[1]; |
| |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && |
| (sas_ss_flags(oldsp) == 0)) { |
| oldsp = (target_sigaltstack_used.ss_sp |
| + target_sigaltstack_used.ss_size); |
| } |
| |
| return (oldsp - frame_size) & ~0xFUL; |
| } |
| |
| #if ((defined(TARGET_WORDS_BIGENDIAN) && defined(HOST_WORDS_BIGENDIAN)) || \ |
| (!defined(HOST_WORDS_BIGENDIAN) && !defined(TARGET_WORDS_BIGENDIAN))) |
| #define PPC_VEC_HI 0 |
| #define PPC_VEC_LO 1 |
| #else |
| #define PPC_VEC_HI 1 |
| #define PPC_VEC_LO 0 |
| #endif |
| |
| |
| static void save_user_regs(CPUPPCState *env, struct target_mcontext *frame) |
| { |
| target_ulong msr = env->msr; |
| int i; |
| target_ulong ccr = 0; |
| |
| /* In general, the kernel attempts to be intelligent about what it |
| needs to save for Altivec/FP/SPE registers. We don't care that |
| much, so we just go ahead and save everything. */ |
| |
| /* Save general registers. */ |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| __put_user(env->gpr[i], &frame->mc_gregs[i]); |
| } |
| __put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); |
| __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); |
| __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); |
| __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); |
| |
| for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| ccr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| } |
| __put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); |
| |
| /* Save Altivec registers if necessary. */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| uint32_t *vrsave; |
| for (i = 0; i < ARRAY_SIZE(env->avr); i++) { |
| ppc_avr_t *avr = &env->avr[i]; |
| ppc_avr_t *vreg = (ppc_avr_t *)&frame->mc_vregs.altivec[i]; |
| |
| __put_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); |
| __put_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); |
| } |
| /* Set MSR_VR in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| msr |= MSR_VR; |
| #if defined(TARGET_PPC64) |
| vrsave = (uint32_t *)&frame->mc_vregs.altivec[33]; |
| /* 64-bit needs to put a pointer to the vectors in the frame */ |
| __put_user(h2g(frame->mc_vregs.altivec), &frame->v_regs); |
| #else |
| vrsave = (uint32_t *)&frame->mc_vregs.altivec[32]; |
| #endif |
| __put_user((uint32_t)env->spr[SPR_VRSAVE], vrsave); |
| } |
| |
| /* Save VSX second halves */ |
| if (env->insns_flags2 & PPC2_VSX) { |
| uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; |
| for (i = 0; i < ARRAY_SIZE(env->vsr); i++) { |
| __put_user(env->vsr[i], &vsregs[i]); |
| } |
| } |
| |
| /* Save floating point registers. */ |
| if (env->insns_flags & PPC_FLOAT) { |
| for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { |
| __put_user(env->fpr[i], &frame->mc_fregs[i]); |
| } |
| __put_user((uint64_t) env->fpscr, &frame->mc_fregs[32]); |
| } |
| |
| /* Save SPE registers. The kernel only saves the high half. */ |
| if (env->insns_flags & PPC_SPE) { |
| #if defined(TARGET_PPC64) |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| __put_user(env->gpr[i] >> 32, &frame->mc_vregs.spe[i]); |
| } |
| #else |
| for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { |
| __put_user(env->gprh[i], &frame->mc_vregs.spe[i]); |
| } |
| #endif |
| /* Set MSR_SPE in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| msr |= MSR_SPE; |
| __put_user(env->spe_fscr, &frame->mc_vregs.spe[32]); |
| } |
| |
| /* Store MSR. */ |
| __put_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); |
| } |
| |
| static void encode_trampoline(int sigret, uint32_t *tramp) |
| { |
| /* Set up the sigreturn trampoline: li r0,sigret; sc. */ |
| if (sigret) { |
| __put_user(0x38000000 | sigret, &tramp[0]); |
| __put_user(0x44000002, &tramp[1]); |
| } |
| } |
| |
| static void restore_user_regs(CPUPPCState *env, |
| struct target_mcontext *frame, int sig) |
| { |
| target_ulong save_r2 = 0; |
| target_ulong msr; |
| target_ulong ccr; |
| |
| int i; |
| |
| if (!sig) { |
| save_r2 = env->gpr[2]; |
| } |
| |
| /* Restore general registers. */ |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| __get_user(env->gpr[i], &frame->mc_gregs[i]); |
| } |
| __get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); |
| __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); |
| __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); |
| __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); |
| __get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); |
| |
| for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; |
| } |
| |
| if (!sig) { |
| env->gpr[2] = save_r2; |
| } |
| /* Restore MSR. */ |
| __get_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); |
| |
| /* If doing signal return, restore the previous little-endian mode. */ |
| if (sig) |
| env->msr = (env->msr & ~(1ull << MSR_LE)) | (msr & (1ull << MSR_LE)); |
| |
| /* Restore Altivec registers if necessary. */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| ppc_avr_t *v_regs; |
| uint32_t *vrsave; |
| #if defined(TARGET_PPC64) |
| uint64_t v_addr; |
| /* 64-bit needs to recover the pointer to the vectors from the frame */ |
| __get_user(v_addr, &frame->v_regs); |
| v_regs = g2h(v_addr); |
| #else |
| v_regs = (ppc_avr_t *)frame->mc_vregs.altivec; |
| #endif |
| for (i = 0; i < ARRAY_SIZE(env->avr); i++) { |
| ppc_avr_t *avr = &env->avr[i]; |
| ppc_avr_t *vreg = &v_regs[i]; |
| |
| __get_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); |
| __get_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); |
| } |
| /* Set MSR_VEC in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| #if defined(TARGET_PPC64) |
| vrsave = (uint32_t *)&v_regs[33]; |
| #else |
| vrsave = (uint32_t *)&v_regs[32]; |
| #endif |
| __get_user(env->spr[SPR_VRSAVE], vrsave); |
| } |
| |
| /* Restore VSX second halves */ |
| if (env->insns_flags2 & PPC2_VSX) { |
| uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; |
| for (i = 0; i < ARRAY_SIZE(env->vsr); i++) { |
| __get_user(env->vsr[i], &vsregs[i]); |
| } |
| } |
| |
| /* Restore floating point registers. */ |
| if (env->insns_flags & PPC_FLOAT) { |
| uint64_t fpscr; |
| for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { |
