blob: ce10295f5cf360749061cdf8c324d7fd6423f04c [file] [log] [blame]
/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config-host.h"
#include "qemu-common.h"
#include "hw/hw.h"
#include "hw/qdev.h"
#include "net/net.h"
#include "monitor/monitor.h"
#include "sysemu/sysemu.h"
#include "qemu/timer.h"
#include "audio/audio.h"
#include "migration/migration.h"
#include "qemu/sockets.h"
#include "qemu/queue.h"
#include "sysemu/cpus.h"
#include "exec/memory.h"
#include "qmp-commands.h"
#include "trace.h"
#include "qemu/bitops.h"
#define SELF_ANNOUNCE_ROUNDS 5
#ifndef ETH_P_RARP
#define ETH_P_RARP 0x8035
#endif
#define ARP_HTYPE_ETH 0x0001
#define ARP_PTYPE_IP 0x0800
#define ARP_OP_REQUEST_REV 0x3
static int announce_self_create(uint8_t *buf,
uint8_t *mac_addr)
{
/* Ethernet header. */
memset(buf, 0xff, 6); /* destination MAC addr */
memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
*(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
/* RARP header. */
*(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
*(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
*(buf + 18) = 6; /* hardware addr length (ethernet) */
*(buf + 19) = 4; /* protocol addr length (IPv4) */
*(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
memcpy(buf + 22, mac_addr, 6); /* source hw addr */
memset(buf + 28, 0x00, 4); /* source protocol addr */
memcpy(buf + 32, mac_addr, 6); /* target hw addr */
memset(buf + 38, 0x00, 4); /* target protocol addr */
/* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
memset(buf + 42, 0x00, 18);
return 60; /* len (FCS will be added by hardware) */
}
static void qemu_announce_self_iter(NICState *nic, void *opaque)
{
uint8_t buf[60];
int len;
len = announce_self_create(buf, nic->conf->macaddr.a);
qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
}
static void qemu_announce_self_once(void *opaque)
{
static int count = SELF_ANNOUNCE_ROUNDS;
QEMUTimer *timer = *(QEMUTimer **)opaque;
qemu_foreach_nic(qemu_announce_self_iter, NULL);
if (--count) {
/* delay 50ms, 150ms, 250ms, ... */
qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
} else {
qemu_del_timer(timer);
qemu_free_timer(timer);
}
}
void qemu_announce_self(void)
{
static QEMUTimer *timer;
timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
qemu_announce_self_once(&timer);
}
/***********************************************************/
/* savevm/loadvm support */
#define IO_BUF_SIZE 32768
struct QEMUFile {
const QEMUFileOps *ops;
void *opaque;
int is_write;
int64_t buf_offset; /* start of buffer when writing, end of buffer
when reading */
int buf_index;
int buf_size; /* 0 when writing */
uint8_t buf[IO_BUF_SIZE];
int last_error;
};
typedef struct QEMUFileStdio
{
FILE *stdio_file;
QEMUFile *file;
} QEMUFileStdio;
typedef struct QEMUFileSocket
{
int fd;
QEMUFile *file;
} QEMUFileSocket;
typedef struct {
Coroutine *co;
int fd;
} FDYieldUntilData;
static void fd_coroutine_enter(void *opaque)
{
FDYieldUntilData *data = opaque;
qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
qemu_coroutine_enter(data->co, NULL);
}
/**
* Yield until a file descriptor becomes readable
*
* Note that this function clobbers the handlers for the file descriptor.
*/
static void coroutine_fn yield_until_fd_readable(int fd)
{
FDYieldUntilData data;
assert(qemu_in_coroutine());
data.co = qemu_coroutine_self();
data.fd = fd;
qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
qemu_coroutine_yield();
}
static int socket_get_fd(void *opaque)
{
QEMUFileSocket *s = opaque;
return s->fd;
}
static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
{
QEMUFileSocket *s = opaque;
ssize_t len;
for (;;) {
len = qemu_recv(s->fd, buf, size, 0);
if (len != -1) {
break;
}
if (socket_error() == EAGAIN) {
yield_until_fd_readable(s->fd);
} else if (socket_error() != EINTR) {
break;
}
}
if (len == -1) {
len = -socket_error();
}
return len;
}
static int socket_close(void *opaque)
{
QEMUFileSocket *s = opaque;
closesocket(s->fd);
g_free(s);
return 0;
}
static int stdio_get_fd(void *opaque)
{
QEMUFileStdio *s = opaque;
return fileno(s->stdio_file);
}
static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
{
QEMUFileStdio *s = opaque;
return fwrite(buf, 1, size, s->stdio_file);
}
static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
{
QEMUFileStdio *s = opaque;
FILE *fp = s->stdio_file;
int bytes;
for (;;) {
clearerr(fp);
bytes = fread(buf, 1, size, fp);
if (bytes != 0 || !ferror(fp)) {
break;
}
if (errno == EAGAIN) {
yield_until_fd_readable(fileno(fp));
} else if (errno != EINTR) {
break;
}
}
return bytes;
}
static int stdio_pclose(void *opaque)
{
QEMUFileStdio *s = opaque;
int ret;
ret = pclose(s->stdio_file);
if (ret == -1) {
ret = -errno;
}
g_free(s);
return ret;
}
static int stdio_fclose(void *opaque)
{
QEMUFileStdio *s = opaque;
int ret = 0;
if (fclose(s->stdio_file) == EOF) {
ret = -errno;
}
g_free(s);
return ret;
}
static const QEMUFileOps stdio_pipe_read_ops = {
.get_fd = stdio_get_fd,
.get_buffer = stdio_get_buffer,
.close = stdio_pclose
};
static const QEMUFileOps stdio_pipe_write_ops = {
.get_fd = stdio_get_fd,
.put_buffer = stdio_put_buffer,
.close = stdio_pclose
};
QEMUFile *qemu_popen(FILE *stdio_file, const char *mode)
{
QEMUFileStdio *s;
if (stdio_file == NULL || mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
fprintf(stderr, "qemu_popen: Argument validity check failed\n");
return NULL;
}
s = g_malloc0(sizeof(QEMUFileStdio));
s->stdio_file = stdio_file;
if(mode[0] == 'r') {
s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
} else {
