| /* |
| * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * Copyright (c) 2013 David Gibson, IBM Corporation |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "cpu.h" |
| #include "helper.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_ppc.h" |
| #include "mmu-hash64.h" |
| |
| //#define DEBUG_MMU |
| //#define DEBUG_SLB |
| |
| #ifdef DEBUG_MMU |
| # define LOG_MMU(...) qemu_log(__VA_ARGS__) |
| # define LOG_MMU_STATE(env) log_cpu_state((env), 0) |
| #else |
| # define LOG_MMU(...) do { } while (0) |
| # define LOG_MMU_STATE(...) do { } while (0) |
| #endif |
| |
| #ifdef DEBUG_SLB |
| # define LOG_SLB(...) qemu_log(__VA_ARGS__) |
| #else |
| # define LOG_SLB(...) do { } while (0) |
| #endif |
| |
| /* |
| * SLB handling |
| */ |
| |
| static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr) |
| { |
| uint64_t esid_256M, esid_1T; |
| int n; |
| |
| LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); |
| |
| esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; |
| esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; |
| |
| for (n = 0; n < env->slb_nr; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| LOG_SLB("%s: slot %d %016" PRIx64 " %016" |
| PRIx64 "\n", __func__, n, slb->esid, slb->vsid); |
| /* We check for 1T matches on all MMUs here - if the MMU |
| * doesn't have 1T segment support, we will have prevented 1T |
| * entries from being inserted in the slbmte code. */ |
| if (((slb->esid == esid_256M) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) |
| || ((slb->esid == esid_1T) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { |
| return slb; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env) |
| { |
| int i; |
| uint64_t slbe, slbv; |
| |
| cpu_synchronize_state(env); |
| |
| cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); |
| for (i = 0; i < env->slb_nr; i++) { |
| slbe = env->slb[i].esid; |
| slbv = env->slb[i].vsid; |
| if (slbe == 0 && slbv == 0) { |
| continue; |
| } |
| cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", |
| i, slbe, slbv); |
| } |
| } |
| |
| void helper_slbia(CPUPPCState *env) |
| { |
| int n, do_invalidate; |
| |
| do_invalidate = 0; |
| /* XXX: Warning: slbia never invalidates the first segment */ |
| for (n = 1; n < env->slb_nr; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| if (slb->esid & SLB_ESID_V) { |
| slb->esid &= ~SLB_ESID_V; |
| /* XXX: given the fact that segment size is 256 MB or 1TB, |
| * and we still don't have a tlb_flush_mask(env, n, mask) |
| * in QEMU, we just invalidate all TLBs |
| */ |
| do_invalidate = 1; |
| } |
| } |
| if (do_invalidate) { |
| tlb_flush(env, 1); |
| } |
| } |
| |
| void helper_slbie(CPUPPCState *env, target_ulong addr) |
| { |
| ppc_slb_t *slb; |
| |
| slb = slb_lookup(env, addr); |
| if (!slb) { |
| return; |
| } |
| |
| if (slb->esid & SLB_ESID_V) { |
| slb->esid &= ~SLB_ESID_V; |
| |
| /* XXX: given the fact that segment size is 256 MB or 1TB, |
| * and we still don't have a tlb_flush_mask(env, n, mask) |
| * in QEMU, we just invalidate all TLBs |
| */ |
| tlb_flush(env, 1); |
| } |
| } |
| |
| int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) |
| { |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (rb & (0x1000 - env->slb_nr)) { |
| return -1; /* Reserved bits set or slot too high */ |
| } |
| if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) { |
| return -1; /* Bad segment size */ |
| } |
| if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { |
| return -1; /* 1T segment on MMU that doesn't support it */ |
| } |
| |
| /* Mask out the slot number as we store the entry */ |
| slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V); |
| slb->vsid = rs; |
| |
| LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 |
| " %016" PRIx64 "\n", __func__, slot, rb, rs, |
| slb->esid, slb->vsid); |
| |
| return 0; |
| } |
| |