| __get_user(env->fpr[i], &frame->mc_fregs[i]); |
| } |
| __get_user(fpscr, &frame->mc_fregs[32]); |
| env->fpscr = (uint32_t) fpscr; |
| } |
| |
| /* Save SPE registers. The kernel only saves the high half. */ |
| if (env->insns_flags & PPC_SPE) { |
| #if defined(TARGET_PPC64) |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| uint32_t hi; |
| |
| __get_user(hi, &frame->mc_vregs.spe[i]); |
| env->gpr[i] = ((uint64_t)hi << 32) | ((uint32_t) env->gpr[i]); |
| } |
| #else |
| for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { |
| __get_user(env->gprh[i], &frame->mc_vregs.spe[i]); |
| } |
| #endif |
| __get_user(env->spe_fscr, &frame->mc_vregs.spe[32]); |
| } |
| } |
| |
| #if !defined(TARGET_PPC64) |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUPPCState *env) |
| { |
| struct target_sigframe *frame; |
| struct target_sigcontext *sc; |
| target_ulong frame_addr, newsp; |
| int err = 0; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) |
| goto sigsegv; |
| sc = &frame->sctx; |
| |
| __put_user(ka->_sa_handler, &sc->handler); |
| __put_user(set->sig[0], &sc->oldmask); |
| __put_user(set->sig[1], &sc->_unused[3]); |
| __put_user(h2g(&frame->mctx), &sc->regs); |
| __put_user(sig, &sc->signal); |
| |
| /* Save user regs. */ |
| save_user_regs(env, &frame->mctx); |
| |
| /* Construct the trampoline code on the stack. */ |
| encode_trampoline(TARGET_NR_sigreturn, (uint32_t *)&frame->mctx.tramp); |
| |
| /* The kernel checks for the presence of a VDSO here. We don't |
| emulate a vdso, so use a sigreturn system call. */ |
| env->lr = (target_ulong) h2g(frame->mctx.tramp); |
| |
| /* Turn off all fp exceptions. */ |
| env->fpscr = 0; |
| |
| /* Create a stack frame for the caller of the handler. */ |
| newsp = frame_addr - SIGNAL_FRAMESIZE; |
| err |= put_user(env->gpr[1], newsp, target_ulong); |
| |
| if (err) |
| goto sigsegv; |
| |
| /* Set up registers for signal handler. */ |
| env->gpr[1] = newsp; |
| env->gpr[3] = sig; |
| env->gpr[4] = frame_addr + offsetof(struct target_sigframe, sctx); |
| |
| env->nip = (target_ulong) ka->_sa_handler; |
| |
| /* Signal handlers are entered in big-endian mode. */ |
| env->msr &= ~(1ull << MSR_LE); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(sig); |
| } |
| #endif /* !defined(TARGET_PPC64) */ |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUPPCState *env) |
| { |
| struct target_rt_sigframe *rt_sf; |
| uint32_t *trampptr = 0; |
| struct target_mcontext *mctx = 0; |
| target_ulong rt_sf_addr, newsp = 0; |
| int i, err = 0; |
| #if defined(TARGET_PPC64) |
| struct target_sigcontext *sc = 0; |
| struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; |
| #endif |
| |
| rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); |
| if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) |
| goto sigsegv; |
| |
| tswap_siginfo(&rt_sf->info, info); |
| |
| __put_user(0, &rt_sf->uc.tuc_flags); |
| __put_user(0, &rt_sf->uc.tuc_link); |
| __put_user((target_ulong)target_sigaltstack_used.ss_sp, |
| &rt_sf->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(env->gpr[1]), |
| &rt_sf->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, |
| &rt_sf->uc.tuc_stack.ss_size); |
| #if !defined(TARGET_PPC64) |
| __put_user(h2g (&rt_sf->uc.tuc_mcontext), |
| &rt_sf->uc.tuc_regs); |
| #endif |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]); |
| } |
| |
| #if defined(TARGET_PPC64) |
| mctx = &rt_sf->uc.tuc_sigcontext.mcontext; |
| trampptr = &rt_sf->trampoline[0]; |
| |
| sc = &rt_sf->uc.tuc_sigcontext; |
| __put_user(h2g(mctx), &sc->regs); |
| __put_user(sig, &sc->signal); |
| #else |
| mctx = &rt_sf->uc.tuc_mcontext; |
| trampptr = (uint32_t *)&rt_sf->uc.tuc_mcontext.tramp; |
| #endif |
| |
| save_user_regs(env, mctx); |
| encode_trampoline(TARGET_NR_rt_sigreturn, trampptr); |
| |
| /* The kernel checks for the presence of a VDSO here. We don't |
| emulate a vdso, so use a sigreturn system call. */ |
| env->lr = (target_ulong) h2g(trampptr); |
| |
| /* Turn off all fp exceptions. */ |
| env->fpscr = 0; |
| |
| /* Create a stack frame for the caller of the handler. */ |
| newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); |
| err |= put_user(env->gpr[1], newsp, target_ulong); |
| |
| if (err) |
| goto sigsegv; |
| |
| /* Set up registers for signal handler. */ |
| env->gpr[1] = newsp; |
| env->gpr[3] = (target_ulong) sig; |
| env->gpr[4] = (target_ulong) h2g(&rt_sf->info); |
| env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); |
| env->gpr[6] = (target_ulong) h2g(rt_sf); |
| |
| #if defined(TARGET_PPC64) |
| if (get_ppc64_abi(image) < 2) { |
| /* ELFv1 PPC64 function pointers are pointers to OPD entries. */ |
| struct target_func_ptr *handler = |
| (struct target_func_ptr *)g2h(ka->_sa_handler); |
| env->nip = tswapl(handler->entry); |
| env->gpr[2] = tswapl(handler->toc); |
| } else { |
| /* ELFv2 PPC64 function pointers are entry points, but R12 |
| * must also be set */ |
| env->nip = tswapl((target_ulong) ka->_sa_handler); |
| env->gpr[12] = env->nip; |
| } |
| #else |
| env->nip = (target_ulong) ka->_sa_handler; |
| #endif |
| |
| /* Signal handlers are entered in big-endian mode. */ |
| env->msr &= ~(1ull << MSR_LE); |
| |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| return; |
| |
| sigsegv: |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| force_sigsegv(sig); |
| |
| } |
| |
| #if !defined(TARGET_PPC64) |
| long do_sigreturn(CPUPPCState *env) |
| { |
| struct target_sigcontext *sc = NULL; |
| struct target_mcontext *sr = NULL; |
| target_ulong sr_addr = 0, sc_addr; |
| sigset_t blocked; |
| target_sigset_t set; |
| |
| sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; |
| if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) |
| goto sigsegv; |
| |
| #if defined(TARGET_PPC64) |
| set.sig[0] = sc->oldmask + ((uint64_t)(sc->_unused[3]) << 32); |
| #else |
| __get_user(set.sig[0], &sc->oldmask); |
| __get_user(set.sig[1], &sc->_unused[3]); |
| #endif |
| target_to_host_sigset_internal(&blocked, &set); |
| set_sigmask(&blocked); |
| |
| __get_user(sr_addr, &sc->regs); |
| if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) |
| goto sigsegv; |
