| /* |
| * Copyright (C) 2016, Emilio G. Cota <cota@braap.org> |
| * |
| * License: GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/processor.h" |
| #include "qemu/atomic.h" |
| #include "qemu/qht.h" |
| #include "qemu/rcu.h" |
| #include "qemu/xxhash.h" |
| #include "qemu/memalign.h" |
| |
| struct thread_stats { |
| size_t rd; |
| size_t not_rd; |
| size_t in; |
| size_t not_in; |
| size_t rm; |
| size_t not_rm; |
| size_t rz; |
| size_t not_rz; |
| }; |
| |
| struct thread_info { |
| void (*func)(struct thread_info *); |
| struct thread_stats stats; |
| /* |
| * Seed is in the range [1..UINT64_MAX], because the RNG requires |
| * a non-zero seed. To use, subtract 1 and compare against the |
| * threshold with </>=. This lets threshold = 0 never match (0% hit), |
| * and threshold = UINT64_MAX always match (100% hit). |
| */ |
| uint64_t seed; |
| bool write_op; /* writes alternate between insertions and removals */ |
| bool resize_down; |
| } QEMU_ALIGNED(64); /* avoid false sharing among threads */ |
| |
| static struct qht ht; |
| static QemuThread *rw_threads; |
| |
| #define DEFAULT_RANGE (4096) |
| #define DEFAULT_QHT_N_ELEMS DEFAULT_RANGE |
| |
| static unsigned int duration = 1; |
| static unsigned int n_rw_threads = 1; |
| static unsigned long lookup_range = DEFAULT_RANGE; |
| static unsigned long update_range = DEFAULT_RANGE; |
| static size_t init_range = DEFAULT_RANGE; |
| static size_t init_size = DEFAULT_RANGE; |
| static size_t n_ready_threads; |
| static long populate_offset; |
| static long *keys; |
| |
| static size_t resize_min; |
| static size_t resize_max; |
| static struct thread_info *rz_info; |
| static unsigned long resize_delay = 1000; |
| static double resize_rate; /* 0.0 to 1.0 */ |
| static unsigned int n_rz_threads = 1; |
| static QemuThread *rz_threads; |
| static bool precompute_hash; |
| |
| static double update_rate; /* 0.0 to 1.0 */ |
| static uint64_t update_threshold; |
| static uint64_t resize_threshold; |
| |
| static size_t qht_n_elems = DEFAULT_QHT_N_ELEMS; |
| static int qht_mode; |
| |
| static bool test_start; |
| static bool test_stop; |
| |
| static struct thread_info *rw_info; |
| |
| static const char commands_string[] = |
| " -d = duration, in seconds\n" |
| " -n = number of threads\n" |
| "\n" |
| " -o = offset at which keys start\n" |
| " -p = precompute hashes\n" |
| "\n" |
| " -g = set -s,-k,-K,-l,-r to the same value\n" |
| " -s = initial size hint\n" |
| " -k = initial number of keys\n" |
| " -K = initial range of keys (will be rounded up to pow2)\n" |
| " -l = lookup range of keys (will be rounded up to pow2)\n" |
| " -r = update range of keys (will be rounded up to pow2)\n" |
| "\n" |
| " -u = update rate (0.0 to 100.0), 50/50 split of insertions/removals\n" |
| "\n" |
| " -R = enable auto-resize\n" |
| " -S = resize rate (0.0 to 100.0)\n" |
| " -D = delay (in us) between potential resizes\n" |
| " -N = number of resize threads"; |
| |
| static void usage_complete(int argc, char *argv[]) |
| { |
| fprintf(stderr, "Usage: %s [options]\n", argv[0]); |
| fprintf(stderr, "options:\n%s\n", commands_string); |
| exit(-1); |
| } |
| |
| static bool is_equal(const void *ap, const void *bp) |
| { |
| const long *a = ap; |
| const long *b = bp; |
| |
| return *a == *b; |
| } |
| |
| static uint32_t h(unsigned long v) |
| { |
| return qemu_xxhash2(v); |