| static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb, |
| target_ulong *rt) |
| { |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= env->slb_nr) { |
| return -1; |
| } |
| |
| *rt = slb->esid; |
| return 0; |
| } |
| |
| static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb, |
| target_ulong *rt) |
| { |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= env->slb_nr) { |
| return -1; |
| } |
| |
| *rt = slb->vsid; |
| return 0; |
| } |
| |
| void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) |
| { |
| if (ppc_store_slb(env, rb, rs) < 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL); |
| } |
| } |
| |
| target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb) |
| { |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_esid(env, rb, &rt) < 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL); |
| } |
| return rt; |
| } |
| |
| target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb) |
| { |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_vsid(env, rb, &rt) < 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL); |
| } |
| return rt; |
| } |
| |
| /* |
| * 64-bit hash table MMU handling |
| */ |
| |
| #define PTE64_PTEM_MASK 0xFFFFFFFFFFFFFF80ULL |
| #define PTE64_CHECK_MASK (TARGET_PAGE_MASK | 0x7F) |
| |
| static inline int pte64_is_valid(target_ulong pte0) |
| { |
| return pte0 & 0x0000000000000001ULL ? 1 : 0; |
| } |
| |
| static int pte64_check(mmu_ctx_t *ctx, target_ulong pte0, |
| target_ulong pte1, int h, int rw, int type) |
| { |
| target_ulong ptem, mmask; |
| int access, ret, pteh, ptev, pp; |
| |
| ret = -1; |
| /* Check validity and table match */ |
| ptev = pte64_is_valid(pte0); |
| pteh = (pte0 >> 1) & 1; |
| if (ptev && h == pteh) { |
| /* Check vsid & api */ |
| ptem = pte0 & PTE64_PTEM_MASK; |
| mmask = PTE64_CHECK_MASK; |
| pp = (pte1 & 0x00000003) | ((pte1 >> 61) & 0x00000004); |
| ctx->nx = (pte1 >> 2) & 1; /* No execute bit */ |
| ctx->nx |= (pte1 >> 3) & 1; /* Guarded bit */ |
| if (ptem == ctx->ptem) { |
| if (ctx->raddr != (hwaddr)-1ULL) { |
| /* all matches should have equal RPN, WIMG & PP */ |
| if ((ctx->raddr & mmask) != (pte1 & mmask)) { |
| qemu_log("Bad RPN/WIMG/PP\n"); |
| return -3; |
| } |
| } |
| /* Compute access rights */ |
| access = pp_check(ctx->key, pp, ctx->nx); |
| /* Keep the matching PTE informations */ |
| ctx->raddr = pte1; |
| ctx->prot = access; |
| ret = check_prot(ctx->prot, rw, type); |
| if (ret == 0) { |
| /* Access granted */ |
| LOG_MMU("PTE access granted !\n"); |
| } else { |
| /* Access right violation */ |
| LOG_MMU("PTE access rejected\n"); |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* PTE table lookup */ |
| static int find_pte64(CPUPPCState *env, mmu_ctx_t *ctx, int h, |
| int rw, int type, int target_page_bits) |
| { |
| hwaddr pteg_off; |
| target_ulong pte0, pte1; |
| int i, good = -1; |
| int ret, r; |
| |
| ret = -1; /* No entry found */ |
| pteg_off = get_pteg_offset(env, ctx->hash[h], HASH_PTE_SIZE_64); |
| for (i = 0; i < 8; i++) { |
| if (env->external_htab) { |
| pte0 = ldq_p(env->external_htab + pteg_off + (i * 16)); |
| pte1 = ldq_p(env->external_htab + pteg_off + (i * 16) + 8); |
| } else { |
| pte0 = ldq_phys(env->htab_base + pteg_off + (i * 16)); |
| pte1 = ldq_phys(env->htab_base + pteg_off + (i * 16) + 8); |
| } |
| |
| r = pte64_check(ctx, pte0, pte1, h, rw, type); |
| LOG_MMU("Load pte from %016" HWADDR_PRIx " => " TARGET_FMT_lx " " |
| TARGET_FMT_lx " %d %d %d " TARGET_FMT_lx "\n", |
| pteg_off + (i * 16), pte0, pte1, (int)(pte0 & 1), h, |
| (int)((pte0 >> 1) & 1), ctx->ptem); |
| switch (r) { |
| case -3: |
| /* PTE inconsistency */ |
| return -1; |
| case -2: |
| /* Access violation */ |
| ret = -2; |
| good = i; |
| break; |
| case -1: |
| default: |
| /* No PTE match */ |
| break; |
| case 0: |
| /* access granted */ |
| /* XXX: we should go on looping to check all PTEs consistency |