| restore_user_regs(env, sr, 1); |
| |
| unlock_user_struct(sr, sr_addr, 1); |
| unlock_user_struct(sc, sc_addr, 1); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| sigsegv: |
| unlock_user_struct(sr, sr_addr, 1); |
| unlock_user_struct(sc, sc_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| #endif /* !defined(TARGET_PPC64) */ |
| |
| /* See arch/powerpc/kernel/signal_32.c. */ |
| static int do_setcontext(struct target_ucontext *ucp, CPUPPCState *env, int sig) |
| { |
| struct target_mcontext *mcp; |
| target_ulong mcp_addr; |
| sigset_t blocked; |
| target_sigset_t set; |
| |
| if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask), |
| sizeof (set))) |
| return 1; |
| |
| #if defined(TARGET_PPC64) |
| mcp_addr = h2g(ucp) + |
| offsetof(struct target_ucontext, tuc_sigcontext.mcontext); |
| #else |
| __get_user(mcp_addr, &ucp->tuc_regs); |
| #endif |
| |
| if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) |
| return 1; |
| |
| target_to_host_sigset_internal(&blocked, &set); |
| set_sigmask(&blocked); |
| restore_user_regs(env, mcp, sig); |
| |
| unlock_user_struct(mcp, mcp_addr, 1); |
| return 0; |
| } |
| |
| long do_rt_sigreturn(CPUPPCState *env) |
| { |
| struct target_rt_sigframe *rt_sf = NULL; |
| target_ulong rt_sf_addr; |
| |
| rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; |
| if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) |
| goto sigsegv; |
| |
| if (do_setcontext(&rt_sf->uc, env, 1)) |
| goto sigsegv; |
| |
| do_sigaltstack(rt_sf_addr |
| + offsetof(struct target_rt_sigframe, uc.tuc_stack), |
| 0, env->gpr[1]); |
| |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| sigsegv: |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #elif defined(TARGET_M68K) |
| |
| struct target_sigcontext { |
| abi_ulong sc_mask; |
| abi_ulong sc_usp; |
| abi_ulong sc_d0; |
| abi_ulong sc_d1; |
| abi_ulong sc_a0; |
| abi_ulong sc_a1; |
| unsigned short sc_sr; |
| abi_ulong sc_pc; |
| }; |
| |
| struct target_sigframe |
| { |
| abi_ulong pretcode; |
| int sig; |
| int code; |
| abi_ulong psc; |
| char retcode[8]; |
| abi_ulong extramask[TARGET_NSIG_WORDS-1]; |
| struct target_sigcontext sc; |
| }; |
| |
| typedef int target_greg_t; |
| #define TARGET_NGREG 18 |
| typedef target_greg_t target_gregset_t[TARGET_NGREG]; |
| |
| typedef struct target_fpregset { |
| int f_fpcntl[3]; |
| int f_fpregs[8*3]; |
| } target_fpregset_t; |
| |
| struct target_mcontext { |
| int version; |
| target_gregset_t gregs; |
| target_fpregset_t fpregs; |
| }; |
| |
| #define TARGET_MCONTEXT_VERSION 2 |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_mcontext tuc_mcontext; |
| abi_long tuc_filler[80]; |
| target_sigset_t tuc_sigmask; |
| }; |
| |
| struct target_rt_sigframe |
| { |
| abi_ulong pretcode; |
| int sig; |
| abi_ulong pinfo; |
| abi_ulong puc; |
| char retcode[8]; |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| }; |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPUM68KState *env, |
| abi_ulong mask) |
| { |
| uint32_t sr = (env->sr & 0xff00) | cpu_m68k_get_ccr(env); |
| __put_user(mask, &sc->sc_mask); |
| __put_user(env->aregs[7], &sc->sc_usp); |
| __put_user(env->dregs[0], &sc->sc_d0); |
| __put_user(env->dregs[1], &sc->sc_d1); |
| __put_user(env->aregs[0], &sc->sc_a0); |
| __put_user(env->aregs[1], &sc->sc_a1); |
| __put_user(sr, &sc->sc_sr); |
| __put_user(env->pc, &sc->sc_pc); |
| } |
| |
| static void |
| restore_sigcontext(CPUM68KState *env, struct target_sigcontext *sc) |
| { |
| int temp; |
| |
| __get_user(env->aregs[7], &sc->sc_usp); |
| __get_user(env->dregs[0], &sc->sc_d0); |
| __get_user(env->dregs[1], &sc->sc_d1); |
| __get_user(env->aregs[0], &sc->sc_a0); |
| __get_user(env->aregs[1], &sc->sc_a1); |
| __get_user(env->pc, &sc->sc_pc); |
| __get_user(temp, &sc->sc_sr); |
| cpu_m68k_set_ccr(env, temp); |
| } |
| |
| /* |
| * Determine which stack to use.. |
| */ |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUM68KState *regs, |
| size_t frame_size) |
| { |
| unsigned long sp; |
| |
| sp = regs->aregs[7]; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| return ((sp - frame_size) & -8UL); |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUM68KState *env) |
| { |
| struct target_sigframe *frame; |
| abi_ulong frame_addr; |
| abi_ulong retcode_addr; |
| abi_ulong sc_addr; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof *frame); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| __put_user(sig, &frame->sig); |
| |
| sc_addr = frame_addr + offsetof(struct target_sigframe, sc); |
| __put_user(sc_addr, &frame->psc); |
| |
| setup_sigcontext(&frame->sc, env, set->sig[0]); |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->extramask[i - 1]); |
| } |
| |
| /* Set up to return from userspace. */ |
| |
| retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); |
| __put_user(retcode_addr, &frame->pretcode); |
| |
| /* moveq #,d0; trap #0 */ |
| |
| __put_user(0x70004e40 + (TARGET_NR_sigreturn << 16), |
| (uint32_t *)(frame->retcode)); |
| |
| /* Set up to return from userspace */ |
| |
| env->aregs[7] = frame_addr; |
| env->pc = ka->_sa_handler; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| |
| static inline void target_rt_save_fpu_state(struct target_ucontext *uc, |
| CPUM68KState *env) |
| { |
| int i; |
| target_fpregset_t *fpregs = &uc->tuc_mcontext.fpregs; |
| |
| __put_user(env->fpcr, &fpregs->f_fpcntl[0]); |
| __put_user(env->fpsr, &fpregs->f_fpcntl[1]); |
| /* fpiar is not emulated */ |
| |
| for (i = 0; i < 8; i++) { |
| uint32_t high = env->fregs[i].d.high << 16; |
| __put_user(high, &fpregs->f_fpregs[i * 3]); |
| __put_user(env->fregs[i].d.low, |
| (uint64_t *)&fpregs->f_fpregs[i * 3 + 1]); |
| } |
| } |
| |
| static inline int target_rt_setup_ucontext(struct target_ucontext *uc, |
| CPUM68KState *env) |
| { |
| target_greg_t *gregs = uc->tuc_mcontext.gregs; |
| uint32_t sr = (env->sr & 0xff00) | cpu_m68k_get_ccr(env); |
| |
| __put_user(TARGET_MCONTEXT_VERSION, &uc->tuc_mcontext.version); |
| __put_user(env->dregs[0], &gregs[0]); |
| __put_user(env->dregs[1], &gregs[1]); |
| __put_user(env->dregs[2], &gregs[2]); |
| __put_user(env->dregs[3], &gregs[3]); |