| } |
| |
| static uint32_t hval(unsigned long v) |
| { |
| return v; |
| } |
| |
| static uint32_t (*hfunc)(unsigned long v) = h; |
| |
| /* |
| * From: https://en.wikipedia.org/wiki/Xorshift |
| * This is faster than rand_r(), and gives us a wider range (RAND_MAX is only |
| * guaranteed to be >= INT_MAX). |
| */ |
| static uint64_t xorshift64star(uint64_t x) |
| { |
| x ^= x >> 12; /* a */ |
| x ^= x << 25; /* b */ |
| x ^= x >> 27; /* c */ |
| return x * UINT64_C(2685821657736338717); |
| } |
| |
| static void do_rz(struct thread_info *info) |
| { |
| struct thread_stats *stats = &info->stats; |
| uint64_t r = info->seed - 1; |
| |
| if (r < resize_threshold) { |
| size_t size = info->resize_down ? resize_min : resize_max; |
| bool resized; |
| |
| resized = qht_resize(&ht, size); |
| info->resize_down = !info->resize_down; |
| |
| if (resized) { |
| stats->rz++; |
| } else { |
| stats->not_rz++; |
| } |
| } |
| g_usleep(resize_delay); |
| } |
| |
| static void do_rw(struct thread_info *info) |
| { |
| struct thread_stats *stats = &info->stats; |
| uint64_t r = info->seed - 1; |
| uint32_t hash; |
| long *p; |
| |
| if (r >= update_threshold) { |
| bool read; |
| |
| p = &keys[r & (lookup_range - 1)]; |
| hash = hfunc(*p); |
| read = qht_lookup(&ht, p, hash); |
| if (read) { |
| stats->rd++; |
| } else { |
| stats->not_rd++; |
| } |
| } else { |
| p = &keys[r & (update_range - 1)]; |
| hash = hfunc(*p); |
| if (info->write_op) { |
| bool written = false; |
| |
| if (qht_lookup(&ht, p, hash) == NULL) { |
| written = qht_insert(&ht, p, hash, NULL); |
| } |
| if (written) { |
| stats->in++; |
| } else { |
| stats->not_in++; |
| } |
| } else { |
| bool removed = false; |
| |
| if (qht_lookup(&ht, p, hash)) { |
| removed = qht_remove(&ht, p, hash); |
| } |
| if (removed) { |
| stats->rm++; |
| } else { |
| stats->not_rm++; |
| } |
| } |
| info->write_op = !info->write_op; |
| } |
| } |
| |
| static void *thread_func(void *p) |
| { |
| struct thread_info *info = p; |
| |
| rcu_register_thread(); |
| |
| qatomic_inc(&n_ready_threads); |
| while (!qatomic_read(&test_start)) { |
| cpu_relax(); |
| } |
| |
| rcu_read_lock(); |
| while (!qatomic_read(&test_stop)) { |
| info->seed = xorshift64star(info->seed); |
| info->func(info); |
| } |
| rcu_read_unlock(); |
| |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| /* sets everything except info->func */ |
| static void prepare_thread_info(struct thread_info *info, int i) |
| { |
| /* seed for the RNG; each thread should have a different one */ |
| info->seed = (i + 1) ^ time(NULL); |
| /* the first update will be a write */ |
| info->write_op = true; |
| /* the first resize will be down */ |
| info->resize_down = true; |
| |
| memset(&info->stats, 0, sizeof(info->stats)); |
| } |
| |
| static void |
| th_create_n(QemuThread **threads, struct thread_info **infos, const char *name, |
| void (*func)(struct thread_info *), int offset, int n) |
| { |
| struct thread_info *info; |
| QemuThread *th; |
| int i; |
| |
| th = g_malloc(sizeof(*th) * n); |
| *threads = th; |
| |
| info = qemu_memalign(64, sizeof(*info) * n); |
| *infos = info; |
| |
| for (i = 0; i < n; i++) { |
| prepare_thread_info(&info[i], offset + i); |
| info[i].func = func; |
| qemu_thread_create(&th[i], name, thread_func, &info[i], |
| QEMU_THREAD_JOINABLE); |
| } |
| } |
| |
