blob: 43b8168a1cfff42b29fcfad1d5efb846c9a5e410 [file] [log] [blame]
/*
* i386 helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
const uint8_t parity_table[256] = {
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
};
/* modulo 17 table */
const uint8_t rclw_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9,10,11,12,13,14,15,
16, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9,10,11,12,13,14,
};
/* modulo 9 table */
const uint8_t rclb_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 0, 1, 2, 3, 4, 5, 6,
7, 8, 0, 1, 2, 3, 4, 5,
6, 7, 8, 0, 1, 2, 3, 4,
};
const CPU86_LDouble f15rk[7] =
{
0.00000000000000000000L,
1.00000000000000000000L,
3.14159265358979323851L, /*pi*/
0.30102999566398119523L, /*lg2*/
0.69314718055994530943L, /*ln2*/
1.44269504088896340739L, /*l2e*/
3.32192809488736234781L, /*l2t*/
};
/* thread support */
spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
void cpu_lock(void)
{
spin_lock(&global_cpu_lock);
}
void cpu_unlock(void)
{
spin_unlock(&global_cpu_lock);
}
void cpu_loop_exit(void)
{
/* NOTE: the register at this point must be saved by hand because
longjmp restore them */
#ifdef reg_EAX
env->regs[R_EAX] = EAX;
#endif
#ifdef reg_ECX
env->regs[R_ECX] = ECX;
#endif
#ifdef reg_EDX
env->regs[R_EDX] = EDX;
#endif
#ifdef reg_EBX
env->regs[R_EBX] = EBX;
#endif
#ifdef reg_ESP
env->regs[R_ESP] = ESP;
#endif
#ifdef reg_EBP
env->regs[R_EBP] = EBP;
#endif
#ifdef reg_ESI
env->regs[R_ESI] = ESI;
#endif
#ifdef reg_EDI
env->regs[R_EDI] = EDI;
#endif
longjmp(env->jmp_env, 1);
}
static inline void get_ss_esp_from_tss(uint32_t *ss_ptr,
uint32_t *esp_ptr, int dpl)
{
int type, index, shift;
#if 0
{
int i;
printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit);
for(i=0;i<env->tr.limit;i++) {
printf("%02x ", env->tr.base[i]);
if ((i & 7) == 7) printf("\n");
}
printf("\n");
}
#endif
if (!(env->tr.flags & DESC_P_MASK))
cpu_abort(env, "invalid tss");
type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
if ((type & 7) != 1)
cpu_abort(env, "invalid tss type");
shift = type >> 3;
index = (dpl * 4 + 2) << shift;
if (index + (4 << shift) - 1 > env->tr.limit)
raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
if (shift == 0) {
*esp_ptr = lduw_kernel(env->tr.base + index);
*ss_ptr = lduw_kernel(env->tr.base + index + 2);
} else {
*esp_ptr = ldl_kernel(env->tr.base + index);
*ss_ptr = lduw_kernel(env->tr.base + index + 4);
}
}
/* return non zero if error */
static inline int load_segment(uint32_t *e1_ptr, uint32_t *e2_ptr,
int selector)
{
SegmentCache *dt;
int index;
uint8_t *ptr;
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
if ((index + 7) > dt->limit)
return -1;
ptr = dt->base + index;
*e1_ptr = ldl_kernel(ptr);
*e2_ptr = ldl_kernel(ptr + 4);
return 0;
}
static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2)
{
unsigned int limit;
limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & DESC_G_MASK)
limit = (limit << 12) | 0xfff;
return limit;
}
static inline uint8_t *get_seg_base(uint32_t e1, uint32_t e2)
{
return (uint8_t *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
}
static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1, uint32_t e2)
{
sc->base = get_seg_base(e1, e2);
sc->limit = get_seg_limit(e1, e2);
sc->flags = e2;
}
/* init the segment cache in vm86 mode. */
static inline void load_seg_vm(int seg, int selector)
{
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg, selector,
(uint8_t *)(selector << 4), 0xffff, 0);
}
/* protected mode interrupt */
static void do_interrupt_protected(int intno, int is_int, int error_code,
unsigned int next_eip, int is_hw)
{
SegmentCache *dt;
uint8_t *ptr, *ssp;
int type, dpl, selector, ss_dpl, cpl;
int has_error_code, new_stack, shift;
uint32_t e1, e2, offset, ss, esp, ss_e1, ss_e2, push_size;
uint32_t old_cs, old_ss, old_esp, old_eip;
dt = &env->idt;
if (intno * 8 + 7 > dt->limit)
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
ptr = dt->base + intno * 8;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
switch(type) {
case 5: /* task gate */
cpu_abort(env, "task gate not supported");
break;
case 6: /* 286 interrupt gate */
case 7: /* 286 trap gate */
case 14: /* 386 interrupt gate */
case 15: /* 386 trap gate */
break;
default:
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
break;
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privledge if software int */
if (is_int && dpl < cpl)
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
/* check valid bit */