| __put_user(env->dregs[4], &gregs[4]); |
| __put_user(env->dregs[5], &gregs[5]); |
| __put_user(env->dregs[6], &gregs[6]); |
| __put_user(env->dregs[7], &gregs[7]); |
| __put_user(env->aregs[0], &gregs[8]); |
| __put_user(env->aregs[1], &gregs[9]); |
| __put_user(env->aregs[2], &gregs[10]); |
| __put_user(env->aregs[3], &gregs[11]); |
| __put_user(env->aregs[4], &gregs[12]); |
| __put_user(env->aregs[5], &gregs[13]); |
| __put_user(env->aregs[6], &gregs[14]); |
| __put_user(env->aregs[7], &gregs[15]); |
| __put_user(env->pc, &gregs[16]); |
| __put_user(sr, &gregs[17]); |
| |
| target_rt_save_fpu_state(uc, env); |
| |
| return 0; |
| } |
| |
| static inline void target_rt_restore_fpu_state(CPUM68KState *env, |
| struct target_ucontext *uc) |
| { |
| int i; |
| target_fpregset_t *fpregs = &uc->tuc_mcontext.fpregs; |
| uint32_t fpcr; |
| |
| __get_user(fpcr, &fpregs->f_fpcntl[0]); |
| cpu_m68k_set_fpcr(env, fpcr); |
| __get_user(env->fpsr, &fpregs->f_fpcntl[1]); |
| /* fpiar is not emulated */ |
| |
| for (i = 0; i < 8; i++) { |
| uint32_t high; |
| __get_user(high, &fpregs->f_fpregs[i * 3]); |
| env->fregs[i].d.high = high >> 16; |
| __get_user(env->fregs[i].d.low, |
| (uint64_t *)&fpregs->f_fpregs[i * 3 + 1]); |
| } |
| } |
| |
| static inline int target_rt_restore_ucontext(CPUM68KState *env, |
| struct target_ucontext *uc) |
| { |
| int temp; |
| target_greg_t *gregs = uc->tuc_mcontext.gregs; |
| |
| __get_user(temp, &uc->tuc_mcontext.version); |
| if (temp != TARGET_MCONTEXT_VERSION) |
| goto badframe; |
| |
| /* restore passed registers */ |
| __get_user(env->dregs[0], &gregs[0]); |
| __get_user(env->dregs[1], &gregs[1]); |
| __get_user(env->dregs[2], &gregs[2]); |
| __get_user(env->dregs[3], &gregs[3]); |
| __get_user(env->dregs[4], &gregs[4]); |
| __get_user(env->dregs[5], &gregs[5]); |
| __get_user(env->dregs[6], &gregs[6]); |
| __get_user(env->dregs[7], &gregs[7]); |
| __get_user(env->aregs[0], &gregs[8]); |
| __get_user(env->aregs[1], &gregs[9]); |
| __get_user(env->aregs[2], &gregs[10]); |
| __get_user(env->aregs[3], &gregs[11]); |
| __get_user(env->aregs[4], &gregs[12]); |
| __get_user(env->aregs[5], &gregs[13]); |
| __get_user(env->aregs[6], &gregs[14]); |
| __get_user(env->aregs[7], &gregs[15]); |
| __get_user(env->pc, &gregs[16]); |
| __get_user(temp, &gregs[17]); |
| cpu_m68k_set_ccr(env, temp); |
| |
| target_rt_restore_fpu_state(env, uc); |
| |
| return 0; |
| |
| badframe: |
| return 1; |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUM68KState *env) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| abi_ulong retcode_addr; |
| abi_ulong info_addr; |
| abi_ulong uc_addr; |
| int err = 0; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof *frame); |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| __put_user(sig, &frame->sig); |
| |
| info_addr = frame_addr + offsetof(struct target_rt_sigframe, info); |
| __put_user(info_addr, &frame->pinfo); |
| |
| uc_addr = frame_addr + offsetof(struct target_rt_sigframe, uc); |
| __put_user(uc_addr, &frame->puc); |
| |
| tswap_siginfo(&frame->info, info); |
| |
| /* Create the ucontext */ |
| |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user(0, &frame->uc.tuc_link); |
| __put_user(target_sigaltstack_used.ss_sp, |
| &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(env->aregs[7]), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.tuc_stack.ss_size); |
| err |= target_rt_setup_ucontext(&frame->uc, env); |
| |
| if (err) |
| goto give_sigsegv; |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| /* Set up to return from userspace. */ |
| |
| retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); |
| __put_user(retcode_addr, &frame->pretcode); |
| |
| /* moveq #,d0; notb d0; trap #0 */ |
| |
| __put_user(0x70004600 + ((TARGET_NR_rt_sigreturn ^ 0xff) << 16), |
| (uint32_t *)(frame->retcode + 0)); |
| __put_user(0x4e40, (uint16_t *)(frame->retcode + 4)); |
| |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up to return from userspace */ |
| |
| env->aregs[7] = frame_addr; |
| env->pc = ka->_sa_handler; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sigsegv(sig); |
| } |
| |
| long do_sigreturn(CPUM68KState *env) |
| { |
| struct target_sigframe *frame; |
| abi_ulong frame_addr = env->aregs[7] - 4; |
| target_sigset_t target_set; |
| sigset_t set; |
| int i; |
| |
| trace_user_do_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| /* set blocked signals */ |
| |
| __get_user(target_set.sig[0], &frame->sc.sc_mask); |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(target_set.sig[i], &frame->extramask[i - 1]); |
| } |
| |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); |
| |
| /* restore registers */ |
| |
| restore_sigcontext(env, &frame->sc); |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUM68KState *env) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr = env->aregs[7] - 4; |
| sigset_t set; |
| |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| set_sigmask(&set); |
| |
| /* restore registers */ |
| |
| if (target_rt_restore_ucontext(env, &frame->uc)) |
| goto badframe; |
| |
| if (do_sigaltstack(frame_addr + |
| offsetof(struct target_rt_sigframe, uc.tuc_stack), |
| 0, get_sp_from_cpustate(env)) == -EFAULT) |
| goto badframe; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #elif defined(TARGET_ALPHA) |
| |
| struct target_sigcontext { |
| abi_long sc_onstack; |
| abi_long sc_mask; |
| abi_long sc_pc; |
| abi_long sc_ps; |
| abi_long sc_regs[32]; |
| abi_long sc_ownedfp; |
| abi_long sc_fpregs[32]; |
| abi_ulong sc_fpcr; |
| abi_ulong sc_fp_control; |
| abi_ulong sc_reserved1; |
| abi_ulong sc_reserved2; |
| abi_ulong sc_ssize; |
| abi_ulong sc_sbase; |
| abi_ulong sc_traparg_a0; |
| abi_ulong sc_traparg_a1; |
| abi_ulong sc_traparg_a2; |
| abi_ulong sc_fp_trap_pc; |
| abi_ulong sc_fp_trigger_sum; |
| abi_ulong sc_fp_trigger_inst; |
| }; |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| abi_ulong tuc_osf_sigmask; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; |
| }; |
| |
| struct target_sigframe { |
| struct target_sigcontext sc; |
| unsigned int retcode[3]; |
| }; |
| |
| struct target_rt_sigframe { |