| static void create_threads(void) |
| { |
| th_create_n(&rw_threads, &rw_info, "rw", do_rw, 0, n_rw_threads); |
| th_create_n(&rz_threads, &rz_info, "rz", do_rz, n_rw_threads, n_rz_threads); |
| } |
| |
| static void pr_params(void) |
| { |
| printf("Parameters:\n"); |
| printf(" duration: %d s\n", duration); |
| printf(" # of threads: %u\n", n_rw_threads); |
| printf(" initial # of keys: %zu\n", init_size); |
| printf(" initial size hint: %zu\n", qht_n_elems); |
| printf(" auto-resize: %s\n", |
| qht_mode & QHT_MODE_AUTO_RESIZE ? "on" : "off"); |
| if (resize_rate) { |
| printf(" resize_rate: %f%%\n", resize_rate * 100.0); |
| printf(" resize range: %zu-%zu\n", resize_min, resize_max); |
| printf(" # resize threads %u\n", n_rz_threads); |
| } |
| printf(" update rate: %f%%\n", update_rate * 100.0); |
| printf(" offset: %ld\n", populate_offset); |
| printf(" initial key range: %zu\n", init_range); |
| printf(" lookup range: %lu\n", lookup_range); |
| printf(" update range: %lu\n", update_range); |
| } |
| |
| static void do_threshold(double rate, uint64_t *threshold) |
| { |
| /* |
| * For 0 <= rate <= 1, scale to fit in a uint64_t. |
| * |
| * Scale by 2**64, with a special case for 1.0. |
| * The remainder of the possible values are scattered between 0 |
| * and 0xfffffffffffff800 (nextafter(0x1p64, 0)). |
| * |
| * Note that we cannot simply scale by UINT64_MAX, because that |
| * value is not representable as an IEEE double value. |
| * |
| * If we scale by the next largest value, nextafter(0x1p64, 0), |
| * then the remainder of the possible values are scattered between |
| * 0 and 0xfffffffffffff000. Which leaves us with a gap between |
| * the final two inputs that is twice as large as any other. |
| */ |
| if (rate == 1.0) { |
| *threshold = UINT64_MAX; |
| } else { |
| *threshold = rate * 0x1p64; |
| } |
| } |
| |
| static void htable_init(void) |
| { |
| unsigned long n = MAX(init_range, update_range); |
| uint64_t r = time(NULL); |
| size_t retries = 0; |
| size_t i; |
| |
| /* avoid allocating memory later by allocating all the keys now */ |
| keys = g_malloc(sizeof(*keys) * n); |
| for (i = 0; i < n; i++) { |
| long val = populate_offset + i; |
| |
| keys[i] = precompute_hash ? h(val) : hval(val); |
| } |
| |
| /* some sanity checks */ |
| g_assert_cmpuint(lookup_range, <=, n); |
| |
| /* compute thresholds */ |
| do_threshold(update_rate, &update_threshold); |
| do_threshold(resize_rate, &resize_threshold); |
| |
| if (resize_rate) { |
| resize_min = n / 2; |
| resize_max = n; |
| assert(resize_min < resize_max); |
| } else { |
| n_rz_threads = 0; |
| } |
| |
| /* initialize the hash table */ |
| qht_init(&ht, is_equal, qht_n_elems, qht_mode); |
| assert(init_size <= init_range); |
| |
| pr_params(); |
| |
| fprintf(stderr, "Initialization: populating %zu items...", init_size); |
| for (i = 0; i < init_size; i++) { |
| for (;;) { |
| uint32_t hash; |
| long *p; |
| |
| r = xorshift64star(r); |
| p = &keys[r & (init_range - 1)]; |
| hash = hfunc(*p); |
| if (qht_insert(&ht, p, hash, NULL)) { |
| break; |
| } |
| retries++; |
| } |
| } |
| fprintf(stderr, " populated after %zu retries\n", retries); |
| } |
| |
| static void add_stats(struct thread_stats *s, struct thread_info *info, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| struct thread_stats *stats = &info[i].stats; |
| |
| s->rd += stats->rd; |