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
selector = e1 >> 16;
offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
if ((selector & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, selector) != 0)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
if (!(e2 & DESC_C_MASK) && dpl < cpl) {
/* to inner priviledge */
get_ss_esp_from_tss(&ss, &esp, dpl);
if ((ss & 0xfffc) == 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if ((ss & 3) != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (load_segment(&ss_e1, &ss_e2, ss) != 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (ss_dpl != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_P_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
new_stack = 1;
} else if ((e2 & DESC_C_MASK) || dpl == cpl) {
/* to same priviledge */
new_stack = 0;
} else {
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
new_stack = 0; /* avoid warning */
}
shift = type >> 3;
has_error_code = 0;
if (!is_int && !is_hw) {
switch(intno) {
case 8:
case 10:
case 11:
case 12:
case 13:
case 14:
case 17:
has_error_code = 1;
break;
}
}
push_size = 6 + (new_stack << 2) + (has_error_code << 1);
if (env->eflags & VM_MASK)
push_size += 8;
push_size <<= shift;
/* XXX: check that enough room is available */
if (new_stack) {
old_esp = ESP;
old_ss = env->segs[R_SS].selector;
ss = (ss & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss,
get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1, ss_e2),
ss_e2);
} else {
old_esp = 0;
old_ss = 0;
esp = ESP;
}
if (is_int)
old_eip = next_eip;
else
old_eip = env->eip;
old_cs = env->segs[R_CS].selector;
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_set_cpl(env, dpl);
env->eip = offset;
ESP = esp - push_size;
ssp = env->segs[R_SS].base + esp;
if (shift == 1) {
int old_eflags;
if (env->eflags & VM_MASK) {
ssp -= 4;
stl_kernel(ssp, env->segs[R_GS].selector);
ssp -= 4;
stl_kernel(ssp, env->segs[R_FS].selector);
ssp -= 4;
stl_kernel(ssp, env->segs[R_DS].selector);
ssp -= 4;
stl_kernel(ssp, env->segs[R_ES].selector);
}
if (new_stack) {
ssp -= 4;
stl_kernel(ssp, old_ss);
ssp -= 4;
stl_kernel(ssp, old_esp);
}
ssp -= 4;
old_eflags = compute_eflags();
stl_kernel(ssp, old_eflags);
ssp -= 4;
stl_kernel(ssp, old_cs);
ssp -= 4;
stl_kernel(ssp, old_eip);
if (has_error_code) {
ssp -= 4;
stl_kernel(ssp, error_code);
}
} else {
if (new_stack) {
ssp -= 2;
stw_kernel(ssp, old_ss);
ssp -= 2;
stw_kernel(ssp, old_esp);
}
ssp -= 2;
stw_kernel(ssp, compute_eflags());
ssp -= 2;
stw_kernel(ssp, old_cs);
ssp -= 2;
stw_kernel(ssp, old_eip);
if (has_error_code) {
ssp -= 2;
stw_kernel(ssp, error_code);
}
}
/* interrupt gate clear IF mask */
if ((type & 1) == 0) {
env->eflags &= ~IF_MASK;
}
env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
}
/* real mode interrupt */
static void do_interrupt_real(int intno, int is_int, int error_code,
unsigned int next_eip)
{
SegmentCache *dt;
uint8_t *ptr, *ssp;
int selector;
uint32_t offset, esp;
uint32_t old_cs, old_eip;
/* real mode (simpler !) */
dt = &env->idt;
if (intno * 4 + 3 > dt->limit)
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
ptr = dt->base + intno * 4;
offset = lduw_kernel(ptr);
selector = lduw_kernel(ptr + 2);
esp = ESP;
ssp = env->segs[R_SS].base;
if (is_int)
old_eip = next_eip;
else
old_eip = env->eip;
old_cs = env->segs[R_CS].selector;
esp -= 2;
stw_kernel(ssp + (esp & 0xffff), compute_eflags());
esp -= 2;
stw_kernel(ssp + (esp & 0xffff), old_cs);
esp -= 2;
stw_kernel(ssp + (esp & 0xffff), old_eip);
/* update processor state */
ESP = (ESP & ~0xffff) | (esp & 0xffff);
env->eip = offset;
env->segs[R_CS].selector = selector;
env->segs[R_CS].base = (uint8_t *)(selector << 4);
env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
}
/* fake user mode interrupt */
void do_interrupt_user(int intno, int is_int, int error_code,
unsigned int next_eip)
{
SegmentCache *dt;
uint8_t *ptr;
int dpl, cpl;
uint32_t e2;
dt = &env->idt;
ptr = dt->base + (intno * 8);
e2 = ldl_kernel(ptr + 4);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privledge if software int */
if (is_int && dpl < cpl)
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
/* Since we emulate only user space, we cannot do more than
exiting the emulation with the suitable exception and error
code */
if (is_int)
EIP = next_eip;
}
/*
* Begin excution of an interruption. is_int is TRUE if coming from
* the int instruction. next_eip is the EIP value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE.
