| /* |
| * ARM Nested Vectored Interrupt Controller |
| * |
| * Copyright (c) 2006-2007 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GPL. |
| * |
| * The ARMv7M System controller is fairly tightly tied in with the |
| * NVIC. Much of that is also implemented here. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "cpu.h" |
| #include "hw/sysbus.h" |
| #include "migration/vmstate.h" |
| #include "qemu/timer.h" |
| #include "hw/intc/armv7m_nvic.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-properties.h" |
| #include "target/arm/cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/memop.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "trace.h" |
| |
| /* IRQ number counting: |
| * |
| * the num-irq property counts the number of external IRQ lines |
| * |
| * NVICState::num_irq counts the total number of exceptions |
| * (external IRQs, the 15 internal exceptions including reset, |
| * and one for the unused exception number 0). |
| * |
| * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. |
| * |
| * NVIC_MAX_VECTORS is the highest permitted number of exceptions. |
| * |
| * Iterating through all exceptions should typically be done with |
| * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. |
| * |
| * The external qemu_irq lines are the NVIC's external IRQ lines, |
| * so line 0 is exception 16. |
| * |
| * In the terminology of the architecture manual, "interrupts" are |
| * a subcategory of exception referring to the external interrupts |
| * (which are exception numbers NVIC_FIRST_IRQ and upward). |
| * For historical reasons QEMU tends to use "interrupt" and |
| * "exception" more or less interchangeably. |
| */ |
| #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS |
| #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) |
| |
| /* Effective running priority of the CPU when no exception is active |
| * (higher than the highest possible priority value) |
| */ |
| #define NVIC_NOEXC_PRIO 0x100 |
| /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ |
| #define NVIC_NS_PRIO_LIMIT 0x80 |
| |
| static const uint8_t nvic_id[] = { |
| 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 |
| }; |
| |
| static int nvic_pending_prio(NVICState *s) |
| { |
| /* return the group priority of the current pending interrupt, |
| * or NVIC_NOEXC_PRIO if no interrupt is pending |
| */ |
| return s->vectpending_prio; |
| } |
| |
| /* Return the value of the ISCR RETTOBASE bit: |
| * 1 if there is exactly one active exception |
| * 0 if there is more than one active exception |
| * UNKNOWN if there are no active exceptions (we choose 1, |
| * which matches the choice Cortex-M3 is documented as making). |
| * |
| * NB: some versions of the documentation talk about this |
| * counting "active exceptions other than the one shown by IPSR"; |
| * this is only different in the obscure corner case where guest |
| * code has manually deactivated an exception and is about |
| * to fail an exception-return integrity check. The definition |
| * above is the one from the v8M ARM ARM and is also in line |
| * with the behaviour documented for the Cortex-M3. |
| */ |
| static bool nvic_rettobase(NVICState *s) |
| { |
| int irq, nhand = 0; |
| bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); |
| |
| for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { |
| if (s->vectors[irq].active || |
| (check_sec && irq < NVIC_INTERNAL_VECTORS && |
| s->sec_vectors[irq].active)) { |
| nhand++; |
| if (nhand == 2) { |
| return 0; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Return the value of the ISCR ISRPENDING bit: |
| * 1 if an external interrupt is pending |
| * 0 if no external interrupt is pending |
| */ |
| static bool nvic_isrpending(NVICState *s) |
| { |
| int irq; |
| |
| /* We can shortcut if the highest priority pending interrupt |
| * happens to be external or if there is nothing pending. |
| */ |
| if (s->vectpending > NVIC_FIRST_IRQ) { |
| return true; |
| } |
| if (s->vectpending == 0) { |
| return false; |
| } |
| |
| for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { |
| if (s->vectors[irq].pending) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool exc_is_banked(int exc) |
| { |
| /* Return true if this is one of the limited set of exceptions which |
| * are banked (and thus have state in sec_vectors[]) |
| */ |
| return exc == ARMV7M_EXCP_HARD || |
| exc == ARMV7M_EXCP_MEM || |
| exc == ARMV7M_EXCP_USAGE || |
| exc == ARMV7M_EXCP_SVC || |
| exc == ARMV7M_EXCP_PENDSV || |
| exc == ARMV7M_EXCP_SYSTICK; |
| } |
| |
| /* Return a mask word which clears the subpriority bits from |
| * a priority value for an M-profile exception, leaving only |
| * the group priority. |
| */ |
| static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) |
| { |
| return ~0U << (s->prigroup[secure] + 1); |
| } |
| |
| static bool exc_targets_secure(NVICState *s, int exc) |
| { |
| /* Return true if this non-banked exception targets Secure state. */ |
| if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { |
| return false; |
| } |
| |
| if (exc >= NVIC_FIRST_IRQ) { |
| return !s->itns[exc]; |
| } |
| |
| /* Function shouldn't be called for banked exceptions. */ |
| assert(!exc_is_banked(exc)); |
| |
| switch (exc) { |
| case ARMV7M_EXCP_NMI: |
| case ARMV7M_EXCP_BUS: |
| return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); |
| case ARMV7M_EXCP_SECURE: |
| return true; |
| case ARMV7M_EXCP_DEBUG: |
| /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ |
| return false; |
| default: |
| /* reset, and reserved (unused) low exception numbers. |
| * We'll get called by code that loops through all the exception |
| * numbers, but it doesn't matter what we return here as these |
| * non-existent exceptions will never be pended or active. |
| */ |
| return true; |
| } |
| } |
| |
| static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) |
| { |
| /* Return the group priority for this exception, given its raw |
| * (group-and-subgroup) priority value and whether it is targeting |
| * secure state or not. |
| */ |
| if (rawprio < 0) { |
| return rawprio; |
| } |
| rawprio &= nvic_gprio_mask(s, targets_secure); |
| /* AIRCR.PRIS causes us to squash all NS priorities into the |
| * lower half of the total range |
| */ |
| if (!targets_secure && |
| (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { |
| rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; |
| } |
| return rawprio; |
| } |
| |
| /* Recompute vectpending and exception_prio for a CPU which implements |
| * the Security extension |
| */ |
| static void nvic_recompute_state_secure(NVICState *s) |
| { |
| int i, bank; |
| int pend_prio = NVIC_NOEXC_PRIO; |
| int active_prio = NVIC_NOEXC_PRIO; |
| int pend_irq = 0; |
| bool pending_is_s_banked = false; |
| int pend_subprio = 0; |
| |
| /* R_CQRV: precedence is by: |
| * - lowest group priority; if both the same then |
| * - lowest subpriority; if both the same then |
| * - lowest exception number; if both the same (ie banked) then |
| * - secure exception takes precedence |
| * Compare pseudocode RawExecutionPriority. |
| * Annoyingly, now we have two prigroup values (for S and NS) |
| * we can't do the loop comparison on raw priority values. |
| */ |
| for (i = 1; i < s->num_irq; i++) { |
| for (bank = M_REG_S; bank >= M_REG_NS; bank--) { |
| VecInfo *vec; |
| int prio, subprio; |
| bool targets_secure; |
| |
| if (bank == M_REG_S) { |
| if (!exc_is_banked(i)) { |
| continue; |
| } |
| vec = &s->sec_vectors[i]; |
| targets_secure = true; |
| } else { |
| vec = &s->vectors[i]; |
| targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); |
| } |
| |
| prio = exc_group_prio(s, vec->prio, targets_secure); |
| subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); |
| if (vec->enabled && vec->pending && |
| ((prio < pend_prio) || |
| (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { |
| pend_prio = prio; |
| pend_subprio = subprio; |
| pend_irq = i; |
| pending_is_s_banked = (bank == M_REG_S); |
| } |
| if (vec->active && prio < active_prio) { |
| active_prio = prio; |
| } |
| } |
| } |
| |
| s->vectpending_is_s_banked = pending_is_s_banked; |
| s->vectpending = pend_irq; |
| s->vectpending_prio = pend_prio; |
| s->exception_prio = active_prio; |
| |
| trace_nvic_recompute_state_secure(s->vectpending, |
| s->vectpending_is_s_banked, |
| s->vectpending_prio, |
| s->exception_prio); |
| } |
| |
| /* Recompute vectpending and exception_prio */ |
| static void nvic_recompute_state(NVICState *s) |
| { |
| int i; |
| int pend_prio = NVIC_NOEXC_PRIO; |
| int active_prio = NVIC_NOEXC_PRIO; |
| int pend_irq = 0; |
| |
| /* In theory we could write one function that handled both |
| * the "security extension present" and "not present"; however |
| * the security related changes significantly complicate the |
| * recomputation just by themselves and mixing both cases together |
| * would be even worse, so we retain a separate non-secure-only |
| * version for CPUs which don't implement the security extension. |
| */ |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { |
| nvic_recompute_state_secure(s); |
| return; |
| } |
| |
| for (i = 1; i < s->num_irq; i++) { |
| VecInfo *vec = &s->vectors[i]; |
| |
| if (vec->enabled && vec->pending && vec->prio < pend_prio) { |
| pend_prio = vec->prio; |
| pend_irq = i; |
| } |
| if (vec->active && vec->prio < active_prio) { |
| active_prio = vec->prio; |
| } |
| } |
| |
| if (active_prio > 0) { |
| active_prio &= nvic_gprio_mask(s, false); |
| } |
| |
| if (pend_prio > 0) { |
| pend_prio &= nvic_gprio_mask(s, false); |
| } |
| |
| s->vectpending = pend_irq; |
| s->vectpending_prio = pend_prio; |
| s->exception_prio = active_prio; |
| |
| trace_nvic_recompute_state(s->vectpending, |
| s->vectpending_prio, |
| s->exception_prio); |
| } |
| |
| /* Return the current execution priority of the CPU |
| * (equivalent to the pseudocode ExecutionPriority function). |
| * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. |
| */ |
| static inline int nvic_exec_prio(NVICState *s) |
| { |
| CPUARMState *env = &s->cpu->env; |
| int running = NVIC_NOEXC_PRIO; |
| |
| if (env->v7m.basepri[M_REG_NS] > 0) { |
| running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); |
| } |
| |
| if (env->v7m.basepri[M_REG_S] > 0) { |
| int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); |
| if (running > basepri) { |
| running = basepri; |
| } |
| } |
| |
| if (env->v7m.primask[M_REG_NS]) { |
| if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { |
| if (running > NVIC_NS_PRIO_LIMIT) { |
| running = NVIC_NS_PRIO_LIMIT; |
| } |
| } else { |
| running = 0; |
| } |
| } |
| |
| if (env->v7m.primask[M_REG_S]) { |
| running = 0; |
| } |
| |
| if (env->v7m.faultmask[M_REG_NS]) { |
| if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { |
| running = -1; |
| } else { |
| if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { |
| if (running > NVIC_NS_PRIO_LIMIT) { |
| running = NVIC_NS_PRIO_LIMIT; |
| } |
| } else { |
| running = 0; |
| } |
| } |
| } |
| |
| if (env->v7m.faultmask[M_REG_S]) { |
| running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; |
| } |
| |
| /* consider priority of active handler */ |
| return MIN(running, s->exception_prio); |
| } |
| |
| bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) |
| { |
| /* Return true if the requested execution priority is negative |
| * for the specified security state, ie that security state |
| * has an active NMI or HardFault or has set its FAULTMASK. |
| * Note that this is not the same as whether the execution |
| * priority is actually negative (for instance AIRCR.PRIS may |
| * mean we don't allow FAULTMASK_NS to actually make the execution |
| * priority negative). Compare pseudocode IsReqExcPriNeg(). |
| */ |
| NVICState *s = opaque; |
| |
| if (s->cpu->env.v7m.faultmask[secure]) { |
| return true; |
| } |
| |
| if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : |
| s->vectors[ARMV7M_EXCP_HARD].active) { |
| return true; |
| } |
| |
| if (s->vectors[ARMV7M_EXCP_NMI].active && |
| exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool armv7m_nvic_can_take_pending_exception(void *opaque) |
| { |
| NVICState *s = opaque; |
| |
| return nvic_exec_prio(s) > nvic_pending_prio(s); |
| } |
| |
| int armv7m_nvic_raw_execution_priority(void *opaque) |
| { |
| NVICState *s = opaque; |
| |
| return s->exception_prio; |
| } |
| |
| /* caller must call nvic_irq_update() after this. |
| * secure indicates the bank to use for banked exceptions (we assert if |
| * we are passed secure=true for a non-banked exception). |
| */ |
| static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) |
| { |
| assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ |
| assert(irq < s->num_irq); |
| |
| prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); |
| |
| if (secure) { |
| assert(exc_is_banked(irq)); |
| s->sec_vectors[irq].prio = prio; |
| } else { |
| s->vectors[irq].prio = prio; |
| } |
| |
| trace_nvic_set_prio(irq, secure, prio); |
| } |
| |
| /* Return the current raw priority register value. |
| * secure indicates the bank to use for banked exceptions (we assert if |
| * we are passed secure=true for a non-banked exception). |
| */ |
| static int get_prio(NVICState *s, unsigned irq, bool secure) |
| { |
| assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ |
| assert(irq < s->num_irq); |
| |
| if (secure) { |
| assert(exc_is_banked(irq)); |
| return s->sec_vectors[irq].prio; |
| } else { |
| return s->vectors[irq].prio; |
| } |
| } |
| |
| /* Recompute state and assert irq line accordingly. |
| * Must be called after changes to: |
| * vec->active, vec->enabled, vec->pending or vec->prio for any vector |
| * prigroup |
| */ |
| static void nvic_irq_update(NVICState *s) |
| { |
| int lvl; |
| int pend_prio; |
| |
| nvic_recompute_state(s); |
| pend_prio = nvic_pending_prio(s); |
| |
| /* Raise NVIC output if this IRQ would be taken, except that we |
| * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which |
| * will be checked for in arm_v7m_cpu_exec_interrupt()); changes |
| * to those CPU registers don't cause us to recalculate the NVIC |
| * pending info. |
| */ |
| lvl = (pend_prio < s->exception_prio); |
| trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); |
| qemu_set_irq(s->excpout, lvl); |
| } |
| |
| /** |
| * armv7m_nvic_clear_pending: mark the specified exception as not pending |
| * @opaque: the NVIC |
| * @irq: the exception number to mark as not pending |
| * @secure: false for non-banked exceptions or for the nonsecure |
| * version of a banked exception, true for the secure version of a banked |
| * exception. |
| * |
| * Marks the specified exception as not pending. Note that we will assert() |
| * if @secure is true and @irq does not specify one of the fixed set |
| * of architecturally banked exceptions. |
| */ |
| static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) |
| { |
| NVICState *s = (NVICState *)opaque; |
| VecInfo *vec; |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| |
| if (secure) { |
| assert(exc_is_banked(irq)); |
| vec = &s->sec_vectors[irq]; |
| } else { |
| vec = &s->vectors[irq]; |
| } |
| trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); |
| if (vec->pending) { |
| vec->pending = 0; |
| nvic_irq_update(s); |
| } |
| } |
| |
| static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, |
| bool derived) |
| { |
| /* Pend an exception, including possibly escalating it to HardFault. |
| * |
| * This function handles both "normal" pending of interrupts and |
| * exceptions, and also derived exceptions (ones which occur as |
| * a result of trying to take some other exception). |
| * |
| * If derived == true, the caller guarantees that we are part way through |
| * trying to take an exception (but have not yet called |
| * armv7m_nvic_acknowledge_irq() to make it active), and so: |
| * - s->vectpending is the "original exception" we were trying to take |
| * - irq is the "derived exception" |
| * - nvic_exec_prio(s) gives the priority before exception entry |
| * Here we handle the prioritization logic which the pseudocode puts |
| * in the DerivedLateArrival() function. |
| */ |
| |
| NVICState *s = (NVICState *)opaque; |
| bool banked = exc_is_banked(irq); |
| VecInfo *vec; |
| bool targets_secure; |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| assert(!secure || banked); |
| |
| vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; |
| |
| targets_secure = banked ? secure : exc_targets_secure(s, irq); |
| |
| trace_nvic_set_pending(irq, secure, targets_secure, |
| derived, vec->enabled, vec->prio); |
| |
| if (derived) { |
| /* Derived exceptions are always synchronous. */ |
| assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); |
| |
| if (irq == ARMV7M_EXCP_DEBUG && |
| exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { |
| /* DebugMonitorFault, but its priority is lower than the |
| * preempted exception priority: just ignore it. |
| */ |
| return; |
| } |
| |
| if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { |
| /* If this is a terminal exception (one which means we cannot |
| * take the original exception, like a failure to read its |
| * vector table entry), then we must take the derived exception. |
| * If the derived exception can't take priority over the |
| * original exception, then we go into Lockup. |
| * |
| * For QEMU, we rely on the fact that a derived exception is |
| * terminal if and only if it's reported to us as HardFault, |
| * which saves having to have an extra argument is_terminal |
| * that we'd only use in one place. |
| */ |
| cpu_abort(&s->cpu->parent_obj, |
| "Lockup: can't take terminal derived exception " |
| "(original exception priority %d)\n", |
| s->vectpending_prio); |
| } |
| /* We now continue with the same code as for a normal pending |
| * exception, which will cause us to pend the derived exception. |
| * We'll then take either the original or the derived exception |
| * based on which is higher priority by the usual mechanism |
| * for selecting the highest priority pending interrupt. |
| */ |
| } |
| |
| if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { |
| /* If a synchronous exception is pending then it may be |
| * escalated to HardFault if: |
| * * it is equal or lower priority to current execution |
| * * it is disabled |
| * (ie we need to take it immediately but we can't do so). |
| * Asynchronous exceptions (and interrupts) simply remain pending. |
| * |
| * For QEMU, we don't have any imprecise (asynchronous) faults, |
| * so we can assume that PREFETCH_ABORT and DATA_ABORT are always |
| * synchronous. |
| * Debug exceptions are awkward because only Debug exceptions |
| * resulting from the BKPT instruction should be escalated, |
| * but we don't currently implement any Debug exceptions other |
| * than those that result from BKPT, so we treat all debug exceptions |
| * as needing escalation. |
| * |
| * This all means we can identify whether to escalate based only on |
| * the exception number and don't (yet) need the caller to explicitly |
| * tell us whether this exception is synchronous or not. |
| */ |
| int running = nvic_exec_prio(s); |
| bool escalate = false; |
| |
| if (exc_group_prio(s, vec->prio, secure) >= running) { |
| trace_nvic_escalate_prio(irq, vec->prio, running); |
| escalate = true; |
| } else if (!vec->enabled) { |
| trace_nvic_escalate_disabled(irq); |
| escalate = true; |
| } |
| |
| if (escalate) { |
| |
| /* We need to escalate this exception to a synchronous HardFault. |
| * If BFHFNMINS is set then we escalate to the banked HF for |
| * the target security state of the original exception; otherwise |
| * we take a Secure HardFault. |
| */ |
| irq = ARMV7M_EXCP_HARD; |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && |
| (targets_secure || |