| s->not_rd += stats->not_rd; |
| |
| s->in += stats->in; |
| s->not_in += stats->not_in; |
| |
| s->rm += stats->rm; |
| s->not_rm += stats->not_rm; |
| |
| s->rz += stats->rz; |
| s->not_rz += stats->not_rz; |
| } |
| } |
| |
| static void pr_stats(void) |
| { |
| struct thread_stats s = {}; |
| double tx; |
| |
| add_stats(&s, rw_info, n_rw_threads); |
| add_stats(&s, rz_info, n_rz_threads); |
| |
| printf("Results:\n"); |
| |
| if (resize_rate) { |
| printf(" Resizes: %zu (%.2f%% of %zu)\n", |
| s.rz, (double)s.rz / (s.rz + s.not_rz) * 100, s.rz + s.not_rz); |
| } |
| |
| printf(" Read: %.2f M (%.2f%% of %.2fM)\n", |
| (double)s.rd / 1e6, |
| (double)s.rd / (s.rd + s.not_rd) * 100, |
| (double)(s.rd + s.not_rd) / 1e6); |
| printf(" Inserted: %.2f M (%.2f%% of %.2fM)\n", |
| (double)s.in / 1e6, |
| (double)s.in / (s.in + s.not_in) * 100, |
| (double)(s.in + s.not_in) / 1e6); |
| printf(" Removed: %.2f M (%.2f%% of %.2fM)\n", |
| (double)s.rm / 1e6, |
| (double)s.rm / (s.rm + s.not_rm) * 100, |
| (double)(s.rm + s.not_rm) / 1e6); |
| |
| tx = (s.rd + s.not_rd + s.in + s.not_in + s.rm + s.not_rm) / 1e6 / duration; |
| printf(" Throughput: %.2f MT/s\n", tx); |
| printf(" Throughput/thread: %.2f MT/s/thread\n", tx / n_rw_threads); |
| } |
| |
| static void run_test(void) |
| { |
| int i; |
| |
| while (qatomic_read(&n_ready_threads) != n_rw_threads + n_rz_threads) { |
| cpu_relax(); |
| } |
| |
| qatomic_set(&test_start, true); |
| g_usleep(duration * G_USEC_PER_SEC); |
| qatomic_set(&test_stop, true); |
| |
| for (i = 0; i < n_rw_threads; i++) { |
| qemu_thread_join(&rw_threads[i]); |
| } |
| for (i = 0; i < n_rz_threads; i++) { |
| qemu_thread_join(&rz_threads[i]); |
| } |
| } |
| |
| static void parse_args(int argc, char *argv[]) |
| { |
| int c; |
| |
| for (;;) { |
| c = getopt(argc, argv, "d:D:g:k:K:l:hn:N:o:pr:Rs:S:u:"); |
| if (c < 0) { |
| break; |
| } |
| switch (c) { |
| case 'd': |
| duration = atoi(optarg); |
| break; |
| case 'D': |
| resize_delay = atol(optarg); |
| break; |
| case 'g': |
| init_range = pow2ceil(atol(optarg)); |
| lookup_range = pow2ceil(atol(optarg)); |
| update_range = pow2ceil(atol(optarg)); |
| qht_n_elems = atol(optarg); |
| init_size = atol(optarg); |
| break; |
| case 'h': |
| usage_complete(argc, argv); |
| exit(0); |
| case 'k': |
| init_size = atol(optarg); |
| break; |
| case 'K': |
| init_range = pow2ceil(atol(optarg)); |
| break; |
| case 'l': |
| lookup_range = pow2ceil(atol(optarg)); |
| break; |
| case 'n': |
| n_rw_threads = atoi(optarg); |
| break; |
| case 'N': |
| n_rz_threads = atoi(optarg); |
| break; |
| case 'o': |
| populate_offset = atol(optarg); |
| break; |
| case 'p': |
| precompute_hash = true; |
| hfunc = hval; |
| break; |
| case 'r': |
| update_range = pow2ceil(atol(optarg)); |
| break; |
| case 'R': |
| qht_mode |= QHT_MODE_AUTO_RESIZE; |
| break; |
| case 's': |
| qht_n_elems = atol(optarg); |
| break; |
| case 'S': |
| resize_rate = atof(optarg) / 100.0; |
| if (resize_rate > 1.0) { |
| resize_rate = 1.0; |
| } |
| break; |
| case 'u': |
| update_rate = atof(optarg) / 100.0; |
| if (update_rate > 1.0) { |
| update_rate = 1.0; |
| } |
| break; |
| } |
| } |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| parse_args(argc, argv); |
| htable_init(); |
| create_threads(); |
| run_test(); |
| pr_stats(); |
| return 0; |
| } |