*/
void do_interrupt(int intno, int is_int, int error_code,
unsigned int next_eip, int is_hw)
{
if (env->cr[0] & CR0_PE_MASK) {
do_interrupt_protected(intno, is_int, error_code, next_eip, is_hw);
} else {
do_interrupt_real(intno, is_int, error_code, next_eip);
}
}
/*
* Signal an interruption. It is executed in the main CPU loop.
* is_int is TRUE if coming from the int instruction. next_eip is the
* EIP value AFTER the interrupt instruction. It is only relevant if
* is_int is TRUE.
*/
void raise_interrupt(int intno, int is_int, int error_code,
unsigned int next_eip)
{
env->exception_index = intno;
env->error_code = error_code;
env->exception_is_int = is_int;
env->exception_next_eip = next_eip;
cpu_loop_exit();
}
/* shortcuts to generate exceptions */
void raise_exception_err(int exception_index, int error_code)
{
raise_interrupt(exception_index, 0, error_code, 0);
}
void raise_exception(int exception_index)
{
raise_interrupt(exception_index, 0, 0, 0);
}
#ifdef BUGGY_GCC_DIV64
/* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
call it from another function */
uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
{
*q_ptr = num / den;
return num % den;
}
int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
{
*q_ptr = num / den;
return num % den;
}
#endif
void helper_divl_EAX_T0(uint32_t eip)
{
unsigned int den, q, r;
uint64_t num;
num = EAX | ((uint64_t)EDX << 32);
den = T0;
if (den == 0) {
EIP = eip;
raise_exception(EXCP00_DIVZ);
}
#ifdef BUGGY_GCC_DIV64
r = div64(&q, num, den);
#else
q = (num / den);
r = (num % den);
#endif
EAX = q;
EDX = r;
}
void helper_idivl_EAX_T0(uint32_t eip)
{
int den, q, r;
int64_t num;
num = EAX | ((uint64_t)EDX << 32);
den = T0;
if (den == 0) {
EIP = eip;
raise_exception(EXCP00_DIVZ);
}
#ifdef BUGGY_GCC_DIV64
r = idiv64(&q, num, den);
#else
q = (num / den);
r = (num % den);
#endif
EAX = q;
EDX = r;
}
void helper_cmpxchg8b(void)
{
uint64_t d;
int eflags;
eflags = cc_table[CC_OP].compute_all();
d = ldq((uint8_t *)A0);
if (d == (((uint64_t)EDX << 32) | EAX)) {
stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
eflags |= CC_Z;
} else {
EDX = d >> 32;
EAX = d;
eflags &= ~CC_Z;
}
CC_SRC = eflags;
}
/* We simulate a pre-MMX pentium as in valgrind */
#define CPUID_FP87 (1 << 0)
#define CPUID_VME (1 << 1)
#define CPUID_DE (1 << 2)
#define CPUID_PSE (1 << 3)
#define CPUID_TSC (1 << 4)
#define CPUID_MSR (1 << 5)
#define CPUID_PAE (1 << 6)
#define CPUID_MCE (1 << 7)
#define CPUID_CX8 (1 << 8)
#define CPUID_APIC (1 << 9)
#define CPUID_SEP (1 << 11) /* sysenter/sysexit */
#define CPUID_MTRR (1 << 12)
#define CPUID_PGE (1 << 13)
#define CPUID_MCA (1 << 14)
#define CPUID_CMOV (1 << 15)
/* ... */
#define CPUID_MMX (1 << 23)
#define CPUID_FXSR (1 << 24)
#define CPUID_SSE (1 << 25)
#define CPUID_SSE2 (1 << 26)
void helper_cpuid(void)
{
if (EAX == 0) {
EAX = 1; /* max EAX index supported */
EBX = 0x756e6547;
ECX = 0x6c65746e;
EDX = 0x49656e69;
} else if (EAX == 1) {
int family, model, stepping;
/* EAX = 1 info */
#if 0
/* pentium 75-200 */
family = 5;
model = 2;
stepping = 11;
#else
/* pentium pro */
family = 6;
model = 1;
stepping = 3;
#endif
EAX = (family << 8) | (model << 4) | stepping;
EBX = 0;
ECX = 0;
EDX = CPUID_FP87 | CPUID_DE | CPUID_PSE |
CPUID_TSC | CPUID_MSR | CPUID_MCE |
CPUID_CX8 | CPUID_PGE | CPUID_CMOV;
}
}
void helper_lldt_T0(void)
{
int selector;
SegmentCache *dt;
uint32_t e1, e2;
int index;
uint8_t *ptr;
selector = T0 & 0xffff;
if ((selector & 0xfffc) == 0) {
/* XXX: NULL selector case: invalid LDT */
env->ldt.base = NULL;
env->ldt.limit = 0;
} else {
if (selector & 0x4)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dt = &env->gdt;
index = selector & ~7;
if ((index + 7) > dt->limit)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
ptr = dt->base + index;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
load_seg_cache_raw_dt(&env->ldt, e1, e2);
}
env->ldt.selector = selector;
}
void helper_ltr_T0(void)
{
int selector;
SegmentCache *dt;
uint32_t e1, e2;
int index, type;
uint8_t *ptr;
selector = T0 & 0xffff;
if ((selector & 0xfffc) == 0) {
/* NULL selector case: invalid LDT */
env->tr.base = NULL;