s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
}
return s->file;
}
QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
{
FILE *popen_file;
popen_file = popen(command, mode);
if(popen_file == NULL) {
return NULL;
}
return qemu_popen(popen_file, mode);
}
static const QEMUFileOps stdio_file_read_ops = {
.get_fd = stdio_get_fd,
.get_buffer = stdio_get_buffer,
.close = stdio_fclose
};
static const QEMUFileOps stdio_file_write_ops = {
.get_fd = stdio_get_fd,
.put_buffer = stdio_put_buffer,
.close = stdio_fclose
};
QEMUFile *qemu_fdopen(int fd, const char *mode)
{
QEMUFileStdio *s;
if (mode == NULL ||
(mode[0] != 'r' && mode[0] != 'w') ||
mode[1] != 'b' || mode[2] != 0) {
fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
return NULL;
}
s = g_malloc0(sizeof(QEMUFileStdio));
s->stdio_file = fdopen(fd, mode);
if (!s->stdio_file)
goto fail;
if(mode[0] == 'r') {
s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
} else {
s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
}
return s->file;
fail:
g_free(s);
return NULL;
}
static const QEMUFileOps socket_read_ops = {
.get_fd = socket_get_fd,
.get_buffer = socket_get_buffer,
.close = socket_close
};
QEMUFile *qemu_fopen_socket(int fd)
{
QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
s->fd = fd;
s->file = qemu_fopen_ops(s, &socket_read_ops);
return s->file;
}
QEMUFile *qemu_fopen(const char *filename, const char *mode)
{
QEMUFileStdio *s;
if (mode == NULL ||
(mode[0] != 'r' && mode[0] != 'w') ||
mode[1] != 'b' || mode[2] != 0) {
fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
return NULL;
}
s = g_malloc0(sizeof(QEMUFileStdio));
s->stdio_file = fopen(filename, mode);
if (!s->stdio_file)
goto fail;
if(mode[0] == 'w') {
s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
} else {
s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
}
return s->file;
fail:
g_free(s);
return NULL;
}
static int block_put_buffer(void *opaque, const uint8_t *buf,
int64_t pos, int size)
{
bdrv_save_vmstate(opaque, buf, pos, size);
return size;
}
static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
{
return bdrv_load_vmstate(opaque, buf, pos, size);
}
static int bdrv_fclose(void *opaque)
{
return bdrv_flush(opaque);
}
static const QEMUFileOps bdrv_read_ops = {
.get_buffer = block_get_buffer,
.close = bdrv_fclose
};
static const QEMUFileOps bdrv_write_ops = {
.put_buffer = block_put_buffer,
.close = bdrv_fclose
};
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
{
if (is_writable)
return qemu_fopen_ops(bs, &bdrv_write_ops);
return qemu_fopen_ops(bs, &bdrv_read_ops);
}
QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
{
QEMUFile *f;
f = g_malloc0(sizeof(QEMUFile));
f->opaque = opaque;
f->ops = ops;
f->is_write = 0;
return f;
}
int qemu_file_get_error(QEMUFile *f)
{
return f->last_error;
}
void qemu_file_set_error(QEMUFile *f, int ret)
{
if (f->last_error == 0) {
f->last_error = ret;
}
}
/** Flushes QEMUFile buffer
*
*/
void qemu_fflush(QEMUFile *f)
{
int ret = 0;
if (!f->ops->put_buffer) {
return;
}
if (f->is_write && f->buf_index > 0) {
ret = f->ops->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
if (ret >= 0) {
f->buf_offset += f->buf_index;
}
f->buf_index = 0;
}
if (ret < 0) {
qemu_file_set_error(f, ret);
}
}
static void qemu_fill_buffer(QEMUFile *f)
{
int len;
int pending;
if (!f->ops->get_buffer)
return;
if (f->is_write)
abort();
pending = f->buf_size - f->buf_index;
if (pending > 0) {
memmove(f->buf, f->buf + f->buf_index, pending);
}
f->buf_index = 0;
f->buf_size = pending;
len = f->ops->get_buffer(f->opaque, f->buf + pending, f->buf_offset,
IO_BUF_SIZE - pending);
if (len > 0) {
f->buf_size += len;
f->buf_offset += len;
} else if (len == 0) {
qemu_file_set_error(f, -EIO);
} else if (len != -EAGAIN)
qemu_file_set_error(f, len);
}
int qemu_get_fd(QEMUFile *f)
{
if (f->ops->get_fd) {
return f->ops->get_fd(f->opaque);
}
return -1;
}
/** Closes the file
*
* Returns negative error value if any error happened on previous operations or
* while closing the file. Returns 0 or positive number on success.
*
* The meaning of return value on success depends on the specific backend
* being used.
*/
int qemu_fclose(QEMUFile *f)
{
int ret;
qemu_fflush(f);
ret = qemu_file_get_error(f);
if (f->ops->close) {
int ret2 = f->ops->close(f->opaque);
if (ret >= 0) {
ret = ret2;
}
}
/* If any error was spotted before closing, we should report it
* instead of the close() return value.
*/
if (f->last_error) {
ret = f->last_error;
}
g_free(f);
return ret;
}
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
{
int l;
if (f->last_error) {
return;
}
if (f->is_write == 0 && f->buf_index > 0) {
fprintf(stderr,
"Attempted to write to buffer while read buffer is not empty\n");
abort();
}
while (size > 0) {
l = IO_BUF_SIZE - f->buf_index;
if (l > size)
l = size;
memcpy(f->buf + f->buf_index, buf, l);
f->is_write = 1;
f->buf_index += l;
buf += l;
size -= l;
if (f->buf_index >= IO_BUF_SIZE) {
qemu_fflush(f);
if (qemu_file_get_error(f)) {
break;
}
}
}
}
void qemu_put_byte(QEMUFile *f, int v)
{
if (f->last_error) {
return;
}
if (f->is_write == 0 && f->buf_index > 0) {
fprintf(stderr,
"Attempted to write to buffer while read buffer is not empty\n");
abort();
}
f->buf[f->buf_index++] = v;
f->is_write = 1;
if (f->buf_index >= IO_BUF_SIZE) {
qemu_fflush(f);
}
}
static void qemu_file_skip(QEMUFile *f, int size)
{
if (f->buf_index + size <= f->buf_size) {
f->buf_index += size;
}
}
static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
{
int pending;
int index;
if (f->is_write) {
abort();
}
index = f->buf_index + offset;
