blob: da64e877c7c8e0bee8e83fa286acf612a14b28d3 [file] [log] [blame]
#ifndef QEMU_H
#define QEMU_H
#include <signal.h>
#include <string.h>
#include "cpu.h"
#undef DEBUG_REMAP
#ifdef DEBUG_REMAP
#include <stdlib.h>
#endif /* DEBUG_REMAP */
#include "exec/user/abitypes.h"
#include "exec/user/thunk.h"
#include "syscall_defs.h"
#include "syscall.h"
#include "exec/gdbstub.h"
#include "qemu/queue.h"
#define THREAD __thread
/* This struct is used to hold certain information about the image.
* Basically, it replicates in user space what would be certain
* task_struct fields in the kernel
*/
struct image_info {
abi_ulong load_bias;
abi_ulong load_addr;
abi_ulong start_code;
abi_ulong end_code;
abi_ulong start_data;
abi_ulong end_data;
abi_ulong start_brk;
abi_ulong brk;
abi_ulong start_mmap;
abi_ulong mmap;
abi_ulong rss;
abi_ulong start_stack;
abi_ulong stack_limit;
abi_ulong entry;
abi_ulong code_offset;
abi_ulong data_offset;
abi_ulong saved_auxv;
abi_ulong auxv_len;
abi_ulong arg_start;
abi_ulong arg_end;
uint32_t elf_flags;
int personality;
#ifdef CONFIG_USE_FDPIC
abi_ulong loadmap_addr;
uint16_t nsegs;
void *loadsegs;
abi_ulong pt_dynamic_addr;
struct image_info *other_info;
#endif
};
#ifdef TARGET_I386
/* Information about the current linux thread */
struct vm86_saved_state {
uint32_t eax; /* return code */
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;
uint32_t ebp;
uint32_t esp;
uint32_t eflags;
uint32_t eip;
uint16_t cs, ss, ds, es, fs, gs;
};
#endif
#if defined(TARGET_ARM) && defined(TARGET_ABI32)
/* FPU emulator */
#include "nwfpe/fpa11.h"
#endif
#define MAX_SIGQUEUE_SIZE 1024
struct sigqueue {
struct sigqueue *next;
target_siginfo_t info;
};
struct emulated_sigtable {
int pending; /* true if signal is pending */
struct sigqueue *first;
struct sigqueue info; /* in order to always have memory for the
first signal, we put it here */
};
/* NOTE: we force a big alignment so that the stack stored after is
aligned too */
typedef struct TaskState {
pid_t ts_tid; /* tid (or pid) of this task */
#ifdef TARGET_ARM
# ifdef TARGET_ABI32
/* FPA state */
FPA11 fpa;
# endif
int swi_errno;
#endif
#ifdef TARGET_UNICORE32
int swi_errno;
#endif
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
abi_ulong target_v86;
struct vm86_saved_state vm86_saved_regs;
struct target_vm86plus_struct vm86plus;
uint32_t v86flags;
uint32_t v86mask;
#endif
abi_ulong child_tidptr;
#ifdef TARGET_M68K
int sim_syscalls;
abi_ulong tp_value;
#endif
#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
/* Extra fields for semihosted binaries. */
uint32_t heap_base;
uint32_t heap_limit;
#endif
uint32_t stack_base;
int used; /* non zero if used */
struct image_info *info;
struct linux_binprm *bprm;
struct emulated_sigtable sigtab[TARGET_NSIG];
struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
struct sigqueue *first_free; /* first free siginfo queue entry */
int signal_pending; /* non zero if a signal may be pending */
} __attribute__((aligned(16))) TaskState;
extern char *exec_path;
void init_task_state(TaskState *ts);
void task_settid(TaskState *);
void stop_all_tasks(void);
extern const char *qemu_uname_release;
extern unsigned long mmap_min_addr;
/* ??? See if we can avoid exposing so much of the loader internals. */
/*
* MAX_ARG_PAGES defines the number of pages allocated for arguments
* and envelope for the new program. 32 should suffice, this gives
* a maximum env+arg of 128kB w/4KB pages!