| !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { |
| vec = &s->sec_vectors[irq]; |
| } else { |
| vec = &s->vectors[irq]; |
| } |
| if (running <= vec->prio) { |
| /* We want to escalate to HardFault but we can't take the |
| * synchronous HardFault at this point either. This is a |
| * Lockup condition due to a guest bug. We don't model |
| * Lockup, so report via cpu_abort() instead. |
| */ |
| cpu_abort(&s->cpu->parent_obj, |
| "Lockup: can't escalate %d to HardFault " |
| "(current priority %d)\n", irq, running); |
| } |
| |
| /* HF may be banked but there is only one shared HFSR */ |
| s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; |
| } |
| } |
| |
| if (!vec->pending) { |
| vec->pending = 1; |
| nvic_irq_update(s); |
| } |
| } |
| |
| void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) |
| { |
| do_armv7m_nvic_set_pending(opaque, irq, secure, false); |
| } |
| |
| void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) |
| { |
| do_armv7m_nvic_set_pending(opaque, irq, secure, true); |
| } |
| |
| void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) |
| { |
| /* |
| * Pend an exception during lazy FP stacking. This differs |
| * from the usual exception pending because the logic for |
| * whether we should escalate depends on the saved context |
| * in the FPCCR register, not on the current state of the CPU/NVIC. |
| */ |
| NVICState *s = (NVICState *)opaque; |
| bool banked = exc_is_banked(irq); |
| VecInfo *vec; |
| bool targets_secure; |
| bool escalate = false; |
| /* |
| * We will only look at bits in fpccr if this is a banked exception |
| * (in which case 'secure' tells us whether it is the S or NS version). |
| * All the bits for the non-banked exceptions are in fpccr_s. |
| */ |
| uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; |
| uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| assert(!secure || banked); |
| |
| vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; |
| |
| targets_secure = banked ? secure : exc_targets_secure(s, irq); |
| |
| switch (irq) { |
| case ARMV7M_EXCP_DEBUG: |
| if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { |
| /* Ignore DebugMonitor exception */ |
| return; |
| } |
| break; |
| case ARMV7M_EXCP_MEM: |
| escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); |
| break; |
| case ARMV7M_EXCP_USAGE: |
| escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); |
| break; |
| case ARMV7M_EXCP_BUS: |
| escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); |
| break; |
| case ARMV7M_EXCP_SECURE: |
| escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (escalate) { |
| /* |
| * Escalate to HardFault: faults that initially targeted Secure |
| * continue to do so, even if HF normally targets NonSecure. |
| */ |
| irq = ARMV7M_EXCP_HARD; |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && |
| (targets_secure || |
| !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { |
| vec = &s->sec_vectors[irq]; |
| } else { |
| vec = &s->vectors[irq]; |
| } |
| } |
| |
| if (!vec->enabled || |
| nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { |
| if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { |
| /* |
| * We want to escalate to HardFault but the context the |
| * FP state belongs to prevents the exception pre-empting. |
| */ |
| cpu_abort(&s->cpu->parent_obj, |
| "Lockup: can't escalate to HardFault during " |
| "lazy FP register stacking\n"); |
| } |
| } |
| |
| if (escalate) { |
| s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; |
| } |
| if (!vec->pending) { |
| vec->pending = 1; |
| /* |
| * We do not call nvic_irq_update(), because we know our caller |
| * is going to handle causing us to take the exception by |
| * raising EXCP_LAZYFP, so raising the IRQ line would be |
| * pointless extra work. We just need to recompute the |
| * priorities so that armv7m_nvic_can_take_pending_exception() |
| * returns the right answer. |
| */ |
| nvic_recompute_state(s); |
| } |
| } |
| |
| /* Make pending IRQ active. */ |
| void armv7m_nvic_acknowledge_irq(void *opaque) |
| { |
| NVICState *s = (NVICState *)opaque; |
| CPUARMState *env = &s->cpu->env; |
| const int pending = s->vectpending; |
| const int running = nvic_exec_prio(s); |
| VecInfo *vec; |
| |
| assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); |
| |
| if (s->vectpending_is_s_banked) { |
| vec = &s->sec_vectors[pending]; |
| } else { |
| vec = &s->vectors[pending]; |
| } |
| |
| assert(vec->enabled); |
| assert(vec->pending); |
| |
| assert(s->vectpending_prio < running); |
| |
| trace_nvic_acknowledge_irq(pending, s->vectpending_prio); |
| |
| vec->active = 1; |
| vec->pending = 0; |
| |
| write_v7m_exception(env, s->vectpending); |
| |
| nvic_irq_update(s); |
| } |
| |
| void armv7m_nvic_get_pending_irq_info(void *opaque, |
| int *pirq, bool *ptargets_secure) |
| { |
| NVICState *s = (NVICState *)opaque; |
| const int pending = s->vectpending; |
| bool targets_secure; |
| |
| assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); |
| |
| if (s->vectpending_is_s_banked) { |
| targets_secure = true; |
| } else { |
| targets_secure = !exc_is_banked(pending) && |
| exc_targets_secure(s, pending); |
| } |
| |
| trace_nvic_get_pending_irq_info(pending, targets_secure); |
| |
| *ptargets_secure = targets_secure; |
| *pirq = pending; |
| } |
| |
| int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) |
| { |
| NVICState *s = (NVICState *)opaque; |
| VecInfo *vec = NULL; |
| int ret; |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| |
| /* |
| * For negative priorities, v8M will forcibly deactivate the appropriate |
| * NMI or HardFault regardless of what interrupt we're being asked to |
| * deactivate (compare the DeActivate() pseudocode). This is a guard |
| * against software returning from NMI or HardFault with a corrupted |
| * IPSR and leaving the CPU in a negative-priority state. |
| * v7M does not do this, but simply deactivates the requested interrupt. |
| */ |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { |
| switch (armv7m_nvic_raw_execution_priority(s)) { |
| case -1: |
| if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { |
| vec = &s->vectors[ARMV7M_EXCP_HARD]; |
| } else { |
| vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; |
| } |
| break; |
| case -2: |
| vec = &s->vectors[ARMV7M_EXCP_NMI]; |
| break; |
| case -3: |
| vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (!vec) { |
| if (secure && exc_is_banked(irq)) { |
| vec = &s->sec_vectors[irq]; |
| } else { |
| vec = &s->vectors[irq]; |
| } |
| } |
| |
| trace_nvic_complete_irq(irq, secure); |
| |
| if (!vec->active) { |
| /* Tell the caller this was an illegal exception return */ |
| return -1; |
| } |
| |
| /* |
| * If this is a configurable exception and it is currently |
| * targeting the opposite security state from the one we're trying |
| * to complete it for, this counts as an illegal exception return. |
| * We still need to deactivate whatever vector the logic above has |
| * selected, though, as it might not be the same as the one for the |
| * requested exception number. |
| */ |
| if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { |
| ret = -1; |
| } else { |
| ret = nvic_rettobase(s); |
| } |
| |
| vec->active = 0; |
| if (vec->level) { |
| /* Re-pend the exception if it's still held high; only |
| * happens for extenal IRQs |
| */ |
| assert(irq >= NVIC_FIRST_IRQ); |
| vec->pending = 1; |
| } |
| |
| nvic_irq_update(s); |
| |
| return ret; |
| } |
| |
| bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) |
| { |
| /* |
| * Return whether an exception is "ready", i.e. it is enabled and is |
| * configured at a priority which would allow it to interrupt the |
| * current execution priority. |
| * |
| * irq and secure have the same semantics as for armv7m_nvic_set_pending(): |
| * for non-banked exceptions secure is always false; for banked exceptions |
| * it indicates which of the exceptions is required. |
| */ |
| NVICState *s = (NVICState *)opaque; |
| bool banked = exc_is_banked(irq); |
| VecInfo *vec; |
| int running = nvic_exec_prio(s); |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| assert(!secure || banked); |
| |
| /* |
| * HardFault is an odd special case: we always check against -1, |
| * even if we're secure and HardFault has priority -3; we never |
| * need to check for enabled state. |
| */ |
| if (irq == ARMV7M_EXCP_HARD) { |
| return running > -1; |
| } |
| |
| vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; |
| |
| return vec->enabled && |
| exc_group_prio(s, vec->prio, secure) < running; |
| } |
| |
| /* callback when external interrupt line is changed */ |
| static void set_irq_level(void *opaque, int n, int level) |
| { |
| NVICState *s = opaque; |
| VecInfo *vec; |
| |
| n += NVIC_FIRST_IRQ; |
| |
| assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); |
| |
| trace_nvic_set_irq_level(n, level); |
| |
| /* The pending status of an external interrupt is |
| * latched on rising edge and exception handler return. |
| * |
| * Pulsing the IRQ will always run the handler |
| * once, and the handler will re-run until the |
| * level is low when the handler completes. |
| */ |
| vec = &s->vectors[n]; |
| if (level != vec->level) { |
| vec->level = level; |
| if (level) { |
| armv7m_nvic_set_pending(s, n, false); |
| } |
| } |
| } |
| |
| /* callback when external NMI line is changed */ |
| static void nvic_nmi_trigger(void *opaque, int n, int level) |
| { |
| NVICState *s = opaque; |
| |
| trace_nvic_set_nmi_level(level); |
| |
| /* |
| * The architecture doesn't specify whether NMI should share |
| * the normal-interrupt behaviour of being resampled on |
| * exception handler return. We choose not to, so just |
| * set NMI pending here and don't track the current level. |
| */ |
| if (level) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); |
| } |
| } |
| |
| static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) |
| { |