| * but if we can speed-up the whole thing as the |
| * result would be undefined if PTEs are not consistent. |
| */ |
| ret = 0; |
| good = i; |
| goto done; |
| } |
| } |
| if (good != -1) { |
| done: |
| LOG_MMU("found PTE at addr %08" HWADDR_PRIx " prot=%01x ret=%d\n", |
| ctx->raddr, ctx->prot, ret); |
| /* Update page flags */ |
| pte1 = ctx->raddr; |
| if (pte_update_flags(ctx, &pte1, ret, rw) == 1) { |
| if (env->external_htab) { |
| stq_p(env->external_htab + pteg_off + (good * 16) + 8, |
| pte1); |
| } else { |
| stq_phys_notdirty(env->htab_base + pteg_off + |
| (good * 16) + 8, pte1); |
| } |
| } |
| } |
| |
| /* We have a TLB that saves 4K pages, so let's |
| * split a huge page to 4k chunks */ |
| if (target_page_bits != TARGET_PAGE_BITS) { |
| ctx->raddr |= (ctx->eaddr & ((1 << target_page_bits) - 1)) |
| & TARGET_PAGE_MASK; |
| } |
| return ret; |
| } |
| |
| static int get_segment64(CPUPPCState *env, mmu_ctx_t *ctx, |
| target_ulong eaddr, int rw, int type) |
| { |
| hwaddr hash; |
| target_ulong vsid; |
| int pr, target_page_bits; |
| int ret, ret2; |
| |
| pr = msr_pr; |
| ctx->eaddr = eaddr; |
| ppc_slb_t *slb; |
| target_ulong pageaddr; |
| int segment_bits; |
| |
| LOG_MMU("Check SLBs\n"); |
| slb = slb_lookup(env, eaddr); |
| if (!slb) { |
| return -5; |
| } |
| |
| if (slb->vsid & SLB_VSID_B) { |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; |
| segment_bits = 40; |
| } else { |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; |
| segment_bits = 28; |
| } |
| |
| target_page_bits = (slb->vsid & SLB_VSID_L) |
| ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS; |
| ctx->key = !!(pr ? (slb->vsid & SLB_VSID_KP) |
| : (slb->vsid & SLB_VSID_KS)); |
| ctx->nx = !!(slb->vsid & SLB_VSID_N); |
| |
| pageaddr = eaddr & ((1ULL << segment_bits) |
| - (1ULL << target_page_bits)); |
| if (slb->vsid & SLB_VSID_B) { |
| hash = vsid ^ (vsid << 25) ^ (pageaddr >> target_page_bits); |
| } else { |
| hash = vsid ^ (pageaddr >> target_page_bits); |
| } |
| /* Only 5 bits of the page index are used in the AVPN */ |
| ctx->ptem = (slb->vsid & SLB_VSID_PTEM) | |
| ((pageaddr >> 16) & ((1ULL << segment_bits) - 0x80)); |
| |
| LOG_MMU("pte segment: key=%d nx %d vsid " TARGET_FMT_lx "\n", |
| ctx->key, ctx->nx, vsid); |
| ret = -1; |
| |
| /* Check if instruction fetch is allowed, if needed */ |
| if (type != ACCESS_CODE || ctx->nx == 0) { |
| /* Page address translation */ |
| LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx |
| " hash " TARGET_FMT_plx "\n", |
| env->htab_base, env->htab_mask, hash); |
| ctx->hash[0] = hash; |
| ctx->hash[1] = ~hash; |
| |
| /* Initialize real address with an invalid value */ |
| ctx->raddr = (hwaddr)-1ULL; |
| LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx |
| " hash=" TARGET_FMT_plx "\n", |
| env->htab_base, env->htab_mask, vsid, ctx->ptem, |
| ctx->hash[0]); |
| /* Primary table lookup */ |
| ret = find_pte64(env, ctx, 0, rw, type, target_page_bits); |
| if (ret < 0) { |
| /* Secondary table lookup */ |
| LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx |
| " hash=" TARGET_FMT_plx "\n", env->htab_base, |
| env->htab_mask, vsid, ctx->ptem, ctx->hash[1]); |
| ret2 = find_pte64(env, ctx, 1, rw, type, target_page_bits); |
| if (ret2 != -1) { |
| ret = ret2; |
| } |
| } |
| } else { |
| LOG_MMU("No access allowed\n"); |
| ret = -3; |
| } |
| |
| return ret; |
| } |
| |
| int ppc_hash64_get_physical_address(CPUPPCState *env, mmu_ctx_t *ctx, |
| target_ulong eaddr, int rw, int access_type) |
| { |
| bool real_mode = (access_type == ACCESS_CODE && msr_ir == 0) |
| || (access_type != ACCESS_CODE && msr_dr == 0); |
| |
| if (real_mode) { |
| ctx->raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; |
| ctx->prot = PAGE_READ | PAGE_EXEC | PAGE_WRITE; |
| return 0; |
| } else { |
| return get_segment64(env, ctx, eaddr, rw, access_type); |
| } |
| } |