| /* |
| * ARM page table walking. |
| * |
| * This code is licensed under the GNU GPL v2 or later. |
| * |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/range.h" |
| #include "qemu/main-loop.h" |
| #include "exec/exec-all.h" |
| #include "exec/page-protection.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "cpu-features.h" |
| #include "idau.h" |
| #ifdef CONFIG_TCG |
| # include "tcg/oversized-guest.h" |
| #endif |
| |
| typedef struct S1Translate { |
| /* |
| * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. |
| * Together with in_space, specifies the architectural translation regime. |
| */ |
| ARMMMUIdx in_mmu_idx; |
| /* |
| * in_ptw_idx: specifies which mmuidx to use for the actual |
| * page table descriptor load operations. This will be one of the |
| * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. |
| * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, |
| * this field is updated accordingly. |
| */ |
| ARMMMUIdx in_ptw_idx; |
| /* |
| * in_space: the security space for this walk. This plus |
| * the in_mmu_idx specify the architectural translation regime. |
| * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, |
| * this field is updated accordingly. |
| * |
| * Note that the security space for the in_ptw_idx may be different |
| * from that for the in_mmu_idx. We do not need to explicitly track |
| * the in_ptw_idx security space because: |
| * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx |
| * itself specifies the security space |
| * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security |
| * space used for ptw reads is the same as that of the security |
| * space of the stage 1 translation for all cases except where |
| * stage 1 is Secure; in that case the only possibilities for |
| * the ptw read are Secure and NonSecure, and the in_ptw_idx |
| * value being Stage2 vs Stage2_S distinguishes those. |
| */ |
| ARMSecuritySpace in_space; |
| /* |
| * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug |
| * accesses will not update the guest page table access flags |
| * and will not change the state of the softmmu TLBs. |
| */ |
| bool in_debug; |
| /* |
| * If this is stage 2 of a stage 1+2 page table walk, then this must |
| * be true if stage 1 is an EL0 access; otherwise this is ignored. |
| * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. |
| */ |
| bool in_s1_is_el0; |
| bool out_rw; |
| bool out_be; |
| ARMSecuritySpace out_space; |
| hwaddr out_virt; |
| hwaddr out_phys; |
| void *out_host; |
| } S1Translate; |
| |
| static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, |
| target_ulong address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi); |
| |
| static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, |
| target_ulong address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi); |
| |
| /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ |
| static const uint8_t pamax_map[] = { |
| [0] = 32, |
| [1] = 36, |
| [2] = 40, |
| [3] = 42, |
| [4] = 44, |
| [5] = 48, |
| [6] = 52, |
| }; |
| |
| /* |
| * The cpu-specific constant value of PAMax; also used by hw/arm/virt. |
| * Note that machvirt_init calls this on a CPU that is inited but not realized! |
| */ |
| unsigned int arm_pamax(ARMCPU *cpu) |
| { |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| unsigned int parange = |
| FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); |
| |
| /* |
| * id_aa64mmfr0 is a read-only register so values outside of the |
| * supported mappings can be considered an implementation error. |
| */ |
| assert(parange < ARRAY_SIZE(pamax_map)); |
| return pamax_map[parange]; |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { |
| /* v7 or v8 with LPAE */ |
| return 40; |
| } |
| /* Anything else */ |
| return 32; |
| } |
| |
| /* |
| * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index |
| */ |
| ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_E10_0: |
| return ARMMMUIdx_Stage1_E0; |
| case ARMMMUIdx_E10_1: |
| return ARMMMUIdx_Stage1_E1; |
| case ARMMMUIdx_E10_1_PAN: |
| return ARMMMUIdx_Stage1_E1_PAN; |
| default: |
| return mmu_idx; |
| } |
| } |