env->tr.limit = 0;
env->tr.flags = 0;
} else {
if (selector & 0x4)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dt = &env->gdt;
index = selector & ~7;
if ((index + 7) > dt->limit)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
ptr = dt->base + index;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
if ((e2 & DESC_S_MASK) ||
(type != 2 && type != 9))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
load_seg_cache_raw_dt(&env->tr, e1, e2);
e2 |= 0x00000200; /* set the busy bit */
stl_kernel(ptr + 4, e2);
}
env->tr.selector = selector;
}
/* only works if protected mode and not VM86. Calling load_seg with
seg_reg == R_CS is discouraged */
void load_seg(int seg_reg, int selector, unsigned int cur_eip)
{
uint32_t e1, e2;
if ((selector & 0xfffc) == 0) {
/* null selector case */
if (seg_reg == R_SS) {
EIP = cur_eip;
raise_exception_err(EXCP0D_GPF, 0);
} else {
cpu_x86_load_seg_cache(env, seg_reg, selector, NULL, 0, 0);
}
} else {
if (load_segment(&e1, &e2, selector) != 0) {
EIP = cur_eip;
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
}
if (!(e2 & DESC_S_MASK) ||
(e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK) {
EIP = cur_eip;
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
}
if (seg_reg == R_SS) {
if ((e2 & (DESC_CS_MASK | DESC_W_MASK)) == 0) {
EIP = cur_eip;
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
}
} else {
if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK) {
EIP = cur_eip;
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
}
}
if (!(e2 & DESC_P_MASK)) {
EIP = cur_eip;
if (seg_reg == R_SS)
raise_exception_err(EXCP0C_STACK, selector & 0xfffc);
else
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
}
cpu_x86_load_seg_cache(env, seg_reg, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
#if 0
fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
selector, (unsigned long)sc->base, sc->limit, sc->flags);
#endif
}
}
/* protected mode jump */
void helper_ljmp_protected_T0_T1(void)
{
int new_cs, new_eip;
uint32_t e1, e2, cpl, dpl, rpl, limit;
new_cs = T0;
new_eip = T1;
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if (!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_CS_MASK) {
/* conforming code segment */
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
} else {
/* non conforming code segment */
rpl = new_cs & 3;
if (rpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (dpl != cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
limit = get_seg_limit(e1, e2);
if (new_eip > limit)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
EIP = new_eip;
} else {
cpu_abort(env, "jmp to call/task gate not supported 0x%04x:0x%08x",
new_cs, new_eip);
}
}
/* real mode call */
void helper_lcall_real_T0_T1(int shift, int next_eip)
{
int new_cs, new_eip;
uint32_t esp, esp_mask;
uint8_t *ssp;
new_cs = T0;
new_eip = T1;
esp = ESP;
esp_mask = 0xffffffff;
if (!(env->segs[R_SS].flags & DESC_B_MASK))
esp_mask = 0xffff;
ssp = env->segs[R_SS].base;
if (shift) {
esp -= 4;
stl_kernel(ssp + (esp & esp_mask), env->segs[R_CS].selector);
esp -= 4;
stl_kernel(ssp + (esp & esp_mask), next_eip);
} else {
esp -= 2;
stw_kernel(ssp + (esp & esp_mask), env->segs[R_CS].selector);
esp -= 2;
stw_kernel(ssp + (esp & esp_mask), next_eip);
}
if (!(env->segs[R_SS].flags & DESC_B_MASK))
ESP = (ESP & ~0xffff) | (esp & 0xffff);
else
ESP = esp;
env->eip = new_eip;
env->segs[R_CS].selector = new_cs;
env->segs[R_CS].base = (uint8_t *)(new_cs << 4);
}
/* protected mode call */
void helper_lcall_protected_T0_T1(int shift, int next_eip)
{
int new_cs, new_eip;
uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
uint32_t ss, ss_e1, ss_e2, push_size, sp, type, ss_dpl;
uint32_t old_ss, old_esp, val, i, limit;
uint8_t *ssp, *old_ssp;
new_cs = T0;
new_eip = T1;
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if (!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_CS_MASK) {
/* conforming code segment */
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
} else {
/* non conforming code segment */
rpl = new_cs & 3;
if (rpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (dpl != cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