pending = f->buf_size - index;
if (pending < size) {
qemu_fill_buffer(f);
index = f->buf_index + offset;
pending = f->buf_size - index;
}
if (pending <= 0) {
return 0;
}
if (size > pending) {
size = pending;
}
memcpy(buf, f->buf + index, size);
return size;
}
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
{
int pending = size;
int done = 0;
while (pending > 0) {
int res;
res = qemu_peek_buffer(f, buf, pending, 0);
if (res == 0) {
return done;
}
qemu_file_skip(f, res);
buf += res;
pending -= res;
done += res;
}
return done;
}
static int qemu_peek_byte(QEMUFile *f, int offset)
{
int index = f->buf_index + offset;
if (f->is_write) {
abort();
}
if (index >= f->buf_size) {
qemu_fill_buffer(f);
index = f->buf_index + offset;
if (index >= f->buf_size) {
return 0;
}
}
return f->buf[index];
}
int qemu_get_byte(QEMUFile *f)
{
int result;
result = qemu_peek_byte(f, 0);
qemu_file_skip(f, 1);
return result;
}
int64_t qemu_ftell(QEMUFile *f)
{
/* buf_offset excludes buffer for writing but includes it for reading */
if (f->is_write) {
return f->buf_offset + f->buf_index;
} else {
return f->buf_offset - f->buf_size + f->buf_index;
}
}
int qemu_file_rate_limit(QEMUFile *f)
{
if (f->ops->rate_limit)
return f->ops->rate_limit(f->opaque);
return 0;
}
int64_t qemu_file_get_rate_limit(QEMUFile *f)
{
if (f->ops->get_rate_limit)
return f->ops->get_rate_limit(f->opaque);
return 0;
}
int64_t qemu_file_set_rate_limit(QEMUFile *f, int64_t new_rate)
{
/* any failed or completed migration keeps its state to allow probing of
* migration data, but has no associated file anymore */
if (f && f->ops->set_rate_limit)
return f->ops->set_rate_limit(f->opaque, new_rate);
return 0;
}
void qemu_put_be16(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be32(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 24);
qemu_put_byte(f, v >> 16);
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be64(QEMUFile *f, uint64_t v)
{
qemu_put_be32(f, v >> 32);
qemu_put_be32(f, v);
}
unsigned int qemu_get_be16(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
unsigned int qemu_get_be32(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 24;
v |= qemu_get_byte(f) << 16;
v |= qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
uint64_t qemu_get_be64(QEMUFile *f)
{
uint64_t v;
v = (uint64_t)qemu_get_be32(f) << 32;
v |= qemu_get_be32(f);
return v;
}
/* timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
expire_time = qemu_timer_expire_time_ns(ts);
qemu_put_be64(f, expire_time);
}
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
expire_time = qemu_get_be64(f);
if (expire_time != -1) {
qemu_mod_timer_ns(ts, expire_time);
} else {
qemu_del_timer(ts);
}
}
/* bool */
static int get_bool(QEMUFile *f, void *pv, size_t size)
{
bool *v = pv;
*v = qemu_get_byte(f);
return 0;
}
static void put_bool(QEMUFile *f, void *pv, size_t size)
{
bool *v = pv;
qemu_put_byte(f, *v);
}
const VMStateInfo vmstate_info_bool = {
.name = "bool",
.get = get_bool,
.put = put_bool,
};
/* 8 bit int */
static int get_int8(QEMUFile *f, void *pv, size_t size)
{
int8_t *v = pv;
qemu_get_s8s(f, v);
return 0;
}
static void put_int8(QEMUFile *f, void *pv, size_t size)
{
int8_t *v = pv;
qemu_put_s8s(f, v);
}
const VMStateInfo vmstate_info_int8 = {
.name = "int8",
.get = get_int8,
.put = put_int8,
};
/* 16 bit int */
static int get_int16(QEMUFile *f, void *pv, size_t size)
{
int16_t *v = pv;
qemu_get_sbe16s(f, v);
return 0;
}
static void put_int16(QEMUFile *f, void *pv, size_t size)
{
int16_t *v = pv;
qemu_put_sbe16s(f, v);
}
const VMStateInfo vmstate_info_int16 = {
.name = "int16",
.get = get_int16,
.put = put_int16,
};
/* 32 bit int */
static int get_int32(QEMUFile *f, void *pv, size_t size)
{
int32_t *v = pv;
qemu_get_sbe32s(f, v);
return 0;
}
static void put_int32(QEMUFile *f, void *pv, size_t size)
{
int32_t *v = pv;
qemu_put_sbe32s(f, v);
}
const VMStateInfo vmstate_info_int32 = {
.name = "int32",
.get = get_int32,
.put = put_int32,
};
/* 32 bit int. See that the received value is the same than the one
in the field */
static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
{
int32_t *v = pv;
int32_t v2;
qemu_get_sbe32s(f, &v2);
if (*v == v2)
return 0;
return -EINVAL;
}
const VMStateInfo vmstate_info_int32_equal = {
.name = "int32 equal",
.get = get_int32_equal,
.put = put_int32,
};
/* 32 bit int. See that the received value is the less or the same
than the one in the field */
static int get_int32_le(QEMUFile *f, void *pv, size_t size)
{
int32_t *old = pv;
int32_t new;
qemu_get_sbe32s(f, &new);
if (*old <= new)
return 0;
return -EINVAL;
}
const VMStateInfo vmstate_info_int32_le = {
.name = "int32 equal",
.get = get_int32_le,
.put = put_int32,
};
/* 64 bit int */
static int get_int64(QEMUFile *f, void *pv, size_t size)
{
int64_t *v = pv;
qemu_get_sbe64s(f, v);
return 0;
}
static void put_int64(QEMUFile *f, void *pv, size_t size)
{
int64_t *v = pv;
qemu_put_sbe64s(f, v);
}
const VMStateInfo vmstate_info_int64 = {
.name = "int64",
.get = get_int64,
.put = put_int64,
};
/* 8 bit unsigned int */
static int get_uint8(QEMUFile *f, void *pv, size_t size)
{
uint8_t *v = pv;
qemu_get_8s(f, v);
return 0;
}
static void put_uint8(QEMUFile *f, void *pv, size_t size)
{
uint8_t *v = pv;
qemu_put_8s(f, v);
}
const VMStateInfo vmstate_info_uint8 = {
.name = "uint8",
.get = get_uint8,
.put = put_uint8,
};
/* 16 bit unsigned int */
static int get_uint16(QEMUFile *f, void *pv, size_t size)
{
uint16_t *v = pv;
qemu_get_be16s(f, v);
return 0;
}
static void put_uint16(QEMUFile *f, void *pv, size_t size)
{
uint16_t *v = pv;