*/
#define MAX_ARG_PAGES 33
/* Read a good amount of data initially, to hopefully get all the
program headers loaded. */
#define BPRM_BUF_SIZE 1024
/*
* This structure is used to hold the arguments that are
* used when loading binaries.
*/
struct linux_binprm {
char buf[BPRM_BUF_SIZE] __attribute__((aligned));
void *page[MAX_ARG_PAGES];
abi_ulong p;
int fd;
int e_uid, e_gid;
int argc, envc;
char **argv;
char **envp;
char * filename; /* Name of binary */
int (*core_dump)(int, const CPUArchState *); /* coredump routine */
};
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
abi_ulong stringp, int push_ptr);
int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
struct target_pt_regs * regs, struct image_info *infop,
struct linux_binprm *);
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
struct image_info * info);
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
struct image_info * info);
abi_long memcpy_to_target(abi_ulong dest, const void *src,
unsigned long len);
void target_set_brk(abi_ulong new_brk);
abi_long do_brk(abi_ulong new_brk);
void syscall_init(void);
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6, abi_long arg7,
abi_long arg8);
void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
extern THREAD CPUState *thread_cpu;
void cpu_loop(CPUArchState *env);
char *target_strerror(int err);
int get_osversion(void);
void init_qemu_uname_release(void);
void fork_start(void);
void fork_end(int child);
/* Creates the initial guest address space in the host memory space using
* the given host start address hint and size. The guest_start parameter
* specifies the start address of the guest space. guest_base will be the
* difference between the host start address computed by this function and
* guest_start. If fixed is specified, then the mapped address space must
* start at host_start. The real start address of the mapped memory space is
* returned or -1 if there was an error.
*/
unsigned long init_guest_space(unsigned long host_start,
unsigned long host_size,
unsigned long guest_start,
bool fixed);
#include "qemu/log.h"
/* syscall.c */
int host_to_target_waitstatus(int status);
/* strace.c */
void print_syscall(int num,
abi_long arg1, abi_long arg2, abi_long arg3,
abi_long arg4, abi_long arg5, abi_long arg6);
void print_syscall_ret(int num, abi_long arg1);
extern int do_strace;
/* signal.c */
void process_pending_signals(CPUArchState *cpu_env);
void signal_init(void);
int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
int target_to_host_signal(int sig);
int host_to_target_signal(int sig);
long do_sigreturn(CPUArchState *env);
long do_rt_sigreturn(CPUArchState *env);
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
#ifdef TARGET_I386
/* vm86.c */
void save_v86_state(CPUX86State *env);
void handle_vm86_trap(CPUX86State *env, int trapno);
void handle_vm86_fault(CPUX86State *env);
int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
#elif defined(TARGET_SPARC64)
void sparc64_set_context(CPUSPARCState *env);
void sparc64_get_context(CPUSPARCState *env);
#endif
/* mmap.c */
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
int flags, int fd, abi_ulong offset);
int target_munmap(abi_ulong start, abi_ulong len);
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
abi_ulong new_size, unsigned long flags,
abi_ulong new_addr);
int target_msync(abi_ulong start, abi_ulong len, int flags);
extern unsigned long last_brk;
extern abi_ulong mmap_next_start;
void mmap_lock(void);
void mmap_unlock(void);
abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
void cpu_list_lock(void);
void cpu_list_unlock(void);
void mmap_fork_start(void);
void mmap_fork_end(int child);
/* main.c */
extern unsigned long guest_stack_size;
/* user access */
#define VERIFY_READ 0
#define VERIFY_WRITE 1 /* implies read access */
static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
{
return page_check_range((target_ulong)addr, size,
(type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
}
/* NOTE __get_user and __put_user use host pointers and don't check access.