sp = ESP;
if (!(env->segs[R_SS].flags & DESC_B_MASK))
sp &= 0xffff;
ssp = env->segs[R_SS].base + sp;
if (shift) {
ssp -= 4;
stl_kernel(ssp, env->segs[R_CS].selector);
ssp -= 4;
stl_kernel(ssp, next_eip);
} else {
ssp -= 2;
stw_kernel(ssp, env->segs[R_CS].selector);
ssp -= 2;
stw_kernel(ssp, next_eip);
}
sp -= (4 << shift);
limit = get_seg_limit(e1, e2);
if (new_eip > limit)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
/* from this point, not restartable */
if (!(env->segs[R_SS].flags & DESC_B_MASK))
ESP = (ESP & 0xffff0000) | (sp & 0xffff);
else
ESP = sp;
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
EIP = new_eip;
} else {
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
switch(type) {
case 1: /* available 286 TSS */
case 9: /* available 386 TSS */
case 5: /* task gate */
cpu_abort(env, "task gate not supported");
break;
case 4: /* 286 call gate */
case 12: /* 386 call gate */
break;
default:
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
break;
}
shift = type >> 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
rpl = new_cs & 3;
if (dpl < cpl || dpl < rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
/* check valid bit */
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
selector = e1 >> 16;
offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
if ((selector & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, selector) != 0)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
if (!(e2 & DESC_C_MASK) && dpl < cpl) {
/* to inner priviledge */
get_ss_esp_from_tss(&ss, &sp, dpl);
if ((ss & 0xfffc) == 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if ((ss & 3) != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (load_segment(&ss_e1, &ss_e2, ss) != 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (ss_dpl != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_P_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
param_count = e2 & 0x1f;
push_size = ((param_count * 2) + 8) << shift;
old_esp = ESP;
old_ss = env->segs[R_SS].selector;
if (!(env->segs[R_SS].flags & DESC_B_MASK))
old_esp &= 0xffff;
old_ssp = env->segs[R_SS].base + old_esp;
/* XXX: from this point not restartable */
ss = (ss & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss,
get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1, ss_e2),
ss_e2);
if (!(env->segs[R_SS].flags & DESC_B_MASK))
sp &= 0xffff;
ssp = env->segs[R_SS].base + sp;
if (shift) {
ssp -= 4;
stl_kernel(ssp, old_ss);
ssp -= 4;
stl_kernel(ssp, old_esp);
ssp -= 4 * param_count;
for(i = 0; i < param_count; i++) {
val = ldl_kernel(old_ssp + i * 4);
stl_kernel(ssp + i * 4, val);
}
} else {
ssp -= 2;
stw_kernel(ssp, old_ss);
ssp -= 2;
stw_kernel(ssp, old_esp);
ssp -= 2 * param_count;
for(i = 0; i < param_count; i++) {
val = lduw_kernel(old_ssp + i * 2);
stw_kernel(ssp + i * 2, val);
}
}
} else {
/* to same priviledge */
if (!(env->segs[R_SS].flags & DESC_B_MASK))
sp &= 0xffff;
ssp = env->segs[R_SS].base + sp;
push_size = (4 << shift);
}
if (shift) {
ssp -= 4;
stl_kernel(ssp, env->segs[R_CS].selector);
ssp -= 4;
stl_kernel(ssp, next_eip);
} else {
ssp -= 2;
stw_kernel(ssp, env->segs[R_CS].selector);
ssp -= 2;
stw_kernel(ssp, next_eip);
}
sp -= push_size;
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_set_cpl(env, dpl);
/* from this point, not restartable if same priviledge */
if (!(env->segs[R_SS].flags & DESC_B_MASK))
ESP = (ESP & 0xffff0000) | (sp & 0xffff);
else
ESP = sp;
EIP = offset;
}
}
/* real mode iret */
void helper_iret_real(int shift)
{
uint32_t sp, new_cs, new_eip, new_eflags, new_esp;
uint8_t *ssp;
int eflags_mask;
sp = ESP & 0xffff;
ssp = env->segs[R_SS].base + sp;
if (shift == 1) {
/* 32 bits */
new_eflags = ldl_kernel(ssp + 8);
new_cs = ldl_kernel(ssp + 4) & 0xffff;
new_eip = ldl_kernel(ssp) & 0xffff;
} else {
/* 16 bits */
new_eflags = lduw_kernel(ssp + 4);
new_cs = lduw_kernel(ssp + 2);
new_eip = lduw_kernel(ssp);
}
new_esp = sp + (6 << shift);
ESP = (ESP & 0xffff0000) |
(new_esp & 0xffff);
load_seg_vm(R_CS, new_cs);
env->eip = new_eip;
eflags_mask = FL_UPDATE_CPL0_MASK;
if (shift == 0)
eflags_mask &= 0xffff;