qemu_put_be16s(f, v);
}
const VMStateInfo vmstate_info_uint16 = {
.name = "uint16",
.get = get_uint16,
.put = put_uint16,
};
/* 32 bit unsigned int */
static int get_uint32(QEMUFile *f, void *pv, size_t size)
{
uint32_t *v = pv;
qemu_get_be32s(f, v);
return 0;
}
static void put_uint32(QEMUFile *f, void *pv, size_t size)
{
uint32_t *v = pv;
qemu_put_be32s(f, v);
}
const VMStateInfo vmstate_info_uint32 = {
.name = "uint32",
.get = get_uint32,
.put = put_uint32,
};
/* 32 bit uint. See that the received value is the same than the one
in the field */
static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
{
uint32_t *v = pv;
uint32_t v2;
qemu_get_be32s(f, &v2);
if (*v == v2) {
return 0;
}
return -EINVAL;
}
const VMStateInfo vmstate_info_uint32_equal = {
.name = "uint32 equal",
.get = get_uint32_equal,
.put = put_uint32,
};
/* 64 bit unsigned int */
static int get_uint64(QEMUFile *f, void *pv, size_t size)
{
uint64_t *v = pv;
qemu_get_be64s(f, v);
return 0;
}
static void put_uint64(QEMUFile *f, void *pv, size_t size)
{
uint64_t *v = pv;
qemu_put_be64s(f, v);
}
const VMStateInfo vmstate_info_uint64 = {
.name = "uint64",
.get = get_uint64,
.put = put_uint64,
};
/* 8 bit int. See that the received value is the same than the one
in the field */
static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
{
uint8_t *v = pv;
uint8_t v2;
qemu_get_8s(f, &v2);
if (*v == v2)
return 0;
return -EINVAL;
}
const VMStateInfo vmstate_info_uint8_equal = {
.name = "uint8 equal",
.get = get_uint8_equal,
.put = put_uint8,
};
/* 16 bit unsigned int int. See that the received value is the same than the one
in the field */
static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
{
uint16_t *v = pv;
uint16_t v2;
qemu_get_be16s(f, &v2);
if (*v == v2)
return 0;
return -EINVAL;
}
const VMStateInfo vmstate_info_uint16_equal = {
.name = "uint16 equal",
.get = get_uint16_equal,
.put = put_uint16,
};
/* timers */
static int get_timer(QEMUFile *f, void *pv, size_t size)
{
QEMUTimer *v = pv;
qemu_get_timer(f, v);
return 0;
}
static void put_timer(QEMUFile *f, void *pv, size_t size)
{
QEMUTimer *v = pv;
qemu_put_timer(f, v);
}
const VMStateInfo vmstate_info_timer = {
.name = "timer",
.get = get_timer,
.put = put_timer,
};
/* uint8_t buffers */
static int get_buffer(QEMUFile *f, void *pv, size_t size)
{
uint8_t *v = pv;
qemu_get_buffer(f, v, size);
return 0;
}
static void put_buffer(QEMUFile *f, void *pv, size_t size)
{
uint8_t *v = pv;
qemu_put_buffer(f, v, size);
}
const VMStateInfo vmstate_info_buffer = {
.name = "buffer",
.get = get_buffer,
.put = put_buffer,
};
/* unused buffers: space that was used for some fields that are
not useful anymore */
static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
{
uint8_t buf[1024];
int block_len;
while (size > 0) {
block_len = MIN(sizeof(buf), size);
size -= block_len;
qemu_get_buffer(f, buf, block_len);
}
return 0;
}
static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
{
static const uint8_t buf[1024];
int block_len;
while (size > 0) {
block_len = MIN(sizeof(buf), size);
size -= block_len;
qemu_put_buffer(f, buf, block_len);
}
}
const VMStateInfo vmstate_info_unused_buffer = {
.name = "unused_buffer",
.get = get_unused_buffer,
.put = put_unused_buffer,
};
/* bitmaps (as defined by bitmap.h). Note that size here is the size
* of the bitmap in bits. The on-the-wire format of a bitmap is 64
* bit words with the bits in big endian order. The in-memory format
* is an array of 'unsigned long', which may be either 32 or 64 bits.
*/
/* This is the number of 64 bit words sent over the wire */
#define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
static int get_bitmap(QEMUFile *f, void *pv, size_t size)
{
unsigned long *bmp = pv;
int i, idx = 0;
for (i = 0; i < BITS_TO_U64S(size); i++) {
uint64_t w = qemu_get_be64(f);
bmp[idx++] = w;
if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
bmp[idx++] = w >> 32;
}
}
return 0;
}
static void put_bitmap(QEMUFile *f, void *pv, size_t size)
{
unsigned long *bmp = pv;
int i, idx = 0;
for (i = 0; i < BITS_TO_U64S(size); i++) {
uint64_t w = bmp[idx++];
if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
w |= ((uint64_t)bmp[idx++]) << 32;
}
qemu_put_be64(f, w);
}
}
const VMStateInfo vmstate_info_bitmap = {
.name = "bitmap",
.get = get_bitmap,
.put = put_bitmap,
};
typedef struct CompatEntry {
char idstr[256];
int instance_id;
} CompatEntry;
typedef struct SaveStateEntry {
QTAILQ_ENTRY(SaveStateEntry) entry;
char idstr[256];
int instance_id;
int alias_id;
int version_id;
int section_id;
SaveVMHandlers *ops;
const VMStateDescription *vmsd;
void *opaque;
CompatEntry *compat;
int no_migrate;
int is_ram;
} SaveStateEntry;
static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
QTAILQ_HEAD_INITIALIZER(savevm_handlers);
static int global_section_id;
static int calculate_new_instance_id(const char *idstr)
{
SaveStateEntry *se;
int instance_id = 0;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (strcmp(idstr, se->idstr) == 0
&& instance_id <= se->instance_id) {
instance_id = se->instance_id + 1;
}
}
return instance_id;
}
static int calculate_compat_instance_id(const char *idstr)
{
SaveStateEntry *se;
int instance_id = 0;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (!se->compat)
continue;
if (strcmp(idstr, se->compat->idstr) == 0
&& instance_id <= se->compat->instance_id) {
instance_id = se->compat->instance_id + 1;
}
}
return instance_id;
}
/* TODO: Individual devices generally have very little idea about the rest
of the system, so instance_id should be removed/replaced.