| target_siginfo_t info; |
| struct target_ucontext uc; |
| unsigned int retcode[3]; |
| }; |
| |
| #define INSN_MOV_R30_R16 0x47fe0410 |
| #define INSN_LDI_R0 0x201f0000 |
| #define INSN_CALLSYS 0x00000083 |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPUAlphaState *env, |
| abi_ulong frame_addr, target_sigset_t *set) |
| { |
| int i; |
| |
| __put_user(on_sig_stack(frame_addr), &sc->sc_onstack); |
| __put_user(set->sig[0], &sc->sc_mask); |
| __put_user(env->pc, &sc->sc_pc); |
| __put_user(8, &sc->sc_ps); |
| |
| for (i = 0; i < 31; ++i) { |
| __put_user(env->ir[i], &sc->sc_regs[i]); |
| } |
| __put_user(0, &sc->sc_regs[31]); |
| |
| for (i = 0; i < 31; ++i) { |
| __put_user(env->fir[i], &sc->sc_fpregs[i]); |
| } |
| __put_user(0, &sc->sc_fpregs[31]); |
| __put_user(cpu_alpha_load_fpcr(env), &sc->sc_fpcr); |
| |
| __put_user(0, &sc->sc_traparg_a0); /* FIXME */ |
| __put_user(0, &sc->sc_traparg_a1); /* FIXME */ |
| __put_user(0, &sc->sc_traparg_a2); /* FIXME */ |
| } |
| |
| static void restore_sigcontext(CPUAlphaState *env, |
| struct target_sigcontext *sc) |
| { |
| uint64_t fpcr; |
| int i; |
| |
| __get_user(env->pc, &sc->sc_pc); |
| |
| for (i = 0; i < 31; ++i) { |
| __get_user(env->ir[i], &sc->sc_regs[i]); |
| } |
| for (i = 0; i < 31; ++i) { |
| __get_user(env->fir[i], &sc->sc_fpregs[i]); |
| } |
| |
| __get_user(fpcr, &sc->sc_fpcr); |
| cpu_alpha_store_fpcr(env, fpcr); |
| } |
| |
| static inline abi_ulong get_sigframe(struct target_sigaction *sa, |
| CPUAlphaState *env, |
| unsigned long framesize) |
| { |
| abi_ulong sp = env->ir[IR_SP]; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if ((sa->sa_flags & TARGET_SA_ONSTACK) != 0 && !sas_ss_flags(sp)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| return (sp - framesize) & -32; |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUAlphaState *env) |
| { |
| abi_ulong frame_addr, r26; |
| struct target_sigframe *frame; |
| int err = 0; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| setup_sigcontext(&frame->sc, env, frame_addr, set); |
| |
| if (ka->sa_restorer) { |
| r26 = ka->sa_restorer; |
| } else { |
| __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); |
| __put_user(INSN_LDI_R0 + TARGET_NR_sigreturn, |
| &frame->retcode[1]); |
| __put_user(INSN_CALLSYS, &frame->retcode[2]); |
| /* imb() */ |
| r26 = frame_addr; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| |
| if (err) { |
| give_sigsegv: |
| force_sigsegv(sig); |
| return; |
| } |
| |
| env->ir[IR_RA] = r26; |
| env->ir[IR_PV] = env->pc = ka->_sa_handler; |
| env->ir[IR_A0] = sig; |
| env->ir[IR_A1] = 0; |
| env->ir[IR_A2] = frame_addr + offsetof(struct target_sigframe, sc); |
| env->ir[IR_SP] = frame_addr; |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUAlphaState *env) |
| { |
| abi_ulong frame_addr, r26; |
| struct target_rt_sigframe *frame; |
| int i, err = 0; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| tswap_siginfo(&frame->info, info); |
| |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user(0, &frame->uc.tuc_link); |
| __put_user(set->sig[0], &frame->uc.tuc_osf_sigmask); |
| __put_user(target_sigaltstack_used.ss_sp, |
| &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(env->ir[IR_SP]), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.tuc_stack.ss_size); |
| setup_sigcontext(&frame->uc.tuc_mcontext, env, frame_addr, set); |
| for (i = 0; i < TARGET_NSIG_WORDS; ++i) { |
| __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| if (ka->sa_restorer) { |
| r26 = ka->sa_restorer; |
| } else { |
| __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); |
| __put_user(INSN_LDI_R0 + TARGET_NR_rt_sigreturn, |
| &frame->retcode[1]); |
| __put_user(INSN_CALLSYS, &frame->retcode[2]); |
| /* imb(); */ |
| r26 = frame_addr; |
| } |
| |
| if (err) { |
| give_sigsegv: |
| force_sigsegv(sig); |
| return; |
| } |
| |
| env->ir[IR_RA] = r26; |
| env->ir[IR_PV] = env->pc = ka->_sa_handler; |
| env->ir[IR_A0] = sig; |
| env->ir[IR_A1] = frame_addr + offsetof(struct target_rt_sigframe, info); |
| env->ir[IR_A2] = frame_addr + offsetof(struct target_rt_sigframe, uc); |
| env->ir[IR_SP] = frame_addr; |
| } |
| |
| long do_sigreturn(CPUAlphaState *env) |
| { |
| struct target_sigcontext *sc; |
| abi_ulong sc_addr = env->ir[IR_A0]; |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) { |
| goto badframe; |
| } |
| |
| target_sigemptyset(&target_set); |
| __get_user(target_set.sig[0], &sc->sc_mask); |
| |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); |
| |
| restore_sigcontext(env, sc); |
| unlock_user_struct(sc, sc_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUAlphaState *env) |
| { |
| abi_ulong frame_addr = env->ir[IR_A0]; |
| struct target_rt_sigframe *frame; |
| sigset_t set; |
| |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| set_sigmask(&set); |
| |
| restore_sigcontext(env, &frame->uc.tuc_mcontext); |
| if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, |
| uc.tuc_stack), |
| 0, env->ir[IR_SP]) == -EFAULT) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #elif defined(TARGET_TILEGX) |
| |
| struct target_sigcontext { |
| union { |
| /* General-purpose registers. */ |
| abi_ulong gregs[56]; |
| struct { |
| abi_ulong __gregs[53]; |
| abi_ulong tp; /* Aliases gregs[TREG_TP]. */ |
| abi_ulong sp; /* Aliases gregs[TREG_SP]. */ |
| abi_ulong lr; /* Aliases gregs[TREG_LR]. */ |
| }; |
| }; |
| abi_ulong pc; /* Program counter. */ |
| abi_ulong ics; /* In Interrupt Critical Section? */ |
| abi_ulong faultnum; /* Fault number. */ |
| abi_ulong pad[5]; |
| }; |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct target_rt_sigframe { |
| unsigned char save_area[16]; /* caller save area */ |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| abi_ulong retcode[2]; |
| }; |
| |
| #define INSN_MOVELI_R10_139 0x00045fe551483000ULL /* { moveli r10, 139 } */ |
| #define INSN_SWINT1 0x286b180051485000ULL /* { swint1 } */ |
| |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, |
| CPUArchState *env, int signo) |
| { |
| int i; |
| |
| for (i = 0; i < TILEGX_R_COUNT; ++i) { |
| __put_user(env->regs[i], &sc->gregs[i]); |
| } |
| |
| __put_user(env->pc, &sc->pc); |