load_eflags(new_eflags, eflags_mask);
}
/* protected mode iret */
static inline void helper_ret_protected(int shift, int is_iret, int addend)
{
uint32_t sp, new_cs, new_eip, new_eflags, new_esp, new_ss;
uint32_t new_es, new_ds, new_fs, new_gs;
uint32_t e1, e2, ss_e1, ss_e2;
int cpl, dpl, rpl, eflags_mask;
uint8_t *ssp;
sp = ESP;
if (!(env->segs[R_SS].flags & DESC_B_MASK))
sp &= 0xffff;
ssp = env->segs[R_SS].base + sp;
if (shift == 1) {
/* 32 bits */
if (is_iret)
new_eflags = ldl_kernel(ssp + 8);
new_cs = ldl_kernel(ssp + 4) & 0xffff;
new_eip = ldl_kernel(ssp);
if (is_iret && (new_eflags & VM_MASK))
goto return_to_vm86;
} else {
/* 16 bits */
if (is_iret)
new_eflags = lduw_kernel(ssp + 4);
new_cs = lduw_kernel(ssp + 2);
new_eip = lduw_kernel(ssp);
}
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (!(e2 & DESC_S_MASK) ||
!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
rpl = new_cs & 3;
if (rpl < cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_CS_MASK) {
if (dpl > rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
} else {
if (dpl != rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
if (rpl == cpl) {
/* return to same priledge level */
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
new_esp = sp + (4 << shift) + ((2 * is_iret) << shift) + addend;
} else {
/* return to different priviledge level */
ssp += (4 << shift) + ((2 * is_iret) << shift) + addend;
if (shift == 1) {
/* 32 bits */
new_esp = ldl_kernel(ssp);
new_ss = ldl_kernel(ssp + 4) & 0xffff;
} else {
/* 16 bits */
new_esp = lduw_kernel(ssp);
new_ss = lduw_kernel(ssp + 2);
}
if ((new_ss & 3) != rpl)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (load_segment(&ss_e1, &ss_e2, new_ss) != 0)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK))
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (dpl != rpl)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (!(ss_e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc);
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_load_seg_cache(env, R_SS, new_ss,
get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1, ss_e2),
ss_e2);
cpu_x86_set_cpl(env, rpl);
}
if (env->segs[R_SS].flags & DESC_B_MASK)
ESP = new_esp;
else
ESP = (ESP & 0xffff0000) |
(new_esp & 0xffff);
env->eip = new_eip;
if (is_iret) {
/* NOTE: 'cpl' can be different from the current CPL */
if (cpl == 0)
eflags_mask = FL_UPDATE_CPL0_MASK;
else
eflags_mask = FL_UPDATE_MASK32;
if (shift == 0)
eflags_mask &= 0xffff;
load_eflags(new_eflags, eflags_mask);
}
return;
return_to_vm86:
new_esp = ldl_kernel(ssp + 12);
new_ss = ldl_kernel(ssp + 16);
new_es = ldl_kernel(ssp + 20);
new_ds = ldl_kernel(ssp + 24);
new_fs = ldl_kernel(ssp + 28);
new_gs = ldl_kernel(ssp + 32);
/* modify processor state */
load_eflags(new_eflags, FL_UPDATE_CPL0_MASK | VM_MASK | VIF_MASK | VIP_MASK);
load_seg_vm(R_CS, new_cs);
cpu_x86_set_cpl(env, 3);
load_seg_vm(R_SS, new_ss);
load_seg_vm(R_ES, new_es);
load_seg_vm(R_DS, new_ds);
load_seg_vm(R_FS, new_fs);
load_seg_vm(R_GS, new_gs);
env->eip = new_eip;
ESP = new_esp;
}
void helper_iret_protected(int shift)
{
helper_ret_protected(shift, 1, 0);
}
void helper_lret_protected(int shift, int addend)
{
helper_ret_protected(shift, 0, addend);
}
void helper_movl_crN_T0(int reg)
{
env->cr[reg] = T0;
switch(reg) {
case 0:
cpu_x86_update_cr0(env);
break;
case 3:
cpu_x86_update_cr3(env);
break;
}
}
/* XXX: do more */
void helper_movl_drN_T0(int reg)
{
env->dr[reg] = T0;
}
void helper_invlpg(unsigned int addr)
{
cpu_x86_flush_tlb(env, addr);
}
/* rdtsc */
#ifndef __i386__
uint64_t emu_time;
#endif
void helper_rdtsc(void)
{
uint64_t val;
#ifdef __i386__
asm("rdtsc" : "=A" (val));
#else
/* better than nothing: the time increases */
val = emu_time++;
#endif
EAX = val;
EDX = val >> 32;
}
void helper_wrmsr(void)
{
switch(ECX) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = EAX & 0xffff;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = EAX;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = EAX;
break;
default:
/* XXX: exception ? */
break;
}
}
void helper_rdmsr(void)
{
switch(ECX) {
case MSR_IA32_SYSENTER_CS:
EAX = env->sysenter_cs;
EDX = 0;