| ARMCPU *cpu = s->cpu; |
| uint32_t val; |
| |
| switch (offset) { |
| case 4: /* Interrupt Control Type. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
| goto bad_offset; |
| } |
| return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; |
| case 0xc: /* CPPWR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| /* We make the IMPDEF choice that nothing can ever go into a |
| * non-retentive power state, which allows us to RAZ/WI this. |
| */ |
| return 0; |
| case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ |
| { |
| int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; |
| int i; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| val = 0; |
| for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { |
| if (s->itns[startvec + i]) { |
| val |= (1 << i); |
| } |
| } |
| return val; |
| } |
| case 0xd00: /* CPUID Base. */ |
| return cpu->midr; |
| case 0xd04: /* Interrupt Control State (ICSR) */ |
| /* VECTACTIVE */ |
| val = cpu->env.v7m.exception; |
| /* VECTPENDING */ |
| val |= (s->vectpending & 0xff) << 12; |
| /* ISRPENDING - set if any external IRQ is pending */ |
| if (nvic_isrpending(s)) { |
| val |= (1 << 22); |
| } |
| /* RETTOBASE - set if only one handler is active */ |
| if (nvic_rettobase(s)) { |
| val |= (1 << 11); |
| } |
| if (attrs.secure) { |
| /* PENDSTSET */ |
| if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { |
| val |= (1 << 26); |
| } |
| /* PENDSVSET */ |
| if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { |
| val |= (1 << 28); |
| } |
| } else { |
| /* PENDSTSET */ |
| if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { |
| val |= (1 << 26); |
| } |
| /* PENDSVSET */ |
| if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { |
| val |= (1 << 28); |
| } |
| } |
| /* NMIPENDSET */ |
| if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) |
| && s->vectors[ARMV7M_EXCP_NMI].pending) { |
| val |= (1 << 31); |
| } |
| /* ISRPREEMPT: RES0 when halting debug not implemented */ |
| /* STTNS: RES0 for the Main Extension */ |
| return val; |
| case 0xd08: /* Vector Table Offset. */ |
| return cpu->env.v7m.vecbase[attrs.secure]; |
| case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ |
| val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); |
| if (attrs.secure) { |
| /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ |
| val |= cpu->env.v7m.aircr; |
| } else { |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If |
| * security isn't supported then BFHFNMINS is RAO (and |
| * the bit in env.v7m.aircr is always set). |
| */ |
| val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; |
| } |
| } |
| return val; |
| case 0xd10: /* System Control. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
| goto bad_offset; |
| } |
| return cpu->env.v7m.scr[attrs.secure]; |
| case 0xd14: /* Configuration Control. */ |
| /* The BFHFNMIGN bit is the only non-banked bit; we |
| * keep it in the non-secure copy of the register. |
| */ |
| val = cpu->env.v7m.ccr[attrs.secure]; |
| val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; |
| return val; |
| case 0xd24: /* System Handler Control and State (SHCSR) */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
| goto bad_offset; |
| } |
| val = 0; |
| if (attrs.secure) { |
| if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { |
| val |= (1 << 0); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { |
| val |= (1 << 2); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { |
| val |= (1 << 3); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { |
| val |= (1 << 7); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { |
| val |= (1 << 10); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { |
| val |= (1 << 11); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { |
| val |= (1 << 12); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { |
| val |= (1 << 13); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { |
| val |= (1 << 15); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { |
| val |= (1 << 16); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { |
| val |= (1 << 18); |
| } |
| if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { |
| val |= (1 << 21); |
| } |
| /* SecureFault is not banked but is always RAZ/WI to NS */ |
| if (s->vectors[ARMV7M_EXCP_SECURE].active) { |
| val |= (1 << 4); |
| } |
| if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { |
| val |= (1 << 19); |
| } |
| if (s->vectors[ARMV7M_EXCP_SECURE].pending) { |
| val |= (1 << 20); |
| } |
| } else { |
| if (s->vectors[ARMV7M_EXCP_MEM].active) { |
| val |= (1 << 0); |
| } |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ |
| if (s->vectors[ARMV7M_EXCP_HARD].active) { |
| val |= (1 << 2); |
| } |
| if (s->vectors[ARMV7M_EXCP_HARD].pending) { |
| val |= (1 << 21); |
| } |
| } |
| if (s->vectors[ARMV7M_EXCP_USAGE].active) { |
| val |= (1 << 3); |
| } |
| if (s->vectors[ARMV7M_EXCP_SVC].active) { |
| val |= (1 << 7); |
| } |
| if (s->vectors[ARMV7M_EXCP_PENDSV].active) { |
| val |= (1 << 10); |
| } |
| if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { |
| val |= (1 << 11); |
| } |
| if (s->vectors[ARMV7M_EXCP_USAGE].pending) { |
| val |= (1 << 12); |
| } |
| if (s->vectors[ARMV7M_EXCP_MEM].pending) { |
| val |= (1 << 13); |
| } |
| if (s->vectors[ARMV7M_EXCP_SVC].pending) { |
| val |= (1 << 15); |
| } |
| if (s->vectors[ARMV7M_EXCP_MEM].enabled) { |
| val |= (1 << 16); |
| } |
| if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { |
| val |= (1 << 18); |
| } |
| } |
| if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| if (s->vectors[ARMV7M_EXCP_BUS].active) { |
| val |= (1 << 1); |
| } |
| if (s->vectors[ARMV7M_EXCP_BUS].pending) { |
| val |= (1 << 14); |
| } |
| if (s->vectors[ARMV7M_EXCP_BUS].enabled) { |
| val |= (1 << 17); |
| } |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8) && |
| s->vectors[ARMV7M_EXCP_NMI].active) { |
| /* NMIACT is not present in v7M */ |
| val |= (1 << 5); |
| } |
| } |
| |
| /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ |
| if (s->vectors[ARMV7M_EXCP_DEBUG].active) { |
| val |= (1 << 8); |
| } |
| return val; |
| case 0xd2c: /* Hard Fault Status. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| return cpu->env.v7m.hfsr; |
| case 0xd30: /* Debug Fault Status. */ |
| return cpu->env.v7m.dfsr; |
| case 0xd34: /* MMFAR MemManage Fault Address */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| return cpu->env.v7m.mmfar[attrs.secure]; |
| case 0xd38: /* Bus Fault Address. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure && |
| !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| return 0; |
| } |
| return cpu->env.v7m.bfar; |
| case 0xd3c: /* Aux Fault Status. */ |
| /* TODO: Implement fault status registers. */ |
| qemu_log_mask(LOG_UNIMP, |
| "Aux Fault status registers unimplemented\n"); |
| return 0; |
| case 0xd40: /* PFR0. */ |
| return cpu->id_pfr0; |
| case 0xd44: /* PFR1. */ |
| return cpu->id_pfr1; |
| case 0xd48: /* DFR0. */ |
| return cpu->id_dfr0; |
| case 0xd4c: /* AFR0. */ |
| return cpu->id_afr0; |
| case 0xd50: /* MMFR0. */ |
| return cpu->id_mmfr0; |
| case 0xd54: /* MMFR1. */ |
| return cpu->id_mmfr1; |
| case 0xd58: /* MMFR2. */ |
| return cpu->id_mmfr2; |
| case 0xd5c: /* MMFR3. */ |
| return cpu->id_mmfr3; |
| case 0xd60: /* ISAR0. */ |
| return cpu->isar.id_isar0; |
| case 0xd64: /* ISAR1. */ |
| return cpu->isar.id_isar1; |
| case 0xd68: /* ISAR2. */ |
| return cpu->isar.id_isar2; |
| case 0xd6c: /* ISAR3. */ |
| return cpu->isar.id_isar3; |
| case 0xd70: /* ISAR4. */ |
| return cpu->isar.id_isar4; |
| case 0xd74: /* ISAR5. */ |
| return cpu->isar.id_isar5; |
| case 0xd78: /* CLIDR */ |
| return cpu->clidr; |
| case 0xd7c: /* CTR */ |
| return cpu->ctr; |
| case 0xd80: /* CSSIDR */ |
| { |
| int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; |
| return cpu->ccsidr[idx]; |
| } |
| case 0xd84: /* CSSELR */ |
| return cpu->env.v7m.csselr[attrs.secure]; |
| case 0xd88: /* CPACR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| return 0; |
| } |
| return cpu->env.v7m.cpacr[attrs.secure]; |
| case 0xd8c: /* NSACR */ |
| if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| return 0; |
| } |
| return cpu->env.v7m.nsacr; |
| /* TODO: Implement debug registers. */ |
| case 0xd90: /* MPU_TYPE */ |
| /* Unified MPU; if the MPU is not present this value is zero */ |
| return cpu->pmsav7_dregion << 8; |
| break; |
| case 0xd94: /* MPU_CTRL */ |
| return cpu->env.v7m.mpu_ctrl[attrs.secure]; |
| case 0xd98: /* MPU_RNR */ |
| return cpu->env.pmsav7.rnr[attrs.secure]; |
| case 0xd9c: /* MPU_RBAR */ |
| case 0xda4: /* MPU_RBAR_A1 */ |
| case 0xdac: /* MPU_RBAR_A2 */ |
| case 0xdb4: /* MPU_RBAR_A3 */ |
| { |
| int region = cpu->env.pmsav7.rnr[attrs.secure]; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR, and there is no 'region' field in the |
| * RBAR register. |
| */ |
| int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return cpu->env.pmsav8.rbar[attrs.secure][region]; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); |
| } |
| case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ |
| case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ |
| case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ |
| case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ |
| { |
| int region = cpu->env.pmsav7.rnr[attrs.secure]; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR. |
| */ |
| int aliasno = (offset - 0xda0) / 8; /* 0..3 */ |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return cpu->env.pmsav8.rlar[attrs.secure][region]; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | |
| (cpu->env.pmsav7.drsr[region] & 0xffff); |
| } |
| case 0xdc0: /* MPU_MAIR0 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| return cpu->env.pmsav8.mair0[attrs.secure]; |
| case 0xdc4: /* MPU_MAIR1 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| return cpu->env.pmsav8.mair1[attrs.secure]; |