Meanwhile pass -1 as instance_id if you do not already have a clearly
distinguishing id for all instances of your device class. */
int register_savevm_live(DeviceState *dev,
const char *idstr,
int instance_id,
int version_id,
SaveVMHandlers *ops,
void *opaque)
{
SaveStateEntry *se;
se = g_malloc0(sizeof(SaveStateEntry));
se->version_id = version_id;
se->section_id = global_section_id++;
se->ops = ops;
se->opaque = opaque;
se->vmsd = NULL;
se->no_migrate = 0;
/* if this is a live_savem then set is_ram */
if (ops->save_live_setup != NULL) {
se->is_ram = 1;
}
if (dev) {
char *id = qdev_get_dev_path(dev);
if (id) {
pstrcpy(se->idstr, sizeof(se->idstr), id);
pstrcat(se->idstr, sizeof(se->idstr), "/");
g_free(id);
se->compat = g_malloc0(sizeof(CompatEntry));
pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
se->compat->instance_id = instance_id == -1 ?
calculate_compat_instance_id(idstr) : instance_id;
instance_id = -1;
}
}
pstrcat(se->idstr, sizeof(se->idstr), idstr);
if (instance_id == -1) {
se->instance_id = calculate_new_instance_id(se->idstr);
} else {
se->instance_id = instance_id;
}
assert(!se->compat || se->instance_id == 0);
/* add at the end of list */
QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
return 0;
}
int register_savevm(DeviceState *dev,
const char *idstr,
int instance_id,
int version_id,
SaveStateHandler *save_state,
LoadStateHandler *load_state,
void *opaque)
{
SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
ops->save_state = save_state;
ops->load_state = load_state;
return register_savevm_live(dev, idstr, instance_id, version_id,
ops, opaque);
}
void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
{
SaveStateEntry *se, *new_se;
char id[256] = "";
if (dev) {
char *path = qdev_get_dev_path(dev);
if (path) {
pstrcpy(id, sizeof(id), path);
pstrcat(id, sizeof(id), "/");
g_free(path);
}
}
pstrcat(id, sizeof(id), idstr);
QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
QTAILQ_REMOVE(&savevm_handlers, se, entry);
if (se->compat) {
g_free(se->compat);
}
g_free(se->ops);
g_free(se);
}
}
}
int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
const VMStateDescription *vmsd,
void *opaque, int alias_id,
int required_for_version)
{
SaveStateEntry *se;
/* If this triggers, alias support can be dropped for the vmsd. */
assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
se = g_malloc0(sizeof(SaveStateEntry));
se->version_id = vmsd->version_id;
se->section_id = global_section_id++;
se->opaque = opaque;
se->vmsd = vmsd;
se->alias_id = alias_id;
se->no_migrate = vmsd->unmigratable;
if (dev) {
char *id = qdev_get_dev_path(dev);
if (id) {
pstrcpy(se->idstr, sizeof(se->idstr), id);
pstrcat(se->idstr, sizeof(se->idstr), "/");
g_free(id);
se->compat = g_malloc0(sizeof(CompatEntry));
pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
se->compat->instance_id = instance_id == -1 ?
calculate_compat_instance_id(vmsd->name) : instance_id;
instance_id = -1;
}
}
pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
if (instance_id == -1) {
se->instance_id = calculate_new_instance_id(se->idstr);
} else {
se->instance_id = instance_id;
}
assert(!se->compat || se->instance_id == 0);
/* add at the end of list */
QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
return 0;
}
int vmstate_register(DeviceState *dev, int instance_id,
const VMStateDescription *vmsd, void *opaque)
{
return vmstate_register_with_alias_id(dev, instance_id, vmsd,
opaque, -1, 0);
}
void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
void *opaque)
{
SaveStateEntry *se, *new_se;
QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
if (se->vmsd == vmsd && se->opaque == opaque) {
QTAILQ_REMOVE(&savevm_handlers, se, entry);
if (se->compat) {
g_free(se->compat);
}
g_free(se);
}
}
}
static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
void *opaque);
static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
void *opaque);
int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
void *opaque, int version_id)
{
VMStateField *field = vmsd->fields;
int ret;
if (version_id > vmsd->version_id) {
return -EINVAL;
}
if (version_id < vmsd->minimum_version_id_old) {
return -EINVAL;
}
if (version_id < vmsd->minimum_version_id) {
return vmsd->load_state_old(f, opaque, version_id);
}
if (vmsd->pre_load) {
int ret = vmsd->pre_load(opaque);
if (ret)
return ret;
}
while(field->name) {
if ((field->field_exists &&
field->field_exists(opaque, version_id)) ||
(!field->field_exists &&
field->version_id <= version_id)) {
void *base_addr = opaque + field->offset;
int i, n_elems = 1;
int size = field->size;
if (field->flags & VMS_VBUFFER) {
size = *(int32_t *)(opaque+field->size_offset);
if (field->flags & VMS_MULTIPLY) {
size *= field->size;
}
}
if (field->flags & VMS_ARRAY) {
n_elems = field->num;
} else if (field->flags & VMS_VARRAY_INT32) {
n_elems = *(int32_t *)(opaque+field->num_offset);
} else if (field->flags & VMS_VARRAY_UINT32) {
n_elems = *(uint32_t *)(opaque+field->num_offset);
} else if (field->flags & VMS_VARRAY_UINT16) {
n_elems = *(uint16_t *)(opaque+field->num_offset);
} else if (field->flags & VMS_VARRAY_UINT8) {
n_elems = *(uint8_t *)(opaque+field->num_offset);
}
if (field->flags & VMS_POINTER) {
base_addr = *(void **)base_addr + field->start;
}
for (i = 0; i < n_elems; i++) {
void *addr = base_addr + size * i;
if (field->flags & VMS_ARRAY_OF_POINTER) {
addr = *(void **)addr;
}
if (field->flags & VMS_STRUCT) {
ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
} else {
ret = field->info->get(f, addr, size);
}
if (ret < 0) {
return ret;
}
}
}
field++;
}
ret = vmstate_subsection_load(f, vmsd, opaque);
if (ret != 0) {
return ret;
}
if (vmsd->post_load) {
return vmsd->post_load(opaque, version_id);
}
return 0;
}
void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
void *opaque)
{
VMStateField *field = vmsd->fields;
if (vmsd->pre_save) {
vmsd->pre_save(opaque);
}
while(field->name) {
if (!field->field_exists ||