These are usually used to access struct data members once the struct has
been locked - usually with lock_user_struct. */
/* Tricky points:
- Use __builtin_choose_expr to avoid type promotion from ?:,
- Invalid sizes result in a compile time error stemming from
the fact that abort has no parameters.
- It's easier to use the endian-specific unaligned load/store
functions than host-endian unaligned load/store plus tswapN. */
#define __put_user_e(x, hptr, e) \
(__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
((hptr), (x)), 0)
#define __get_user_e(x, hptr, e) \
((x) = (typeof(*hptr))( \
__builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
(hptr)), 0)
#ifdef TARGET_WORDS_BIGENDIAN
# define __put_user(x, hptr) __put_user_e(x, hptr, be)
# define __get_user(x, hptr) __get_user_e(x, hptr, be)
#else
# define __put_user(x, hptr) __put_user_e(x, hptr, le)
# define __get_user(x, hptr) __get_user_e(x, hptr, le)
#endif
/* put_user()/get_user() take a guest address and check access */
/* These are usually used to access an atomic data type, such as an int,
* that has been passed by address. These internally perform locking
* and unlocking on the data type.
*/
#define put_user(x, gaddr, target_type) \
({ \
abi_ulong __gaddr = (gaddr); \
target_type *__hptr; \
abi_long __ret; \
if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
__ret = __put_user((x), __hptr); \
unlock_user(__hptr, __gaddr, sizeof(target_type)); \
} else \
__ret = -TARGET_EFAULT; \
__ret; \
})
#define get_user(x, gaddr, target_type) \
({ \
abi_ulong __gaddr = (gaddr); \
target_type *__hptr; \
abi_long __ret; \
if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
__ret = __get_user((x), __hptr); \
unlock_user(__hptr, __gaddr, 0); \
} else { \
/* avoid warning */ \
(x) = 0; \
__ret = -TARGET_EFAULT; \
} \
__ret; \
})
#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
/* copy_from_user() and copy_to_user() are usually used to copy data
* buffers between the target and host. These internally perform
* locking/unlocking of the memory.
*/
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
/* Functions for accessing guest memory. The tget and tput functions
read/write single values, byteswapping as necessary. The lock_user function
gets a pointer to a contiguous area of guest memory, but does not perform
any byteswapping. lock_user may return either a pointer to the guest
memory, or a temporary buffer. */
/* Lock an area of guest memory into the host. If copy is true then the
host area will have the same contents as the guest. */
static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
{
if (!access_ok(type, guest_addr, len))
return NULL;
#ifdef DEBUG_REMAP
{
void *addr;
addr = malloc(len);
if (copy)
memcpy(addr, g2h(guest_addr), len);
else
memset(addr, 0, len);
return addr;
}
#else
return g2h(guest_addr);
#endif
}
/* Unlock an area of guest memory. The first LEN bytes must be
flushed back to guest memory. host_ptr = NULL is explicitly
allowed and does nothing. */
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
long len)
{
#ifdef DEBUG_REMAP
if (!host_ptr)
return;
if (host_ptr == g2h(guest_addr))
return;
if (len > 0)
memcpy(g2h(guest_addr), host_ptr, len);
free(host_ptr);
#endif
}
/* Return the length of a string in target memory or -TARGET_EFAULT if
access error. */
abi_long target_strlen(abi_ulong gaddr);
/* Like lock_user but for null terminated strings. */
static inline void *lock_user_string(abi_ulong guest_addr)
{
abi_long len;
len = target_strlen(guest_addr);
if (len < 0)
return NULL;
return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
}
/* Helper macros for locking/unlocking a target struct. */
#define lock_user_struct(type, host_ptr, guest_addr, copy) \
(host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
#define unlock_user_struct(host_ptr, guest_addr, copy) \
unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
#include <pthread.h>
/* Include target-specific struct and function definitions;
* they may need access to the target-independent structures
* above, so include them last.
*/
#include "target_cpu.h"
#include "target_signal.h"
#endif /* QEMU_H */