| case 0xdd0: /* SAU_CTRL */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| return cpu->env.sau.ctrl; |
| case 0xdd4: /* SAU_TYPE */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| return cpu->sau_sregion; |
| case 0xdd8: /* SAU_RNR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| return cpu->env.sau.rnr; |
| case 0xddc: /* SAU_RBAR */ |
| { |
| int region = cpu->env.sau.rnr; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| if (region >= cpu->sau_sregion) { |
| return 0; |
| } |
| return cpu->env.sau.rbar[region]; |
| } |
| case 0xde0: /* SAU_RLAR */ |
| { |
| int region = cpu->env.sau.rnr; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| if (region >= cpu->sau_sregion) { |
| return 0; |
| } |
| return cpu->env.sau.rlar[region]; |
| } |
| case 0xde4: /* SFSR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| return cpu->env.v7m.sfsr; |
| case 0xde8: /* SFAR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return 0; |
| } |
| return cpu->env.v7m.sfar; |
| case 0xf34: /* FPCCR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| return 0; |
| } |
| if (attrs.secure) { |
| return cpu->env.v7m.fpccr[M_REG_S]; |
| } else { |
| /* |
| * NS can read LSPEN, CLRONRET and MONRDY. It can read |
| * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; |
| * other non-banked bits RAZ. |
| * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. |
| */ |
| uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; |
| uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | |
| R_V7M_FPCCR_CLRONRET_MASK | |
| R_V7M_FPCCR_MONRDY_MASK; |
| |
| if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { |
| mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; |
| } |
| |
| value &= mask; |
| |
| value |= cpu->env.v7m.fpccr[M_REG_NS]; |
| return value; |
| } |
| case 0xf38: /* FPCAR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| return 0; |
| } |
| return cpu->env.v7m.fpcar[attrs.secure]; |
| case 0xf3c: /* FPDSCR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| return 0; |
| } |
| return cpu->env.v7m.fpdscr[attrs.secure]; |
| case 0xf40: /* MVFR0 */ |
| return cpu->isar.mvfr0; |
| case 0xf44: /* MVFR1 */ |
| return cpu->isar.mvfr1; |
| case 0xf48: /* MVFR2 */ |
| return cpu->isar.mvfr2; |
| default: |
| bad_offset: |
| qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); |
| return 0; |
| } |
| } |
| |
| static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, |
| MemTxAttrs attrs) |
| { |
| ARMCPU *cpu = s->cpu; |
| |
| switch (offset) { |
| case 0xc: /* CPPWR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| /* Make the IMPDEF choice to RAZ/WI this. */ |
| break; |
| case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ |
| { |
| int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; |
| int i; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| break; |
| } |
| for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { |
| s->itns[startvec + i] = (value >> i) & 1; |
| } |
| nvic_irq_update(s); |
| break; |
| } |
| case 0xd04: /* Interrupt Control State (ICSR) */ |
| if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { |
| if (value & (1 << 31)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); |
| } else if (value & (1 << 30) && |
| arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PENDNMICLR didn't exist in v7M */ |
| armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); |
| } |
| } |
| if (value & (1 << 28)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); |
| } else if (value & (1 << 27)) { |
| armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); |
| } |
| if (value & (1 << 26)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); |
| } else if (value & (1 << 25)) { |
| armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); |
| } |
| break; |
| case 0xd08: /* Vector Table Offset. */ |
| cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; |
| break; |
| case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ |
| if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { |
| if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { |
| if (attrs.secure || |
| !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { |
| qemu_irq_pulse(s->sysresetreq); |
| } |
| } |
| if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Setting VECTCLRACTIVE when not in DEBUG mode " |
| "is UNPREDICTABLE\n"); |
| } |
| if (value & R_V7M_AIRCR_VECTRESET_MASK) { |
| /* NB: this bit is RES0 in v8M */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Setting VECTRESET when not in DEBUG mode " |
| "is UNPREDICTABLE\n"); |
| } |
| if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| s->prigroup[attrs.secure] = |
| extract32(value, |
| R_V7M_AIRCR_PRIGROUP_SHIFT, |
| R_V7M_AIRCR_PRIGROUP_LENGTH); |
| } |
| if (attrs.secure) { |
| /* These bits are only writable by secure */ |
| cpu->env.v7m.aircr = value & |
| (R_V7M_AIRCR_SYSRESETREQS_MASK | |
| R_V7M_AIRCR_BFHFNMINS_MASK | |
| R_V7M_AIRCR_PRIS_MASK); |
| /* BFHFNMINS changes the priority of Secure HardFault, and |
| * allows a pending Non-secure HardFault to preempt (which |
| * we implement by marking it enabled). |
| */ |
| if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { |
| s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; |
| s->vectors[ARMV7M_EXCP_HARD].enabled = 1; |
| } else { |
| s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; |
| s->vectors[ARMV7M_EXCP_HARD].enabled = 0; |
| } |
| } |
| nvic_irq_update(s); |
| } |
| break; |
| case 0xd10: /* System Control. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
| goto bad_offset; |
| } |
| /* We don't implement deep-sleep so these bits are RAZ/WI. |
| * The other bits in the register are banked. |
| * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which |
| * is architecturally permitted. |
| */ |
| value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); |
| cpu->env.v7m.scr[attrs.secure] = value; |
| break; |
| case 0xd14: /* Configuration Control. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| |
| /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ |
| value &= (R_V7M_CCR_STKALIGN_MASK | |
| R_V7M_CCR_BFHFNMIGN_MASK | |
| R_V7M_CCR_DIV_0_TRP_MASK | |
| R_V7M_CCR_UNALIGN_TRP_MASK | |
| R_V7M_CCR_USERSETMPEND_MASK | |
| R_V7M_CCR_NONBASETHRDENA_MASK); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ |
| value |= R_V7M_CCR_NONBASETHRDENA_MASK |
| | R_V7M_CCR_STKALIGN_MASK; |
| } |
| if (attrs.secure) { |
| /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ |
| cpu->env.v7m.ccr[M_REG_NS] = |
| (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) |
| | (value & R_V7M_CCR_BFHFNMIGN_MASK); |
| value &= ~R_V7M_CCR_BFHFNMIGN_MASK; |
| } |
| |
| cpu->env.v7m.ccr[attrs.secure] = value; |
| break; |
| case 0xd24: /* System Handler Control and State (SHCSR) */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
| goto bad_offset; |
| } |
| if (attrs.secure) { |
| s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; |
| /* Secure HardFault active bit cannot be written */ |
| s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_PENDSV].active = |
| (value & (1 << 10)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = |
| (value & (1 << 11)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_USAGE].pending = |
| (value & (1 << 12)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = |
| (value & (1 << 18)) != 0; |
| s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; |
| /* SecureFault not banked, but RAZ/WI to NS */ |
| s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; |
| s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; |
| s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; |
| } else { |
| s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* HARDFAULTPENDED is not present in v7M */ |
| s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; |
| } |
| s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; |
| s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; |
| s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; |
| s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; |
| s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; |
| s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; |
| s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; |
| s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; |
| s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; |
| } |
| if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; |
| s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; |
| s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; |
| } |
| /* NMIACT can only be written if the write is of a zero, with |
| * BFHFNMINS 1, and by the CPU in secure state via the NS alias. |
| */ |
| if (!attrs.secure && cpu->env.v7m.secure && |
| (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && |
| (value & (1 << 5)) == 0) { |
| s->vectors[ARMV7M_EXCP_NMI].active = 0; |
| } |
| /* HARDFAULTACT can only be written if the write is of a zero |
| * to the non-secure HardFault state by the CPU in secure state. |
| * The only case where we can be targeting the non-secure HF state |
| * when in secure state is if this is a write via the NS alias |
| * and BFHFNMINS is 1. |
| */ |
| if (!attrs.secure && cpu->env.v7m.secure && |
| (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && |
| (value & (1 << 2)) == 0) { |
| s->vectors[ARMV7M_EXCP_HARD].active = 0; |
| } |
| |
| /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ |
| s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; |
| nvic_irq_update(s); |
| break; |
| case 0xd2c: /* Hard Fault Status. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| cpu->env.v7m.hfsr &= ~value; /* W1C */ |
| break; |
| case 0xd30: /* Debug Fault Status. */ |
| cpu->env.v7m.dfsr &= ~value; /* W1C */ |
| break; |
| case 0xd34: /* Mem Manage Address. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| cpu->env.v7m.mmfar[attrs.secure] = value; |
| return; |