break;
case MSR_IA32_SYSENTER_ESP:
EAX = env->sysenter_esp;
EDX = 0;
break;
case MSR_IA32_SYSENTER_EIP:
EAX = env->sysenter_eip;
EDX = 0;
break;
default:
/* XXX: exception ? */
break;
}
}
void helper_lsl(void)
{
unsigned int selector, limit;
uint32_t e1, e2;
CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
selector = T0 & 0xffff;
if (load_segment(&e1, &e2, selector) != 0)
return;
limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & (1 << 23))
limit = (limit << 12) | 0xfff;
T1 = limit;
CC_SRC |= CC_Z;
}
void helper_lar(void)
{
unsigned int selector;
uint32_t e1, e2;
CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
selector = T0 & 0xffff;
if (load_segment(&e1, &e2, selector) != 0)
return;
T1 = e2 & 0x00f0ff00;
CC_SRC |= CC_Z;
}
/* FPU helpers */
#ifndef USE_X86LDOUBLE
void helper_fldt_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt] = helper_fldt((uint8_t *)A0);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fstt_ST0_A0(void)
{
helper_fstt(ST0, (uint8_t *)A0);
}
#endif
/* BCD ops */
#define MUL10(iv) ( iv + iv + (iv << 3) )
void helper_fbld_ST0_A0(void)
{
CPU86_LDouble tmp;
uint64_t val;
unsigned int v;
int i;
val = 0;
for(i = 8; i >= 0; i--) {
v = ldub((uint8_t *)A0 + i);
val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
}
tmp = val;
if (ldub((uint8_t *)A0 + 9) & 0x80)
tmp = -tmp;
fpush();
ST0 = tmp;
}
void helper_fbst_ST0_A0(void)
{
CPU86_LDouble tmp;
int v;
uint8_t *mem_ref, *mem_end;
int64_t val;
tmp = rint(ST0);
val = (int64_t)tmp;
mem_ref = (uint8_t *)A0;
mem_end = mem_ref + 9;
if (val < 0) {
stb(mem_end, 0x80);
val = -val;
} else {
stb(mem_end, 0x00);
}
while (mem_ref < mem_end) {
if (val == 0)
break;
v = val % 100;
val = val / 100;
v = ((v / 10) << 4) | (v % 10);
stb(mem_ref++, v);
}
while (mem_ref < mem_end) {
stb(mem_ref++, 0);
}
}
void helper_f2xm1(void)
{
ST0 = pow(2.0,ST0) - 1.0;
}
void helper_fyl2x(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if (fptemp>0.0){
fptemp = log(fptemp)/log(2.0); /* log2(ST) */
ST1 *= fptemp;
fpop();
} else {
env->fpus &= (~0x4700);
env->fpus |= 0x400;
}
}
void helper_fptan(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = tan(fptemp);
fpush();
ST0 = 1.0;
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**52 only */
}
}
void helper_fpatan(void)
{
CPU86_LDouble fptemp, fpsrcop;
fpsrcop = ST1;
fptemp = ST0;
ST1 = atan2(fpsrcop,fptemp);
fpop();
}
void helper_fxtract(void)
{
CPU86_LDoubleU temp;
unsigned int expdif;
temp.d = ST0;
expdif = EXPD(temp) - EXPBIAS;
/*DP exponent bias*/
ST0 = expdif;
fpush();
BIASEXPONENT(temp);
ST0 = temp.d;
}
void helper_fprem1(void)
{
CPU86_LDouble dblq, fpsrcop, fptemp;
CPU86_LDoubleU fpsrcop1, fptemp1;
int expdif;
int q;
fpsrcop = ST0;
fptemp = ST1;
fpsrcop1.d = fpsrcop;
fptemp1.d = fptemp;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 53) {
dblq = fpsrcop / fptemp;
dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
ST0 = fpsrcop - fptemp*dblq;
q = (int)dblq; /* cutting off top bits is assumed here */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C1,C3) <-- (q2,q1,q0) */
env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
} else {
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, expdif-50);
fpsrcop = (ST0 / ST1) / fptemp;
/* fpsrcop = integer obtained by rounding to the nearest */
fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
floor(fpsrcop): ceil(fpsrcop);
ST0 -= (ST1 * fpsrcop * fptemp);
}
}
void helper_fprem(void)
{
CPU86_LDouble dblq, fpsrcop, fptemp;
CPU86_LDoubleU fpsrcop1, fptemp1;
int expdif;
int q;
fpsrcop = ST0;
fptemp = ST1;
fpsrcop1.d = fpsrcop;
fptemp1.d = fptemp;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if ( expdif < 53 ) {
dblq = fpsrcop / fptemp;
dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
ST0 = fpsrcop - fptemp*dblq;
q = (int)dblq; /* cutting off top bits is assumed here */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C1,C3) <-- (q2,q1,q0) */
env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
} else {
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, expdif-50);
fpsrcop = (ST0 / ST1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0)?
