| /* |
| * Microblaze helper routines. |
| * |
| * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <assert.h> |
| #include "exec.h" |
| #include "helper.h" |
| #include "host-utils.h" |
| |
| #define D(x) |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #define MMUSUFFIX _mmu |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| /* Try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| CPUState *saved_env; |
| unsigned long pc; |
| int ret; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| |
| ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (unlikely(ret)) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, NULL); |
| } |
| } |
| cpu_loop_exit(); |
| } |
| env = saved_env; |
| } |
| #endif |
| |
| void helper_raise_exception(uint32_t index) |
| { |
| env->exception_index = index; |
| cpu_loop_exit(); |
| } |
| |
| void helper_debug(void) |
| { |
| int i; |
| |
| qemu_log("PC=%8.8x\n", env->sregs[SR_PC]); |
| qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n", |
| env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR], |
| env->debug, env->imm, env->iflags); |
| qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n", |
| env->btaken, env->btarget, |
| (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel", |
| (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel", |
| (env->sregs[SR_MSR] & MSR_EIP), |
| (env->sregs[SR_MSR] & MSR_IE)); |
| for (i = 0; i < 32; i++) { |
| qemu_log("r%2.2d=%8.8x ", i, env->regs[i]); |
| if ((i + 1) % 4 == 0) |
| qemu_log("\n"); |
| } |
| qemu_log("\n\n"); |
| } |
| |
| static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin) |
| { |
| uint32_t cout = 0; |
| |
| if ((b == ~0) && cin) |
| cout = 1; |
| else if ((~0 - a) < (b + cin)) |
| cout = 1; |
| return cout; |
| } |
| |
| uint32_t helper_cmp(uint32_t a, uint32_t b) |
| { |
| uint32_t t; |
| |
| t = b + ~a + 1; |
| if ((b & 0x80000000) ^ (a & 0x80000000)) |
| t = (t & 0x7fffffff) | (b & 0x80000000); |
| return t; |
| } |
| |
| uint32_t helper_cmpu(uint32_t a, uint32_t b) |
| { |
| uint32_t t; |
| |
| t = b + ~a + 1; |
| if ((b & 0x80000000) ^ (a & 0x80000000)) |
| t = (t & 0x7fffffff) | (a & 0x80000000); |
| return t; |
| } |
| |
| uint32_t helper_addkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c) |
| { |
| uint32_t d, cf = 0, ncf; |
| |
| if (c) |
| cf = env->sregs[SR_MSR] >> 31; |
| assert(cf == 0 || cf == 1); |
| d = a + b + cf; |
| |
| if (!k) { |
| ncf = compute_carry(a, b, cf); |
| assert(ncf == 0 || ncf == 1); |
| if (ncf) |
| env->sregs[SR_MSR] |= MSR_C | MSR_CC; |
| else |
| env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC); |
| } |
| D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n", |
| d, a, b, cf, ncf, k, c)); |
| return d; |
| } |
| |
| uint32_t helper_subkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c) |
| { |
| uint32_t d, cf = 1, ncf; |
| |
| if (c) |
| cf = env->sregs[SR_MSR] >> 31; |
| assert(cf == 0 || cf == 1); |
| d = b + ~a + cf; |
| |
| if (!k) { |
| ncf = compute_carry(b, ~a, cf); |
| assert(ncf == 0 || ncf == 1); |
| if (ncf) |
| env->sregs[SR_MSR] |= MSR_C | MSR_CC; |
| else |
| env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC); |
| } |
| D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n", |
| d, a, b, cf, ncf, k, c)); |
| return d; |
| } |
| |
| static inline int div_prepare(uint32_t a, uint32_t b) |
| { |
| if (b == 0) { |
| env->sregs[SR_MSR] |= MSR_DZ; |
| |
| if ((env->sregs[SR_MSR] & MSR_EE) |
| && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) { |
| env->sregs[SR_ESR] = ESR_EC_DIVZERO; |
| helper_raise_exception(EXCP_HW_EXCP); |
| } |
| return 0; |
| } |
| env->sregs[SR_MSR] &= ~MSR_DZ; |
| return 1; |
| } |
| |
| uint32_t helper_divs(uint32_t a, uint32_t b) |
| { |
| if (!div_prepare(a, b)) |
| return 0; |
| return (int32_t)a / (int32_t)b; |
| } |
| |
| uint32_t helper_divu(uint32_t a, uint32_t b) |
| { |
| if (!div_prepare(a, b)) |
| return 0; |
| return a / b; |
| } |
| |
| uint32_t helper_pcmpbf(uint32_t a, uint32_t b) |
| { |
| unsigned int i; |
| uint32_t mask = 0xff000000; |
| |
| for (i = 0; i < 4; i++) { |
| if ((a & mask) == (b & mask)) |
| return i + 1; |
| mask >>= 8; |
| } |
| return 0; |
| } |
| |
| void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask) |
| { |
| if (addr & mask) { |
| qemu_log_mask(CPU_LOG_INT, |
| "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n", |
| addr, mask, wr, dr); |
| env->sregs[SR_EAR] = addr; |
| env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \ |
| | (dr & 31) << 5; |
| if (mask == 3) { |
| env->sregs[SR_ESR] |= 1 << 11; |
| } |
| if (!(env->sregs[SR_MSR] & MSR_EE)) { |
| return; |
| } |
| helper_raise_exception(EXCP_HW_EXCP); |
| } |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* Writes/reads to the MMU's special regs end up here. */ |
| uint32_t helper_mmu_read(uint32_t rn) |
| { |
| return mmu_read(env, rn); |
| } |
| |
| void helper_mmu_write(uint32_t rn, uint32_t v) |
| { |
| mmu_write(env, rn, v); |
| } |
| #endif |
| |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int is_asi, int size) |
| { |
| CPUState *saved_env; |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n", |
| addr, is_write, is_exec); |
| if (!(env->sregs[SR_MSR] & MSR_EE)) { |
| env = saved_env; |
| return; |
| } |
| |
| env->sregs[SR_EAR] = addr; |
| if (is_exec) { |
| if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) { |
| env->sregs[SR_ESR] = ESR_EC_INSN_BUS; |
| helper_raise_exception(EXCP_HW_EXCP); |
| } |
| } else { |
| if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) { |
| env->sregs[SR_ESR] = ESR_EC_DATA_BUS; |
| helper_raise_exception(EXCP_HW_EXCP); |
| } |
| } |
| env = saved_env; |
| } |