| __put_user(0, &sc->ics); |
| __put_user(signo, &sc->faultnum); |
| } |
| |
| static void restore_sigcontext(CPUTLGState *env, struct target_sigcontext *sc) |
| { |
| int i; |
| |
| for (i = 0; i < TILEGX_R_COUNT; ++i) { |
| __get_user(env->regs[i], &sc->gregs[i]); |
| } |
| |
| __get_user(env->pc, &sc->pc); |
| } |
| |
| static abi_ulong get_sigframe(struct target_sigaction *ka, CPUArchState *env, |
| size_t frame_size) |
| { |
| unsigned long sp = env->regs[TILEGX_R_SP]; |
| |
| if (on_sig_stack(sp) && !likely(on_sig_stack(sp - frame_size))) { |
| return -1UL; |
| } |
| |
| if ((ka->sa_flags & SA_ONSTACK) && !sas_ss_flags(sp)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| sp -= frame_size; |
| sp &= -16UL; |
| return sp; |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUArchState *env) |
| { |
| abi_ulong frame_addr; |
| struct target_rt_sigframe *frame; |
| unsigned long restorer; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_rt_frame(env, frame_addr); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| /* Always write at least the signal number for the stack backtracer. */ |
| if (ka->sa_flags & TARGET_SA_SIGINFO) { |
| /* At sigreturn time, restore the callee-save registers too. */ |
| tswap_siginfo(&frame->info, info); |
| /* regs->flags |= PT_FLAGS_RESTORE_REGS; FIXME: we can skip it? */ |
| } else { |
| __put_user(info->si_signo, &frame->info.si_signo); |
| } |
| |
| /* Create the ucontext. */ |
| __put_user(0, &frame->uc.tuc_flags); |
| __put_user(0, &frame->uc.tuc_link); |
| __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(env->regs[TILEGX_R_SP]), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); |
| setup_sigcontext(&frame->uc.tuc_mcontext, env, info->si_signo); |
| |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| restorer = (unsigned long) ka->sa_restorer; |
| } else { |
| __put_user(INSN_MOVELI_R10_139, &frame->retcode[0]); |
| __put_user(INSN_SWINT1, &frame->retcode[1]); |
| restorer = frame_addr + offsetof(struct target_rt_sigframe, retcode); |
| } |
| env->pc = (unsigned long) ka->_sa_handler; |
| env->regs[TILEGX_R_SP] = (unsigned long) frame; |
| env->regs[TILEGX_R_LR] = restorer; |
| env->regs[0] = (unsigned long) sig; |
| env->regs[1] = (unsigned long) &frame->info; |
| env->regs[2] = (unsigned long) &frame->uc; |
| /* regs->flags |= PT_FLAGS_CALLER_SAVES; FIXME: we can skip it? */ |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| |
| long do_rt_sigreturn(CPUTLGState *env) |
| { |
| abi_ulong frame_addr = env->regs[TILEGX_R_SP]; |
| struct target_rt_sigframe *frame; |
| sigset_t set; |
| |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| set_sigmask(&set); |
| |
| restore_sigcontext(env, &frame->uc.tuc_mcontext); |
| if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, |
| uc.tuc_stack), |
| 0, env->regs[TILEGX_R_SP]) == -EFAULT) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #elif defined(TARGET_RISCV) |
| |
| /* Signal handler invocation must be transparent for the code being |
| interrupted. Complete CPU (hart) state is saved on entry and restored |
| before returning from the handler. Process sigmask is also saved to block |
| signals while the handler is running. The handler gets its own stack, |
| which also doubles as storage for the CPU state and sigmask. |
| |
| The code below is qemu re-implementation of arch/riscv/kernel/signal.c */ |
| |
| struct target_sigcontext { |
| abi_long pc; |
| abi_long gpr[31]; /* x0 is not present, so all offsets must be -1 */ |
| uint64_t fpr[32]; |
| uint32_t fcsr; |
| }; /* cf. riscv-linux:arch/riscv/include/uapi/asm/ptrace.h */ |
| |
| struct target_ucontext { |
| unsigned long uc_flags; |
| struct target_ucontext *uc_link; |
| target_stack_t uc_stack; |
| struct target_sigcontext uc_mcontext; |
| target_sigset_t uc_sigmask; |
| }; |
| |
| struct target_rt_sigframe { |
| uint32_t tramp[2]; /* not in kernel, which uses VDSO instead */ |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| }; |
| |
| static abi_ulong get_sigframe(struct target_sigaction *ka, |
| CPURISCVState *regs, size_t framesize) |
| { |
| abi_ulong sp = regs->gpr[xSP]; |
| int onsigstack = on_sig_stack(sp); |
| |
| /* redzone */ |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) != 0 && !onsigstack) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| sp -= framesize; |
| sp &= ~3UL; /* align sp on 4-byte boundary */ |
| |
| /* If we are on the alternate signal stack and would overflow it, don't. |
| Return an always-bogus address instead so we will die with SIGSEGV. */ |
| if (onsigstack && !likely(on_sig_stack(sp))) { |
| return -1L; |
| } |
| |
| return sp; |
| } |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPURISCVState *env) |
| { |
| int i; |
| |
| __put_user(env->pc, &sc->pc); |
| |
| for (i = 1; i < 32; i++) { |
| __put_user(env->gpr[i], &sc->gpr[i - 1]); |
| } |
| for (i = 0; i < 32; i++) { |
| __put_user(env->fpr[i], &sc->fpr[i]); |
| } |
| |
| uint32_t fcsr = csr_read_helper(env, CSR_FCSR); /*riscv_get_fcsr(env);*/ |
| __put_user(fcsr, &sc->fcsr); |
| } |
| |
| static void setup_ucontext(struct target_ucontext *uc, |
| CPURISCVState *env, target_sigset_t *set) |
| { |
| abi_ulong ss_sp = (target_ulong)target_sigaltstack_used.ss_sp; |
| abi_ulong ss_flags = sas_ss_flags(env->gpr[xSP]); |
| abi_ulong ss_size = target_sigaltstack_used.ss_size; |
| |
| __put_user(0, &(uc->uc_flags)); |
| __put_user(0, &(uc->uc_link)); |
| |
| __put_user(ss_sp, &(uc->uc_stack.ss_sp)); |
| __put_user(ss_flags, &(uc->uc_stack.ss_flags)); |
| __put_user(ss_size, &(uc->uc_stack.ss_size)); |
| |
| int i; |
| for (i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &(uc->uc_sigmask.sig[i])); |
| } |
| |
| setup_sigcontext(&uc->uc_mcontext, env); |
| } |
| |
| static inline void install_sigtramp(uint32_t *tramp) |
| { |
| __put_user(0x08b00893, tramp + 0); /* li a7, 139 = __NR_rt_sigreturn */ |
| __put_user(0x00000073, tramp + 1); /* ecall */ |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPURISCVState *env) |
| { |
| abi_ulong frame_addr; |
| struct target_rt_sigframe *frame; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| trace_user_setup_rt_frame(env, frame_addr); |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto badframe; |