| case 0xd38: /* Bus Fault Address. */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure && |
| !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| return; |
| } |
| cpu->env.v7m.bfar = value; |
| return; |
| case 0xd3c: /* Aux Fault Status. */ |
| qemu_log_mask(LOG_UNIMP, |
| "NVIC: Aux fault status registers unimplemented\n"); |
| break; |
| case 0xd84: /* CSSELR */ |
| if (!arm_v7m_csselr_razwi(cpu)) { |
| cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; |
| } |
| break; |
| case 0xd88: /* CPACR */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| /* We implement only the Floating Point extension's CP10/CP11 */ |
| cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); |
| } |
| break; |
| case 0xd8c: /* NSACR */ |
| if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| /* We implement only the Floating Point extension's CP10/CP11 */ |
| cpu->env.v7m.nsacr = value & (3 << 10); |
| } |
| break; |
| case 0xd90: /* MPU_TYPE */ |
| return; /* RO */ |
| case 0xd94: /* MPU_CTRL */ |
| if ((value & |
| (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) |
| == R_V7M_MPU_CTRL_HFNMIENA_MASK) { |
| qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " |
| "UNPREDICTABLE\n"); |
| } |
| cpu->env.v7m.mpu_ctrl[attrs.secure] |
| = value & (R_V7M_MPU_CTRL_ENABLE_MASK | |
| R_V7M_MPU_CTRL_HFNMIENA_MASK | |
| R_V7M_MPU_CTRL_PRIVDEFENA_MASK); |
| tlb_flush(CPU(cpu)); |
| break; |
| case 0xd98: /* MPU_RNR */ |
| if (value >= cpu->pmsav7_dregion) { |
| qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" |
| PRIu32 "/%" PRIu32 "\n", |
| value, cpu->pmsav7_dregion); |
| } else { |
| cpu->env.pmsav7.rnr[attrs.secure] = value; |
| } |
| break; |
| case 0xd9c: /* MPU_RBAR */ |
| case 0xda4: /* MPU_RBAR_A1 */ |
| case 0xdac: /* MPU_RBAR_A2 */ |
| case 0xdb4: /* MPU_RBAR_A3 */ |
| { |
| int region; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR, and there is no 'region' field in the |
| * RBAR register. |
| */ |
| int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ |
| |
| region = cpu->env.pmsav7.rnr[attrs.secure]; |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| cpu->env.pmsav8.rbar[attrs.secure][region] = value; |
| tlb_flush(CPU(cpu)); |
| return; |
| } |
| |
| if (value & (1 << 4)) { |
| /* VALID bit means use the region number specified in this |
| * value and also update MPU_RNR.REGION with that value. |
| */ |
| region = extract32(value, 0, 4); |
| if (region >= cpu->pmsav7_dregion) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "MPU region out of range %u/%" PRIu32 "\n", |
| region, cpu->pmsav7_dregion); |
| return; |
| } |
| cpu->env.pmsav7.rnr[attrs.secure] = region; |
| } else { |
| region = cpu->env.pmsav7.rnr[attrs.secure]; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| |
| cpu->env.pmsav7.drbar[region] = value & ~0x1f; |
| tlb_flush(CPU(cpu)); |
| break; |
| } |
| case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ |
| case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ |
| case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ |
| case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ |
| { |
| int region = cpu->env.pmsav7.rnr[attrs.secure]; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR. |
| */ |
| int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ |
| |
| region = cpu->env.pmsav7.rnr[attrs.secure]; |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| cpu->env.pmsav8.rlar[attrs.secure][region] = value; |
| tlb_flush(CPU(cpu)); |
| return; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| |
| cpu->env.pmsav7.drsr[region] = value & 0xff3f; |
| cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; |
| tlb_flush(CPU(cpu)); |
| break; |
| } |
| case 0xdc0: /* MPU_MAIR0 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (cpu->pmsav7_dregion) { |
| /* Register is RES0 if no MPU regions are implemented */ |
| cpu->env.pmsav8.mair0[attrs.secure] = value; |
| } |
| /* We don't need to do anything else because memory attributes |
| * only affect cacheability, and we don't implement caching. |
| */ |
| break; |
| case 0xdc4: /* MPU_MAIR1 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (cpu->pmsav7_dregion) { |
| /* Register is RES0 if no MPU regions are implemented */ |
| cpu->env.pmsav8.mair1[attrs.secure] = value; |
| } |
| /* We don't need to do anything else because memory attributes |
| * only affect cacheability, and we don't implement caching. |
| */ |
| break; |
| case 0xdd0: /* SAU_CTRL */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return; |
| } |
| cpu->env.sau.ctrl = value & 3; |
| break; |
| case 0xdd4: /* SAU_TYPE */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| break; |
| case 0xdd8: /* SAU_RNR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return; |
| } |
| if (value >= cpu->sau_sregion) { |
| qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" |
| PRIu32 "/%" PRIu32 "\n", |
| value, cpu->sau_sregion); |
| } else { |
| cpu->env.sau.rnr = value; |
| } |
| break; |
| case 0xddc: /* SAU_RBAR */ |
| { |
| int region = cpu->env.sau.rnr; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return; |
| } |
| if (region >= cpu->sau_sregion) { |
| return; |
| } |
| cpu->env.sau.rbar[region] = value & ~0x1f; |
| tlb_flush(CPU(cpu)); |
| break; |
| } |
| case 0xde0: /* SAU_RLAR */ |
| { |
| int region = cpu->env.sau.rnr; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return; |
| } |
| if (region >= cpu->sau_sregion) { |
| return; |
| } |
| cpu->env.sau.rlar[region] = value & ~0x1c; |
| tlb_flush(CPU(cpu)); |
| break; |
| } |
| case 0xde4: /* SFSR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return; |
| } |
| cpu->env.v7m.sfsr &= ~value; /* W1C */ |
| break; |
| case 0xde8: /* SFAR */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (!attrs.secure) { |
| return; |
| } |
| cpu->env.v7m.sfsr = value; |
| break; |
| case 0xf00: /* Software Triggered Interrupt Register */ |
| { |
| int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { |
| goto bad_offset; |
| } |
| |
| if (excnum < s->num_irq) { |
| armv7m_nvic_set_pending(s, excnum, false); |
| } |
| break; |
| } |
| case 0xf34: /* FPCCR */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| /* Not all bits here are banked. */ |
| uint32_t fpccr_s; |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* Don't allow setting of bits not present in v7M */ |
| value &= (R_V7M_FPCCR_LSPACT_MASK | |
| R_V7M_FPCCR_USER_MASK | |
| R_V7M_FPCCR_THREAD_MASK | |
| R_V7M_FPCCR_HFRDY_MASK | |
| R_V7M_FPCCR_MMRDY_MASK | |
| R_V7M_FPCCR_BFRDY_MASK | |
| R_V7M_FPCCR_MONRDY_MASK | |
| R_V7M_FPCCR_LSPEN_MASK | |
| R_V7M_FPCCR_ASPEN_MASK); |
| } |
| value &= ~R_V7M_FPCCR_RES0_MASK; |
| |
| if (!attrs.secure) { |
| /* Some non-banked bits are configurably writable by NS */ |
| fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; |
| if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { |
| uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); |
| fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); |
| } |
| if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { |
| uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); |
| fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); |
| } |
| if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); |
| uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); |
| fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); |
| fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); |
| } |
| /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ |
| { |
| uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); |
| fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); |
| } |
| |
| /* |
| * All other non-banked bits are RAZ/WI from NS; write |
| * just the banked bits to fpccr[M_REG_NS]. |
| */ |
| value &= R_V7M_FPCCR_BANKED_MASK; |
| cpu->env.v7m.fpccr[M_REG_NS] = value; |
| } else { |
| fpccr_s = value; |
| } |
| cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; |
| } |
| break; |
| case 0xf38: /* FPCAR */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| value &= ~7; |
| cpu->env.v7m.fpcar[attrs.secure] = value; |
| } |
| break; |
| case 0xf3c: /* FPDSCR */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { |
| value &= 0x07c00000; |
| cpu->env.v7m.fpdscr[attrs.secure] = value; |
| } |
| break; |
| case 0xf50: /* ICIALLU */ |
| case 0xf58: /* ICIMVAU */ |
| case 0xf5c: /* DCIMVAC */ |
| case 0xf60: /* DCISW */ |
| case 0xf64: /* DCCMVAU */ |
| case 0xf68: /* DCCMVAC */ |
| case 0xf6c: /* DCCSW */ |
| case 0xf70: /* DCCIMVAC */ |
| case 0xf74: /* DCCISW */ |
| case 0xf78: /* BPIALL */ |
| /* Cache and branch predictor maintenance: for QEMU these always NOP */ |
| break; |
| default: |
| bad_offset: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad write offset 0x%x\n", offset); |
| } |
| } |
| |
| static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) |
| { |
| /* Return true if unprivileged access to this register is permitted. */ |
| switch (offset) { |
| case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ |
| /* For access via STIR_NS it is the NS CCR.USERSETMPEND that |
| * controls access even though the CPU is in Secure state (I_QDKX). |
| */ |
| return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; |
| default: |
| /* All other user accesses cause a BusFault unconditionally */ |
| return false; |
| } |
| } |
| |
| static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) |
| { |
| /* Behaviour for the SHPR register field for this exception: |
| * return M_REG_NS to use the nonsecure vector (including for |
| * non-banked exceptions), M_REG_S for the secure version of |
| * a banked exception, and -1 if this field should RAZ/WI. |
| */ |
| switch (exc) { |
| case ARMV7M_EXCP_MEM: |
| case ARMV7M_EXCP_USAGE: |
| case ARMV7M_EXCP_SVC: |
| case ARMV7M_EXCP_PENDSV: |
| case ARMV7M_EXCP_SYSTICK: |
| /* Banked exceptions */ |
| return attrs.secure; |
| case ARMV7M_EXCP_BUS: |