field->field_exists(opaque, vmsd->version_id)) {
void *base_addr = opaque + field->offset;
int i, n_elems = 1;
int size = field->size;
if (field->flags & VMS_VBUFFER) {
size = *(int32_t *)(opaque+field->size_offset);
if (field->flags & VMS_MULTIPLY) {
size *= field->size;
}
}
if (field->flags & VMS_ARRAY) {
n_elems = field->num;
} else if (field->flags & VMS_VARRAY_INT32) {
n_elems = *(int32_t *)(opaque+field->num_offset);
} else if (field->flags & VMS_VARRAY_UINT32) {
n_elems = *(uint32_t *)(opaque+field->num_offset);
} else if (field->flags & VMS_VARRAY_UINT16) {
n_elems = *(uint16_t *)(opaque+field->num_offset);
} else if (field->flags & VMS_VARRAY_UINT8) {
n_elems = *(uint8_t *)(opaque+field->num_offset);
}
if (field->flags & VMS_POINTER) {
base_addr = *(void **)base_addr + field->start;
}
for (i = 0; i < n_elems; i++) {
void *addr = base_addr + size * i;
if (field->flags & VMS_ARRAY_OF_POINTER) {
addr = *(void **)addr;
}
if (field->flags & VMS_STRUCT) {
vmstate_save_state(f, field->vmsd, addr);
} else {
field->info->put(f, addr, size);
}
}
}
field++;
}
vmstate_subsection_save(f, vmsd, opaque);
}
static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
{
if (!se->vmsd) { /* Old style */
return se->ops->load_state(f, se->opaque, version_id);
}
return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
}
static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
{
if (!se->vmsd) { /* Old style */
se->ops->save_state(f, se->opaque);
return;
}
vmstate_save_state(f,se->vmsd, se->opaque);
}
#define QEMU_VM_FILE_MAGIC 0x5145564d
#define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
#define QEMU_VM_FILE_VERSION 0x00000003
#define QEMU_VM_EOF 0x00
#define QEMU_VM_SECTION_START 0x01
#define QEMU_VM_SECTION_PART 0x02
#define QEMU_VM_SECTION_END 0x03
#define QEMU_VM_SECTION_FULL 0x04
#define QEMU_VM_SUBSECTION 0x05
bool qemu_savevm_state_blocked(Error **errp)
{
SaveStateEntry *se;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (se->no_migrate) {
error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
return true;
}
}
return false;
}
void qemu_savevm_state_begin(QEMUFile *f,
const MigrationParams *params)
{
SaveStateEntry *se;
int ret;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (!se->ops || !se->ops->set_params) {
continue;
}
se->ops->set_params(params, se->opaque);
}
qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
qemu_put_be32(f, QEMU_VM_FILE_VERSION);
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
int len;
if (!se->ops || !se->ops->save_live_setup) {
continue;
}
if (se->ops && se->ops->is_active) {
if (!se->ops->is_active(se->opaque)) {
continue;
}
}
/* Section type */
qemu_put_byte(f, QEMU_VM_SECTION_START);
qemu_put_be32(f, se->section_id);
/* ID string */
len = strlen(se->idstr);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)se->idstr, len);
qemu_put_be32(f, se->instance_id);
qemu_put_be32(f, se->version_id);
ret = se->ops->save_live_setup(f, se->opaque);
if (ret < 0) {
qemu_file_set_error(f, ret);
break;
}
}
}
/*
* this function has three return values:
* negative: there was one error, and we have -errno.
* 0 : We haven't finished, caller have to go again
* 1 : We have finished, we can go to complete phase
*/
int qemu_savevm_state_iterate(QEMUFile *f)
{
SaveStateEntry *se;
int ret = 1;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (!se->ops || !se->ops->save_live_iterate) {
continue;
}
if (se->ops && se->ops->is_active) {
if (!se->ops->is_active(se->opaque)) {
continue;
}
}
if (qemu_file_rate_limit(f)) {
return 0;
}
trace_savevm_section_start();
/* Section type */
qemu_put_byte(f, QEMU_VM_SECTION_PART);
qemu_put_be32(f, se->section_id);
ret = se->ops->save_live_iterate(f, se->opaque);
trace_savevm_section_end(se->section_id);
if (ret < 0) {
qemu_file_set_error(f, ret);
}
if (ret <= 0) {
/* Do not proceed to the next vmstate before this one reported
completion of the current stage. This serializes the migration
and reduces the probability that a faster changing state is
synchronized over and over again. */
break;
}
}
return ret;
}
void qemu_savevm_state_complete(QEMUFile *f)
{
SaveStateEntry *se;
int ret;
cpu_synchronize_all_states();
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (!se->ops || !se->ops->save_live_complete) {
continue;
}
if (se->ops && se->ops->is_active) {
if (!se->ops->is_active(se->opaque)) {
continue;
}
}
trace_savevm_section_start();
/* Section type */
qemu_put_byte(f, QEMU_VM_SECTION_END);
qemu_put_be32(f, se->section_id);
ret = se->ops->save_live_complete(f, se->opaque);
trace_savevm_section_end(se->section_id);
if (ret < 0) {
qemu_file_set_error(f, ret);
return;
}
}
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
int len;
if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
continue;
}
trace_savevm_section_start();
/* Section type */
qemu_put_byte(f, QEMU_VM_SECTION_FULL);
qemu_put_be32(f, se->section_id);
/* ID string */
len = strlen(se->idstr);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)se->idstr, len);
qemu_put_be32(f, se->instance_id);
qemu_put_be32(f, se->version_id);
vmstate_save(f, se);
trace_savevm_section_end(se->section_id);
}
qemu_put_byte(f, QEMU_VM_EOF);
qemu_fflush(f);
}
uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
{
SaveStateEntry *se;
uint64_t ret = 0;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (!se->ops || !se->ops->save_live_pending) {
continue;
}
if (se->ops && se->ops->is_active) {
if (!se->ops->is_active(se->opaque)) {
continue;
}
}
ret += se->ops->save_live_pending(f, se->opaque, max_size);
}
return ret;
}
void qemu_savevm_state_cancel(void)
{
SaveStateEntry *se;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (se->ops && se->ops->cancel) {
se->ops->cancel(se->opaque);
}
}
}
static int qemu_savevm_state(QEMUFile *f)
{
int ret;
MigrationParams params = {
.blk = 0,
.shared = 0
};
if (qemu_savevm_state_blocked(NULL)) {
return -EINVAL;
}
qemu_mutex_unlock_iothread();
qemu_savevm_state_begin(f, &params);