| } |
| |
| setup_ucontext(&frame->uc, env, set); |
| tswap_siginfo(&frame->info, info); |
| install_sigtramp(frame->tramp); |
| |
| env->pc = ka->_sa_handler; |
| env->gpr[xSP] = frame_addr; |
| env->gpr[xA0] = sig; |
| env->gpr[xA1] = frame_addr + offsetof(struct target_rt_sigframe, info); |
| env->gpr[xA2] = frame_addr + offsetof(struct target_rt_sigframe, uc); |
| env->gpr[xRA] = frame_addr + offsetof(struct target_rt_sigframe, tramp); |
| |
| return; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 1); |
| if (sig == TARGET_SIGSEGV) { |
| ka->_sa_handler = TARGET_SIG_DFL; |
| } |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| static void restore_sigcontext(CPURISCVState *env, struct target_sigcontext *sc) |
| { |
| int i; |
| |
| __get_user(env->pc, &sc->pc); |
| |
| for (i = 1; i < 32; ++i) { |
| __get_user(env->gpr[i], &sc->gpr[i - 1]); |
| } |
| for (i = 0; i < 32; ++i) { |
| __get_user(env->fpr[i], &sc->fpr[i]); |
| } |
| |
| uint32_t fcsr; |
| __get_user(fcsr, &sc->fcsr); |
| csr_write_helper(env, fcsr, CSR_FCSR); |
| } |
| |
| static void restore_ucontext(CPURISCVState *env, struct target_ucontext *uc) |
| { |
| sigset_t blocked; |
| target_sigset_t target_set; |
| int i; |
| |
| target_sigemptyset(&target_set); |
| for (i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(target_set.sig[i], &(uc->uc_sigmask.sig[i])); |
| } |
| |
| target_to_host_sigset_internal(&blocked, &target_set); |
| set_sigmask(&blocked); |
| |
| restore_sigcontext(env, &uc->uc_mcontext); |
| } |
| |
| long do_rt_sigreturn(CPURISCVState *env) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| |
| frame_addr = env->gpr[xSP]; |
| trace_user_do_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| |
| restore_ucontext(env, &frame->uc); |
| |
| if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, |
| uc.uc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| |
| #elif defined(TARGET_HPPA) |
| |
| struct target_sigcontext { |
| abi_ulong sc_flags; |
| abi_ulong sc_gr[32]; |
| uint64_t sc_fr[32]; |
| abi_ulong sc_iasq[2]; |
| abi_ulong sc_iaoq[2]; |
| abi_ulong sc_sar; |
| }; |
| |
| struct target_ucontext { |
| abi_uint tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| abi_uint pad[1]; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; |
| }; |
| |
| struct target_rt_sigframe { |
| abi_uint tramp[9]; |
| target_siginfo_t info; |
| struct target_ucontext uc; |
| /* hidden location of upper halves of pa2.0 64-bit gregs */ |
| }; |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPUArchState *env) |
| { |
| int flags = 0; |
| int i; |
| |
| /* ??? if on_sig_stack, flags |= 1 (PARISC_SC_FLAG_ONSTACK). */ |
| |
| if (env->iaoq_f < TARGET_PAGE_SIZE) { |
| /* In the gateway page, executing a syscall. */ |
| flags |= 2; /* PARISC_SC_FLAG_IN_SYSCALL */ |
| __put_user(env->gr[31], &sc->sc_iaoq[0]); |
| __put_user(env->gr[31] + 4, &sc->sc_iaoq[1]); |
| } else { |
| __put_user(env->iaoq_f, &sc->sc_iaoq[0]); |
| __put_user(env->iaoq_b, &sc->sc_iaoq[1]); |
| } |
| __put_user(0, &sc->sc_iasq[0]); |
| __put_user(0, &sc->sc_iasq[1]); |
| __put_user(flags, &sc->sc_flags); |
| |
| __put_user(cpu_hppa_get_psw(env), &sc->sc_gr[0]); |
| for (i = 1; i < 32; ++i) { |
| __put_user(env->gr[i], &sc->sc_gr[i]); |
| } |
| |
| __put_user((uint64_t)env->fr0_shadow << 32, &sc->sc_fr[0]); |
| for (i = 1; i < 32; ++i) { |
| __put_user(env->fr[i], &sc->sc_fr[i]); |
| } |
| |
| __put_user(env->cr[CR_SAR], &sc->sc_sar); |
| } |
| |
| static void restore_sigcontext(CPUArchState *env, struct target_sigcontext *sc) |
| { |
| target_ulong psw; |
| int i; |
| |
| __get_user(psw, &sc->sc_gr[0]); |
| cpu_hppa_put_psw(env, psw); |
| |
| for (i = 1; i < 32; ++i) { |
| __get_user(env->gr[i], &sc->sc_gr[i]); |
| } |
| for (i = 0; i < 32; ++i) { |
| __get_user(env->fr[i], &sc->sc_fr[i]); |
| } |
| cpu_hppa_loaded_fr0(env); |
| |
| __get_user(env->iaoq_f, &sc->sc_iaoq[0]); |
| __get_user(env->iaoq_b, &sc->sc_iaoq[1]); |
| __get_user(env->cr[CR_SAR], &sc->sc_sar); |
| } |
| |
| /* No, this doesn't look right, but it's copied straight from the kernel. */ |
| #define PARISC_RT_SIGFRAME_SIZE32 \ |
| ((sizeof(struct target_rt_sigframe) + 48 + 64) & -64) |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUArchState *env) |
| { |
| abi_ulong frame_addr, sp, haddr; |
| struct target_rt_sigframe *frame; |
| int i; |
| |
| sp = env->gr[30]; |
| if (ka->sa_flags & TARGET_SA_ONSTACK) { |
| if (sas_ss_flags(sp) == 0) { |
| sp = (target_sigaltstack_used.ss_sp + 0x7f) & ~0x3f; |
| } |
| } |
| frame_addr = QEMU_ALIGN_UP(sp, 64); |
| sp = frame_addr + PARISC_RT_SIGFRAME_SIZE32; |
| |
| trace_user_setup_rt_frame(env, frame_addr); |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { |
| goto give_sigsegv; |
| } |
| |
| tswap_siginfo(&frame->info, info); |
| frame->uc.tuc_flags = 0; |
| frame->uc.tuc_link = 0; |
| |
| __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), |
| &frame->uc.tuc_stack.ss_flags); |
| __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.tuc_stack.ss_size); |
| |
| for (i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); |
| } |
| |
| setup_sigcontext(&frame->uc.tuc_mcontext, env); |
| |
| __put_user(0x34190000, frame->tramp + 0); /* ldi 0,%r25 */ |
| __put_user(0x3414015a, frame->tramp + 1); /* ldi __NR_rt_sigreturn,%r20 */ |
| __put_user(0xe4008200, frame->tramp + 2); /* be,l 0x100(%sr2,%r0) */ |
| __put_user(0x08000240, frame->tramp + 3); /* nop */ |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| |
| env->gr[2] = h2g(frame->tramp); |
| env->gr[30] = sp; |
| env->gr[26] = sig; |
| env->gr[25] = h2g(&frame->info); |
| env->gr[24] = h2g(&frame->uc); |
| |
| haddr = ka->_sa_handler; |
| if (haddr & 2) { |
| /* Function descriptor. */ |
| target_ulong *fdesc, dest; |
| |
| haddr &= -4; |
| if (!lock_user_struct(VERIFY_READ, fdesc, haddr, 1)) { |
| goto give_sigsegv; |
| } |
| __get_user(dest, fdesc); |
| __get_user(env->gr[19], fdesc + 1); |
| unlock_user_struct(fdesc, haddr, 1); |
| haddr = dest; |
| } |
| env->iaoq_f = haddr; |
| env->iaoq_b = haddr + 4; |
| return; |