| /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ |
| if (!attrs.secure && |
| !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| return -1; |
| } |
| return M_REG_NS; |
| case ARMV7M_EXCP_SECURE: |
| /* Not banked, RAZ/WI from nonsecure */ |
| if (!attrs.secure) { |
| return -1; |
| } |
| return M_REG_NS; |
| case ARMV7M_EXCP_DEBUG: |
| /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ |
| return M_REG_NS; |
| case 8 ... 10: |
| case 13: |
| /* RES0 */ |
| return -1; |
| default: |
| /* Not reachable due to decode of SHPR register addresses */ |
| g_assert_not_reached(); |
| } |
| } |
| |
| static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| NVICState *s = (NVICState *)opaque; |
| uint32_t offset = addr; |
| unsigned i, startvec, end; |
| uint32_t val; |
| |
| if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { |
| /* Generate BusFault for unprivileged accesses */ |
| return MEMTX_ERROR; |
| } |
| |
| switch (offset) { |
| /* reads of set and clear both return the status */ |
| case 0x100 ... 0x13f: /* NVIC Set enable */ |
| offset += 0x80; |
| /* fall through */ |
| case 0x180 ... 0x1bf: /* NVIC Clear enable */ |
| val = 0; |
| startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (s->vectors[startvec + i].enabled && |
| (attrs.secure || s->itns[startvec + i])) { |
| val |= (1 << i); |
| } |
| } |
| break; |
| case 0x200 ... 0x23f: /* NVIC Set pend */ |
| offset += 0x80; |
| /* fall through */ |
| case 0x280 ... 0x2bf: /* NVIC Clear pend */ |
| val = 0; |
| startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (s->vectors[startvec + i].pending && |
| (attrs.secure || s->itns[startvec + i])) { |
| val |= (1 << i); |
| } |
| } |
| break; |
| case 0x300 ... 0x33f: /* NVIC Active */ |
| val = 0; |
| |
| if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { |
| break; |
| } |
| |
| startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (s->vectors[startvec + i].active && |
| (attrs.secure || s->itns[startvec + i])) { |
| val |= (1 << i); |
| } |
| } |
| break; |
| case 0x400 ... 0x5ef: /* NVIC Priority */ |
| val = 0; |
| startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0; i < size && startvec + i < s->num_irq; i++) { |
| if (attrs.secure || s->itns[startvec + i]) { |
| val |= s->vectors[startvec + i].prio << (8 * i); |
| } |
| } |
| break; |
| case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ |
| if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { |
| val = 0; |
| break; |
| } |
| /* fall through */ |
| case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ |
| val = 0; |
| for (i = 0; i < size; i++) { |
| unsigned hdlidx = (offset - 0xd14) + i; |
| int sbank = shpr_bank(s, hdlidx, attrs); |
| |
| if (sbank < 0) { |
| continue; |
| } |
| val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); |
| } |
| break; |
| case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ |
| if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { |
| val = 0; |
| break; |
| }; |
| /* |
| * The BFSR bits [15:8] are shared between security states |
| * and we store them in the NS copy. They are RAZ/WI for |
| * NS code if AIRCR.BFHFNMINS is 0. |
| */ |
| val = s->cpu->env.v7m.cfsr[attrs.secure]; |
| if (!attrs.secure && |
| !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| val &= ~R_V7M_CFSR_BFSR_MASK; |
| } else { |
| val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; |
| } |
| val = extract32(val, (offset - 0xd28) * 8, size * 8); |
| break; |
| case 0xfe0 ... 0xfff: /* ID. */ |
| if (offset & 3) { |
| val = 0; |
| } else { |
| val = nvic_id[(offset - 0xfe0) >> 2]; |
| } |
| break; |
| default: |
| if (size == 4) { |
| val = nvic_readl(s, offset, attrs); |
| } else { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad read of size %d at offset 0x%x\n", |
| size, offset); |
| val = 0; |
| } |
| } |
| |
| trace_nvic_sysreg_read(addr, val, size); |
| *data = val; |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| NVICState *s = (NVICState *)opaque; |
| uint32_t offset = addr; |
| unsigned i, startvec, end; |
| unsigned setval = 0; |
| |
| trace_nvic_sysreg_write(addr, value, size); |
| |
| if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { |
| /* Generate BusFault for unprivileged accesses */ |
| return MEMTX_ERROR; |
| } |
| |
| switch (offset) { |
| case 0x100 ... 0x13f: /* NVIC Set enable */ |
| offset += 0x80; |
| setval = 1; |
| /* fall through */ |
| case 0x180 ... 0x1bf: /* NVIC Clear enable */ |
| startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (value & (1 << i) && |
| (attrs.secure || s->itns[startvec + i])) { |
| s->vectors[startvec + i].enabled = setval; |
| } |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| case 0x200 ... 0x23f: /* NVIC Set pend */ |
| /* the special logic in armv7m_nvic_set_pending() |
| * is not needed since IRQs are never escalated |
| */ |
| offset += 0x80; |
| setval = 1; |
| /* fall through */ |
| case 0x280 ... 0x2bf: /* NVIC Clear pend */ |
| startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (value & (1 << i) && |
| (attrs.secure || s->itns[startvec + i])) { |
| s->vectors[startvec + i].pending = setval; |
| } |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| case 0x300 ... 0x33f: /* NVIC Active */ |
| return MEMTX_OK; /* R/O */ |
| case 0x400 ... 0x5ef: /* NVIC Priority */ |
| startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0; i < size && startvec + i < s->num_irq; i++) { |
| if (attrs.secure || s->itns[startvec + i]) { |
| set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); |
| } |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ |
| if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { |
| return MEMTX_OK; |
| } |
| /* fall through */ |
| case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ |
| for (i = 0; i < size; i++) { |
| unsigned hdlidx = (offset - 0xd14) + i; |
| int newprio = extract32(value, i * 8, 8); |
| int sbank = shpr_bank(s, hdlidx, attrs); |
| |
| if (sbank < 0) { |
| continue; |
| } |
| set_prio(s, hdlidx, sbank, newprio); |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ |
| if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { |
| return MEMTX_OK; |
| } |
| /* All bits are W1C, so construct 32 bit value with 0s in |
| * the parts not written by the access size |
| */ |
| value <<= ((offset - 0xd28) * 8); |
| |
| if (!attrs.secure && |
| !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { |
| /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ |
| value &= ~R_V7M_CFSR_BFSR_MASK; |
| } |
| |
| s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; |
| if (attrs.secure) { |
| /* The BFSR bits [15:8] are shared between security states |
| * and we store them in the NS copy. |
| */ |
| s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); |
| } |
| return MEMTX_OK; |
| } |
| if (size == 4) { |
| nvic_writel(s, offset, value, attrs); |
| return MEMTX_OK; |
| } |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); |
| /* This is UNPREDICTABLE; treat as RAZ/WI */ |
| return MEMTX_OK; |
| } |
| |
| static const MemoryRegionOps nvic_sysreg_ops = { |
| .read_with_attrs = nvic_sysreg_read, |
| .write_with_attrs = nvic_sysreg_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| MemoryRegion *mr = opaque; |
| |
| if (attrs.secure) { |
| /* S accesses to the alias act like NS accesses to the real region */ |
| attrs.secure = 0; |
| return memory_region_dispatch_write(mr, addr, value, |
| size_memop(size) | MO_TE, attrs); |
| } else { |
| /* NS attrs are RAZ/WI for privileged, and BusFault for user */ |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| return MEMTX_OK; |
| } |
| } |
| |
| static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| MemoryRegion *mr = opaque; |
| |
| if (attrs.secure) { |
| /* S accesses to the alias act like NS accesses to the real region */ |
| attrs.secure = 0; |
| return memory_region_dispatch_read(mr, addr, data, |
| size_memop(size) | MO_TE, attrs); |
| } else { |
| /* NS attrs are RAZ/WI for privileged, and BusFault for user */ |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| *data = 0; |
| return MEMTX_OK; |
| } |
| } |
| |
| static const MemoryRegionOps nvic_sysreg_ns_ops = { |
| .read_with_attrs = nvic_sysreg_ns_read, |
| .write_with_attrs = nvic_sysreg_ns_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| NVICState *s = opaque; |
| MemoryRegion *mr; |
| |
| /* Direct the access to the correct systick */ |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); |
| return memory_region_dispatch_write(mr, addr, value, |
| size_memop(size) | MO_TE, attrs); |
| } |
| |
| static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| NVICState *s = opaque; |
| MemoryRegion *mr; |
| |
| /* Direct the access to the correct systick */ |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); |
| return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, |
| attrs); |
| } |
| |
| static const MemoryRegionOps nvic_systick_ops = { |
| .read_with_attrs = nvic_systick_read, |
| .write_with_attrs = nvic_systick_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static int nvic_post_load(void *opaque, int version_id) |
| { |
| NVICState *s = opaque; |
| unsigned i; |
| int resetprio; |
| |
| /* Check for out of range priority settings */ |
| resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; |
| |
| if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || |
| s->vectors[ARMV7M_EXCP_NMI].prio != -2 || |
| s->vectors[ARMV7M_EXCP_HARD].prio != -1) { |
| return 1; |
| } |
| for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { |
| if (s->vectors[i].prio & ~0xff) { |
| return 1; |
| } |
| } |
| |
| nvic_recompute_state(s); |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_VecInfo = { |
| .name = "armv7m_nvic_info", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT16(prio, VecInfo), |
| VMSTATE_UINT8(enabled, VecInfo), |
| VMSTATE_UINT8(pending, VecInfo), |
| VMSTATE_UINT8(active, VecInfo), |