qemu_mutex_lock_iothread();
while (qemu_file_get_error(f) == 0) {
if (qemu_savevm_state_iterate(f) > 0) {
break;
}
}
ret = qemu_file_get_error(f);
if (ret == 0) {
qemu_savevm_state_complete(f);
ret = qemu_file_get_error(f);
}
if (ret != 0) {
qemu_savevm_state_cancel();
}
return ret;
}
static int qemu_save_device_state(QEMUFile *f)
{
SaveStateEntry *se;
qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
qemu_put_be32(f, QEMU_VM_FILE_VERSION);
cpu_synchronize_all_states();
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
int len;
if (se->is_ram) {
continue;
}
if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
continue;
}
/* Section type */
qemu_put_byte(f, QEMU_VM_SECTION_FULL);
qemu_put_be32(f, se->section_id);
/* ID string */
len = strlen(se->idstr);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)se->idstr, len);
qemu_put_be32(f, se->instance_id);
qemu_put_be32(f, se->version_id);
vmstate_save(f, se);
}
qemu_put_byte(f, QEMU_VM_EOF);
return qemu_file_get_error(f);
}
static SaveStateEntry *find_se(const char *idstr, int instance_id)
{
SaveStateEntry *se;
QTAILQ_FOREACH(se, &savevm_handlers, entry) {
if (!strcmp(se->idstr, idstr) &&
(instance_id == se->instance_id ||
instance_id == se->alias_id))
return se;
/* Migrating from an older version? */
if (strstr(se->idstr, idstr) && se->compat) {
if (!strcmp(se->compat->idstr, idstr) &&
(instance_id == se->compat->instance_id ||
instance_id == se->alias_id))
return se;
}
}
return NULL;
}
static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
{
while(sub && sub->needed) {
if (strcmp(idstr, sub->vmsd->name) == 0) {
return sub->vmsd;
}
sub++;
}
return NULL;
}
static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
void *opaque)
{
while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
char idstr[256];
int ret;
uint8_t version_id, len, size;
const VMStateDescription *sub_vmsd;
len = qemu_peek_byte(f, 1);
if (len < strlen(vmsd->name) + 1) {
/* subsection name has be be "section_name/a" */
return 0;
}
size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
if (size != len) {
return 0;
}
idstr[size] = 0;
if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
/* it don't have a valid subsection name */
return 0;
}
sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
if (sub_vmsd == NULL) {
return -ENOENT;
}
qemu_file_skip(f, 1); /* subsection */
qemu_file_skip(f, 1); /* len */
qemu_file_skip(f, len); /* idstr */
version_id = qemu_get_be32(f);
ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
if (ret) {
return ret;
}
}
return 0;
}
static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
void *opaque)
{
const VMStateSubsection *sub = vmsd->subsections;
while (sub && sub->needed) {
if (sub->needed(opaque)) {
const VMStateDescription *vmsd = sub->vmsd;
uint8_t len;
qemu_put_byte(f, QEMU_VM_SUBSECTION);
len = strlen(vmsd->name);
qemu_put_byte(f, len);
qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
qemu_put_be32(f, vmsd->version_id);
vmstate_save_state(f, vmsd, opaque);
}
sub++;
}
}
typedef struct LoadStateEntry {
QLIST_ENTRY(LoadStateEntry) entry;
SaveStateEntry *se;
int section_id;
int version_id;
} LoadStateEntry;
int qemu_loadvm_state(QEMUFile *f)
{
QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
QLIST_HEAD_INITIALIZER(loadvm_handlers);
LoadStateEntry *le, *new_le;
uint8_t section_type;
unsigned int v;
int ret;
if (qemu_savevm_state_blocked(NULL)) {
return -EINVAL;
}
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_MAGIC)
return -EINVAL;
v = qemu_get_be32(f);
if (v == QEMU_VM_FILE_VERSION_COMPAT) {
fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
return -ENOTSUP;
}
if (v != QEMU_VM_FILE_VERSION)
return -ENOTSUP;
while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
uint32_t instance_id, version_id, section_id;
SaveStateEntry *se;
char idstr[257];
int len;
switch (section_type) {
case QEMU_VM_SECTION_START:
case QEMU_VM_SECTION_FULL:
/* Read section start */
section_id = qemu_get_be32(f);
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)idstr, len);
idstr[len] = 0;
instance_id = qemu_get_be32(f);
version_id = qemu_get_be32(f);
/* Find savevm section */
se = find_se(idstr, instance_id);
if (se == NULL) {
fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
ret = -EINVAL;
goto out;
}
/* Validate version */
if (version_id > se->version_id) {
fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
version_id, idstr, se->version_id);
ret = -EINVAL;
goto out;
}
/* Add entry */
le = g_malloc0(sizeof(*le));
le->se = se;
le->section_id = section_id;
le->version_id = version_id;
QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
ret = vmstate_load(f, le->se, le->version_id);
if (ret < 0) {
fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
instance_id, idstr);
goto out;
}
break;
case QEMU_VM_SECTION_PART:
case QEMU_VM_SECTION_END:
section_id = qemu_get_be32(f);
QLIST_FOREACH(le, &loadvm_handlers, entry) {
if (le->section_id == section_id) {
break;
}
}
if (le == NULL) {
fprintf(stderr, "Unknown savevm section %d\n", section_id);
ret = -EINVAL;
goto out;
}
ret = vmstate_load(f, le->se, le->version_id);
if (ret < 0) {
fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
section_id);
goto out;
}
break;
default:
fprintf(stderr, "Unknown savevm section type %d\n", section_type);
ret = -EINVAL;
goto out;
}
}
cpu_synchronize_all_post_init();
ret = 0;
out:
QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
QLIST_REMOVE(le, entry);
g_free(le);
}
if (ret == 0) {
ret = qemu_file_get_error(f);
}
return ret;
}
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
const char *name)
{
QEMUSnapshotInfo *sn_tab, *sn;
int nb_sns, i, ret;
ret = -ENOENT;
nb_sns = bdrv_snapshot_list(bs, &sn_tab);
if (nb_sns < 0)
return ret;
for(i = 0; i < nb_sns; i++) {
sn = &sn_tab[i];
if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
*sn_info = *sn;
ret = 0;
break;
}
}
g_free(sn_tab);
return ret;
}
/*
* Deletes snapshots of a given name in all opened images.