| |
| give_sigsegv: |
| force_sigsegv(sig); |
| } |
| |
| long do_rt_sigreturn(CPUArchState *env) |
| { |
| abi_ulong frame_addr = env->gr[30] - PARISC_RT_SIGFRAME_SIZE32; |
| struct target_rt_sigframe *frame; |
| sigset_t set; |
| |
| trace_user_do_rt_sigreturn(env, frame_addr); |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { |
| goto badframe; |
| } |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| set_sigmask(&set); |
| |
| restore_sigcontext(env, &frame->uc.tuc_mcontext); |
| unlock_user_struct(frame, frame_addr, 0); |
| |
| if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, |
| uc.tuc_stack), |
| 0, env->gr[30]) == -EFAULT) { |
| goto badframe; |
| } |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| #else |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUArchState *env) |
| { |
| fprintf(stderr, "setup_frame: not implemented\n"); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUArchState *env) |
| { |
| fprintf(stderr, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUArchState *env) |
| { |
| fprintf(stderr, "do_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| long do_rt_sigreturn(CPUArchState *env) |
| { |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #endif |
| |
| static void handle_pending_signal(CPUArchState *cpu_env, int sig, |
| struct emulated_sigtable *k) |
| { |
| CPUState *cpu = ENV_GET_CPU(cpu_env); |
| abi_ulong handler; |
| sigset_t set; |
| target_sigset_t target_old_set; |
| struct target_sigaction *sa; |
| TaskState *ts = cpu->opaque; |
| |
| trace_user_handle_signal(cpu_env, sig); |
| /* dequeue signal */ |
| k->pending = 0; |
| |
| sig = gdb_handlesig(cpu, sig); |
| if (!sig) { |
| sa = NULL; |
| handler = TARGET_SIG_IGN; |
| } else { |
| sa = &sigact_table[sig - 1]; |
| handler = sa->_sa_handler; |
| } |
| |
| if (do_strace) { |
| print_taken_signal(sig, &k->info); |
| } |
| |
| if (handler == TARGET_SIG_DFL) { |
| /* default handler : ignore some signal. The other are job control or fatal */ |
| if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { |
| kill(getpid(),SIGSTOP); |
| } else if (sig != TARGET_SIGCHLD && |
| sig != TARGET_SIGURG && |
| sig != TARGET_SIGWINCH && |
| sig != TARGET_SIGCONT) { |
| dump_core_and_abort(sig); |
| } |
| } else if (handler == TARGET_SIG_IGN) { |
| /* ignore sig */ |
| } else if (handler == TARGET_SIG_ERR) { |
| dump_core_and_abort(sig); |
| } else { |
| /* compute the blocked signals during the handler execution */ |
| sigset_t *blocked_set; |
| |
| target_to_host_sigset(&set, &sa->sa_mask); |
| /* SA_NODEFER indicates that the current signal should not be |
| blocked during the handler */ |
| if (!(sa->sa_flags & TARGET_SA_NODEFER)) |
| sigaddset(&set, target_to_host_signal(sig)); |
| |
| /* save the previous blocked signal state to restore it at the |
| end of the signal execution (see do_sigreturn) */ |
| host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); |
| |
| /* block signals in the handler */ |
| blocked_set = ts->in_sigsuspend ? |
| &ts->sigsuspend_mask : &ts->signal_mask; |
| sigorset(&ts->signal_mask, blocked_set, &set); |
| ts->in_sigsuspend = 0; |
| |
| /* if the CPU is in VM86 mode, we restore the 32 bit values */ |
| #if defined(TARGET_I386) && !defined(TARGET_X86_64) |
| { |
| CPUX86State *env = cpu_env; |
| if (env->eflags & VM_MASK) |
| save_v86_state(env); |
| } |
| #endif |
| /* prepare the stack frame of the virtual CPU */ |
| #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) \ |
| || defined(TARGET_OPENRISC) || defined(TARGET_TILEGX) \ |
| || defined(TARGET_PPC64) || defined(TARGET_HPPA) \ |
| || defined(TARGET_NIOS2) || defined(TARGET_X86_64) \ |
| || defined(TARGET_RISCV) |
| /* These targets do not have traditional signals. */ |
| setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); |
| #else |
| if (sa->sa_flags & TARGET_SA_SIGINFO) |
| setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); |
| else |
| setup_frame(sig, sa, &target_old_set, cpu_env); |
| #endif |
| if (sa->sa_flags & TARGET_SA_RESETHAND) { |
| sa->_sa_handler = TARGET_SIG_DFL; |
| } |
| } |
| } |
| |
| void process_pending_signals(CPUArchState *cpu_env) |
| { |
| CPUState *cpu = ENV_GET_CPU(cpu_env); |
| int sig; |
| TaskState *ts = cpu->opaque; |
| sigset_t set; |
| sigset_t *blocked_set; |
| |
| while (atomic_read(&ts->signal_pending)) { |
| /* FIXME: This is not threadsafe. */ |
| sigfillset(&set); |
| sigprocmask(SIG_SETMASK, &set, 0); |
| |
| restart_scan: |
| sig = ts->sync_signal.pending; |
| if (sig) { |
| /* Synchronous signals are forced, |
| * see force_sig_info() and callers in Linux |
| * Note that not all of our queue_signal() calls in QEMU correspond |
| * to force_sig_info() calls in Linux (some are send_sig_info()). |
| * However it seems like a kernel bug to me to allow the process |
| * to block a synchronous signal since it could then just end up |
| * looping round and round indefinitely. |
| */ |
| if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) |
| || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { |
| sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); |
| sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; |
| } |
| |
| handle_pending_signal(cpu_env, sig, &ts->sync_signal); |
| } |
| |
| for (sig = 1; sig <= TARGET_NSIG; sig++) { |
| blocked_set = ts->in_sigsuspend ? |
| &ts->sigsuspend_mask : &ts->signal_mask; |
| |
| if (ts->sigtab[sig - 1].pending && |
| (!sigismember(blocked_set, |
| target_to_host_signal_table[sig]))) { |
| handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); |
| /* Restart scan from the beginning, as handle_pending_signal |
| * might have resulted in a new synchronous signal (eg SIGSEGV). |
| */ |
| goto restart_scan; |
| } |
| } |
| |
| /* if no signal is pending, unblock signals and recheck (the act |
| * of unblocking might cause us to take another host signal which |
| * will set signal_pending again). |
| */ |
| atomic_set(&ts->signal_pending, 0); |
| ts->in_sigsuspend = 0; |
| set = ts->signal_mask; |
| sigdelset(&set, SIGSEGV); |
| sigdelset(&set, SIGBUS); |
| sigprocmask(SIG_SETMASK, &set, 0); |
| } |
| ts->in_sigsuspend = 0; |
| } |