-(floor(fabs(fpsrcop))): floor(fpsrcop);
ST0 -= (ST1 * fpsrcop * fptemp);
}
}
void helper_fyl2xp1(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if ((fptemp+1.0)>0.0) {
fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
ST1 *= fptemp;
fpop();
} else {
env->fpus &= (~0x4700);
env->fpus |= 0x400;
}
}
void helper_fsqrt(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if (fptemp<0.0) {
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
env->fpus |= 0x400;
}
ST0 = sqrt(fptemp);
}
void helper_fsincos(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = sin(fptemp);
fpush();
ST0 = cos(fptemp);
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
}
void helper_frndint(void)
{
CPU86_LDouble a;
a = ST0;
#ifdef __arm__
switch(env->fpuc & RC_MASK) {
default:
case RC_NEAR:
asm("rndd %0, %1" : "=f" (a) : "f"(a));
break;
case RC_DOWN:
asm("rnddm %0, %1" : "=f" (a) : "f"(a));
break;
case RC_UP:
asm("rnddp %0, %1" : "=f" (a) : "f"(a));
break;
case RC_CHOP:
asm("rnddz %0, %1" : "=f" (a) : "f"(a));
break;
}
#else
a = rint(a);
#endif
ST0 = a;
}
void helper_fscale(void)
{
CPU86_LDouble fpsrcop, fptemp;
fpsrcop = 2.0;
fptemp = pow(fpsrcop,ST1);
ST0 *= fptemp;
}
void helper_fsin(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = sin(fptemp);
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**53 only */
}
}
void helper_fcos(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = cos(fptemp);
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg5 < 2**63 only */
}
}
void helper_fxam_ST0(void)
{
CPU86_LDoubleU temp;
int expdif;
temp.d = ST0;
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
if (SIGND(temp))
env->fpus |= 0x200; /* C1 <-- 1 */
expdif = EXPD(temp);
if (expdif == MAXEXPD) {
if (MANTD(temp) == 0)
env->fpus |= 0x500 /*Infinity*/;
else
env->fpus |= 0x100 /*NaN*/;
} else if (expdif == 0) {
if (MANTD(temp) == 0)
env->fpus |= 0x4000 /*Zero*/;
else
env->fpus |= 0x4400 /*Denormal*/;
} else {
env->fpus |= 0x400;
}
}
void helper_fstenv(uint8_t *ptr, int data32)
{
int fpus, fptag, exp, i;
uint64_t mant;
CPU86_LDoubleU tmp;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i=7; i>=0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
} else {
tmp.d = env->fpregs[i];
exp = EXPD(tmp);
mant = MANTD(tmp);
if (exp == 0 && mant == 0) {
/* zero */
fptag |= 1;
} else if (exp == 0 || exp == MAXEXPD
#ifdef USE_X86LDOUBLE
|| (mant & (1LL << 63)) == 0
#endif
) {
/* NaNs, infinity, denormal */
fptag |= 2;
}
}
}
if (data32) {
/* 32 bit */
stl(ptr, env->fpuc);
stl(ptr + 4, fpus);
stl(ptr + 8, fptag);
stl(ptr + 12, 0);
stl(ptr + 16, 0);
stl(ptr + 20, 0);
stl(ptr + 24, 0);
} else {
/* 16 bit */
stw(ptr, env->fpuc);
stw(ptr + 2, fpus);
stw(ptr + 4, fptag);
stw(ptr + 6, 0);
stw(ptr + 8, 0);
stw(ptr + 10, 0);
stw(ptr + 12, 0);
}
}
void helper_fldenv(uint8_t *ptr, int data32)
{
int i, fpus, fptag;
if (data32) {
env->fpuc = lduw(ptr);
fpus = lduw(ptr + 4);
fptag = lduw(ptr + 8);
}
else {
env->fpuc = lduw(ptr);
fpus = lduw(ptr + 2);
fptag = lduw(ptr + 4);
}
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
for(i = 0;i < 7; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
}
void helper_fsave(uint8_t *ptr, int data32)
{
CPU86_LDouble tmp;
int i;
helper_fstenv(ptr, data32);
ptr += (14 << data32);
for(i = 0;i < 8; i++) {
tmp = ST(i);
#ifdef USE_X86LDOUBLE
*(long double *)ptr = tmp;
#else
helper_fstt(tmp, ptr);
#endif
ptr += 10;
}
/* fninit */
env->fpus = 0;
env->fpstt = 0;
env->fpuc = 0x37f;
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
void helper_frstor(uint8_t *ptr, int data32)
{
CPU86_LDouble tmp;
int i;
helper_fldenv(ptr, data32);
ptr += (14 << data32);
for(i = 0;i < 8; i++) {
#ifdef USE_X86LDOUBLE
tmp = *(long double *)ptr;
#else
tmp = helper_fldt(ptr);
#endif
ST(i) = tmp;
ptr += 10;
}
}
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define GETPC() (__builtin_return_address(0))
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
#endif
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(unsigned long addr, int is_write, int is_user, void *retaddr)
{
TranslationBlock *tb;
int ret;
unsigned long pc;
CPUX86State *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
if (is_write && page_unprotect(addr)) {
/* nothing more to do: the page was write protected because
there was code in it. page_unprotect() flushed the code. */
}
ret = cpu_x86_handle_mmu_fault(env, addr, is_write, is_user, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc);
}
}
raise_exception_err(EXCP0E_PAGE, env->error_code);
}
env = saved_env;
}