*/
static int del_existing_snapshots(Monitor *mon, const char *name)
{
BlockDriverState *bs;
QEMUSnapshotInfo sn1, *snapshot = &sn1;
int ret;
bs = NULL;
while ((bs = bdrv_next(bs))) {
if (bdrv_can_snapshot(bs) &&
bdrv_snapshot_find(bs, snapshot, name) >= 0)
{
ret = bdrv_snapshot_delete(bs, name);
if (ret < 0) {
monitor_printf(mon,
"Error while deleting snapshot on '%s'\n",
bdrv_get_device_name(bs));
return -1;
}
}
}
return 0;
}
void do_savevm(Monitor *mon, const QDict *qdict)
{
BlockDriverState *bs, *bs1;
QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
int ret;
QEMUFile *f;
int saved_vm_running;
uint64_t vm_state_size;
qemu_timeval tv;
struct tm tm;
const char *name = qdict_get_try_str(qdict, "name");
/* Verify if there is a device that doesn't support snapshots and is writable */
bs = NULL;
while ((bs = bdrv_next(bs))) {
if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
continue;
}
if (!bdrv_can_snapshot(bs)) {
monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
bdrv_get_device_name(bs));
return;
}
}
bs = bdrv_snapshots();
if (!bs) {
monitor_printf(mon, "No block device can accept snapshots\n");
return;
}
saved_vm_running = runstate_is_running();
vm_stop(RUN_STATE_SAVE_VM);
memset(sn, 0, sizeof(*sn));
/* fill auxiliary fields */
qemu_gettimeofday(&tv);
sn->date_sec = tv.tv_sec;
sn->date_nsec = tv.tv_usec * 1000;
sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
if (name) {
ret = bdrv_snapshot_find(bs, old_sn, name);
if (ret >= 0) {
pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
} else {
pstrcpy(sn->name, sizeof(sn->name), name);
}
} else {
/* cast below needed for OpenBSD where tv_sec is still 'long' */
localtime_r((const time_t *)&tv.tv_sec, &tm);
strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
}
/* Delete old snapshots of the same name */
if (name && del_existing_snapshots(mon, name) < 0) {
goto the_end;
}
/* save the VM state */
f = qemu_fopen_bdrv(bs, 1);
if (!f) {
monitor_printf(mon, "Could not open VM state file\n");
goto the_end;
}
ret = qemu_savevm_state(f);
vm_state_size = qemu_ftell(f);
qemu_fclose(f);
if (ret < 0) {
monitor_printf(mon, "Error %d while writing VM\n", ret);
goto the_end;
}
/* create the snapshots */
bs1 = NULL;
while ((bs1 = bdrv_next(bs1))) {
if (bdrv_can_snapshot(bs1)) {
/* Write VM state size only to the image that contains the state */
sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
ret = bdrv_snapshot_create(bs1, sn);
if (ret < 0) {
monitor_printf(mon, "Error while creating snapshot on '%s'\n",
bdrv_get_device_name(bs1));
}
}
}
the_end:
if (saved_vm_running)
vm_start();
}
void qmp_xen_save_devices_state(const char *filename, Error **errp)
{
QEMUFile *f;
int saved_vm_running;
int ret;
saved_vm_running = runstate_is_running();
vm_stop(RUN_STATE_SAVE_VM);
f = qemu_fopen(filename, "wb");
if (!f) {
error_set(errp, QERR_OPEN_FILE_FAILED, filename);
goto the_end;
}
ret = qemu_save_device_state(f);
qemu_fclose(f);
if (ret < 0) {
error_set(errp, QERR_IO_ERROR);
}
the_end:
if (saved_vm_running)
vm_start();
}
int load_vmstate(const char *name)
{
BlockDriverState *bs, *bs_vm_state;
QEMUSnapshotInfo sn;
QEMUFile *f;
int ret;
bs_vm_state = bdrv_snapshots();
if (!bs_vm_state) {
error_report("No block device supports snapshots");
return -ENOTSUP;
}
/* Don't even try to load empty VM states */
ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
if (ret < 0) {
return ret;
} else if (sn.vm_state_size == 0) {
error_report("This is a disk-only snapshot. Revert to it offline "
"using qemu-img.");
return -EINVAL;
}
/* Verify if there is any device that doesn't support snapshots and is
writable and check if the requested snapshot is available too. */
bs = NULL;
while ((bs = bdrv_next(bs))) {
if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
continue;
}
if (!bdrv_can_snapshot(bs)) {
error_report("Device '%s' is writable but does not support snapshots.",
bdrv_get_device_name(bs));
return -ENOTSUP;
}
ret = bdrv_snapshot_find(bs, &sn, name);
if (ret < 0) {
error_report("Device '%s' does not have the requested snapshot '%s'",
bdrv_get_device_name(bs), name);
return ret;
}
}
/* Flush all IO requests so they don't interfere with the new state. */
bdrv_drain_all();
bs = NULL;
while ((bs = bdrv_next(bs))) {
if (bdrv_can_snapshot(bs)) {
ret = bdrv_snapshot_goto(bs, name);
if (ret < 0) {
error_report("Error %d while activating snapshot '%s' on '%s'",
ret, name, bdrv_get_device_name(bs));
return ret;
}
}
}
/* restore the VM state */
f = qemu_fopen_bdrv(bs_vm_state, 0);
if (!f) {
error_report("Could not open VM state file");
return -EINVAL;
}
qemu_system_reset(VMRESET_SILENT);
ret = qemu_loadvm_state(f);
qemu_fclose(f);
if (ret < 0) {
error_report("Error %d while loading VM state", ret);
return ret;
}
return 0;
}
void do_delvm(Monitor *mon, const QDict *qdict)
{
BlockDriverState *bs, *bs1;
int ret;
const char *name = qdict_get_str(qdict, "name");
bs = bdrv_snapshots();
if (!bs) {
monitor_printf(mon, "No block device supports snapshots\n");
return;
}
bs1 = NULL;
while ((bs1 = bdrv_next(bs1))) {
if (bdrv_can_snapshot(bs1)) {
ret = bdrv_snapshot_delete(bs1, name);
if (ret < 0) {
if (ret == -ENOTSUP)
monitor_printf(mon,
"Snapshots not supported on device '%s'\n",
bdrv_get_device_name(bs1));
else
monitor_printf(mon, "Error %d while deleting snapshot on "
"'%s'\n", ret, bdrv_get_device_name(bs1));
}
}
}
}
void do_info_snapshots(Monitor *mon, const QDict *qdict)
{
BlockDriverState *bs, *bs1;
QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
int nb_sns, i, ret, available;
int total;
int *available_snapshots;
char buf[256];
bs = bdrv_snapshots();
if (!bs) {
monitor_printf(mon, "No available block device supports snapshots\n");
return;
}
nb_sns = bdrv_snapshot_list(bs, &sn_tab);
if (nb_sns < 0) {
monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
return;
}
if (nb_sns == 0) {
monitor_printf(mon, "There is no snapshot available.\n");
return;
}
available_snapshots = g_malloc0(sizeof(int) * nb_sns);
total = 0;
for (i = 0; i < nb_sns; i++) {
sn = &sn_tab[i];
available = 1;
bs1 = NULL;
while ((bs1 = bdrv_next(bs1))) {
if (bdrv_can_snapshot(bs1) && bs1 != bs) {
ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
if (ret < 0) {
available = 0;
break;
}
}
}
if (available) {
available_snapshots[total] = i;
total++;
}
}
if (total > 0) {
monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
for (i = 0; i < total; i++) {
sn = &sn_tab[available_snapshots[i]];
monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
}
} else {
monitor_printf(mon, "There is no suitable snapshot available\n");
}
g_free(sn_tab);
g_free(available_snapshots);
}
void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
{
qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
memory_region_name(mr), dev);
}
void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
{
/* Nothing do to while the implementation is in RAMBlock */
}
void vmstate_register_ram_global(MemoryRegion *mr)
{
vmstate_register_ram(mr, NULL);
}