| VMSTATE_UINT8(level, VecInfo), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static bool nvic_security_needed(void *opaque) |
| { |
| NVICState *s = opaque; |
| |
| return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); |
| } |
| |
| static int nvic_security_post_load(void *opaque, int version_id) |
| { |
| NVICState *s = opaque; |
| int i; |
| |
| /* Check for out of range priority settings */ |
| if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 |
| && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { |
| /* We can't cross-check against AIRCR.BFHFNMINS as we don't know |
| * if the CPU state has been migrated yet; a mismatch won't |
| * cause the emulation to blow up, though. |
| */ |
| return 1; |
| } |
| for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { |
| if (s->sec_vectors[i].prio & ~0xff) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_nvic_security = { |
| .name = "armv7m_nvic/m-security", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = nvic_security_needed, |
| .post_load = &nvic_security_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, |
| vmstate_VecInfo, VecInfo), |
| VMSTATE_UINT32(prigroup[M_REG_S], NVICState), |
| VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_nvic = { |
| .name = "armv7m_nvic", |
| .version_id = 4, |
| .minimum_version_id = 4, |
| .post_load = &nvic_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, |
| vmstate_VecInfo, VecInfo), |
| VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_nvic_security, |
| NULL |
| } |
| }; |
| |
| static Property props_nvic[] = { |
| /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ |
| DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), |
| DEFINE_PROP_END_OF_LIST() |
| }; |
| |
| static void armv7m_nvic_reset(DeviceState *dev) |
| { |
| int resetprio; |
| NVICState *s = NVIC(dev); |
| |
| memset(s->vectors, 0, sizeof(s->vectors)); |
| memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); |
| s->prigroup[M_REG_NS] = 0; |
| s->prigroup[M_REG_S] = 0; |
| |
| s->vectors[ARMV7M_EXCP_NMI].enabled = 1; |
| /* MEM, BUS, and USAGE are enabled through |
| * the System Handler Control register |
| */ |
| s->vectors[ARMV7M_EXCP_SVC].enabled = 1; |
| s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; |
| s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; |
| |
| /* DebugMonitor is enabled via DEMCR.MON_EN */ |
| s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; |
| |
| resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; |
| s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; |
| s->vectors[ARMV7M_EXCP_NMI].prio = -2; |
| s->vectors[ARMV7M_EXCP_HARD].prio = -1; |
| |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { |
| s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; |
| s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; |
| s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; |
| s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; |
| |
| /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ |
| s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; |
| /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ |
| s->vectors[ARMV7M_EXCP_HARD].enabled = 0; |
| } else { |
| s->vectors[ARMV7M_EXCP_HARD].enabled = 1; |
| } |
| |
| /* Strictly speaking the reset handler should be enabled. |
| * However, we don't simulate soft resets through the NVIC, |
| * and the reset vector should never be pended. |
| * So we leave it disabled to catch logic errors. |
| */ |
| |
| s->exception_prio = NVIC_NOEXC_PRIO; |
| s->vectpending = 0; |
| s->vectpending_is_s_banked = false; |
| s->vectpending_prio = NVIC_NOEXC_PRIO; |
| |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { |
| memset(s->itns, 0, sizeof(s->itns)); |
| } else { |
| /* This state is constant and not guest accessible in a non-security |
| * NVIC; we set the bits to true to avoid having to do a feature |
| * bit check in the NVIC enable/pend/etc register accessors. |
| */ |
| int i; |
| |
| for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { |
| s->itns[i] = true; |
| } |
| } |
| } |
| |
| static void nvic_systick_trigger(void *opaque, int n, int level) |
| { |
| NVICState *s = opaque; |
| |
| if (level) { |
| /* SysTick just asked us to pend its exception. |
| * (This is different from an external interrupt line's |
| * behaviour.) |
| * n == 0 : NonSecure systick |
| * n == 1 : Secure systick |
| */ |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); |
| } |
| } |
| |
| static void armv7m_nvic_realize(DeviceState *dev, Error **errp) |
| { |
| NVICState *s = NVIC(dev); |
| Error *err = NULL; |
| int regionlen; |
| |
| /* The armv7m container object will have set our CPU pointer */ |
| if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { |
| error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); |
| return; |
| } |
| |
| if (s->num_irq > NVIC_MAX_IRQ) { |
| error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); |
| return; |
| } |
| |
| qdev_init_gpio_in(dev, set_irq_level, s->num_irq); |
| |
| /* include space for internal exception vectors */ |
| s->num_irq += NVIC_FIRST_IRQ; |
| |
| s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; |
| |
| object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, |
| "realized", &err); |
| if (err != NULL) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, |
| qdev_get_gpio_in_named(dev, "systick-trigger", |
| M_REG_NS)); |
| |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { |
| /* We couldn't init the secure systick device in instance_init |
| * as we didn't know then if the CPU had the security extensions; |
| * so we have to do it here. |
| */ |
| sysbus_init_child_obj(OBJECT(dev), "systick-reg-s", |
| &s->systick[M_REG_S], |
| sizeof(s->systick[M_REG_S]), TYPE_SYSTICK); |
| |
| object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, |
| "realized", &err); |
| if (err != NULL) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, |
| qdev_get_gpio_in_named(dev, "systick-trigger", |
| M_REG_S)); |
| } |
| |
| /* The NVIC and System Control Space (SCS) starts at 0xe000e000 |
| * and looks like this: |
| * 0x004 - ICTR |
| * 0x010 - 0xff - systick |
| * 0x100..0x7ec - NVIC |
| * 0x7f0..0xcff - Reserved |
| * 0xd00..0xd3c - SCS registers |
| * 0xd40..0xeff - Reserved or Not implemented |
| * 0xf00 - STIR |
| * |
| * Some registers within this space are banked between security states. |
| * In v8M there is a second range 0xe002e000..0xe002efff which is the |
| * NonSecure alias SCS; secure accesses to this behave like NS accesses |
| * to the main SCS range, and non-secure accesses (including when |
| * the security extension is not implemented) are RAZ/WI. |
| * Note that both the main SCS range and the alias range are defined |
| * to be exempt from memory attribution (R_BLJT) and so the memory |
| * transaction attribute always matches the current CPU security |
| * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops |
| * wrappers we change attrs.secure to indicate the NS access; so |
| * generally code determining which banked register to use should |
| * use attrs.secure; code determining actual behaviour of the system |
| * should use env->v7m.secure. |
| */ |
| regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; |
| memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); |
| /* The system register region goes at the bottom of the priority |
| * stack as it covers the whole page. |
| */ |
| memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, |
| "nvic_sysregs", 0x1000); |
| memory_region_add_subregion(&s->container, 0, &s->sysregmem); |
| |
| memory_region_init_io(&s->systickmem, OBJECT(s), |
| &nvic_systick_ops, s, |
| "nvic_systick", 0xe0); |
| |
| memory_region_add_subregion_overlap(&s->container, 0x10, |
| &s->systickmem, 1); |
| |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { |
| memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), |
| &nvic_sysreg_ns_ops, &s->sysregmem, |
| "nvic_sysregs_ns", 0x1000); |
| memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); |
| memory_region_init_io(&s->systick_ns_mem, OBJECT(s), |
| &nvic_sysreg_ns_ops, &s->systickmem, |
| "nvic_systick_ns", 0xe0); |
| memory_region_add_subregion_overlap(&s->container, 0x20010, |
| &s->systick_ns_mem, 1); |
| } |
| |
| sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); |
| } |
| |
| static void armv7m_nvic_instance_init(Object *obj) |
| { |
| /* We have a different default value for the num-irq property |
| * than our superclass. This function runs after qdev init |
| * has set the defaults from the Property array and before |
| * any user-specified property setting, so just modify the |
| * value in the GICState struct. |
| */ |
| DeviceState *dev = DEVICE(obj); |
| NVICState *nvic = NVIC(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| |
| sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], |
| sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); |
| /* We can't initialize the secure systick here, as we don't know |
| * yet if we need it. |
| */ |
| |
| sysbus_init_irq(sbd, &nvic->excpout); |
| qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); |
| qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", |
| M_REG_NUM_BANKS); |
| qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); |
| } |
| |
| static void armv7m_nvic_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_nvic; |
| dc->props = props_nvic; |
| dc->reset = armv7m_nvic_reset; |
| dc->realize = armv7m_nvic_realize; |
| } |
| |
| static const TypeInfo armv7m_nvic_info = { |
| .name = TYPE_NVIC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_init = armv7m_nvic_instance_init, |
| .instance_size = sizeof(NVICState), |
| .class_init = armv7m_nvic_class_init, |
| .class_size = sizeof(SysBusDeviceClass), |
| }; |
| |
| static void armv7m_nvic_register_types(void) |
| { |
| type_register_static(&armv7m_nvic_info); |
| } |
| |
| type_init(armv7m_nvic_register_types) |