| |
| ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) |
| { |
| return stage_1_mmu_idx(arm_mmu_idx(env)); |
| } |
| |
| /* |
| * Return where we should do ptw loads from for a stage 2 walk. |
| * This depends on whether the address we are looking up is a |
| * Secure IPA or a NonSecure IPA, which we know from whether this is |
| * Stage2 or Stage2_S. |
| * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. |
| */ |
| static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) |
| { |
| bool s2walk_secure; |
| |
| /* |
| * We're OK to check the current state of the CPU here because |
| * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit |
| * changes. |
| * (2) there's no way to do a lookup that cares about Stage 2 for a |
| * different security state to the current one for AArch64, and AArch32 |
| * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do |
| * an NS stage 1+2 lookup while the NS bit is 0.) |
| */ |
| if (!arm_el_is_aa64(env, 3)) { |
| return ARMMMUIdx_Phys_NS; |
| } |
| |
| switch (arm_security_space_below_el3(env)) { |
| case ARMSS_NonSecure: |
| return ARMMMUIdx_Phys_NS; |
| case ARMSS_Realm: |
| return ARMMMUIdx_Phys_Realm; |
| case ARMSS_Secure: |
| if (stage2idx == ARMMMUIdx_Stage2_S) { |
| s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); |
| } else { |
| s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); |
| } |
| return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; |
| } |
| |
| /* Return the TTBR associated with this translation regime */ |
| static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) |
| { |
| if (mmu_idx == ARMMMUIdx_Stage2) { |
| return env->cp15.vttbr_el2; |
| } |
| if (mmu_idx == ARMMMUIdx_Stage2_S) { |
| return env->cp15.vsttbr_el2; |
| } |
| if (ttbrn == 0) { |
| return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; |
| } else { |
| return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; |
| } |
| } |
| |
| /* Return true if the specified stage of address translation is disabled */ |
| static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, |
| ARMSecuritySpace space) |
| { |
| uint64_t hcr_el2; |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| bool is_secure = arm_space_is_secure(space); |
| switch (env->v7m.mpu_ctrl[is_secure] & |
| (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { |
| case R_V7M_MPU_CTRL_ENABLE_MASK: |
| /* Enabled, but not for HardFault and NMI */ |
| return mmu_idx & ARM_MMU_IDX_M_NEGPRI; |
| case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: |
| /* Enabled for all cases */ |
| return false; |
| case 0: |
| default: |
| /* |
| * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but |
| * we warned about that in armv7m_nvic.c when the guest set it. |
| */ |
| return true; |
| } |
| } |
| |
| |
| switch (mmu_idx) { |
| case ARMMMUIdx_Stage2: |
| case ARMMMUIdx_Stage2_S: |
| /* HCR.DC means HCR.VM behaves as 1 */ |
| hcr_el2 = arm_hcr_el2_eff_secstate(env, space); |
| return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; |
| |
| case ARMMMUIdx_E10_0: |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ |
| hcr_el2 = arm_hcr_el2_eff_secstate(env, space); |
| if (hcr_el2 & HCR_TGE) { |
| return true; |
| } |
| break; |
| |
| case ARMMMUIdx_Stage1_E0: |
| case ARMMMUIdx_Stage1_E1: |
| case ARMMMUIdx_Stage1_E1_PAN: |
| /* HCR.DC means SCTLR_EL1.M behaves as 0 */ |
| hcr_el2 = arm_hcr_el2_eff_secstate(env, space); |
| if (hcr_el2 & HCR_DC) { |
| return true; |
| } |
| break; |
| |
| case ARMMMUIdx_E20_0: |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| case ARMMMUIdx_E2: |
| case ARMMMUIdx_E3: |
| break; |
| |
| case ARMMMUIdx_Phys_S: |
| case ARMMMUIdx_Phys_NS: |
| case ARMMMUIdx_Phys_Root: |
| case ARMMMUIdx_Phys_Realm: |
| /* No translation for physical address spaces. */ |
| return true; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| |
| return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; |
| } |
| |
| static bool granule_protection_check(CPUARMState *env, uint64_t paddress, |
| ARMSecuritySpace pspace, |
| ARMMMUFaultInfo *fi) |
| { |
| MemTxAttrs attrs = { |
| .secure = true, |
| .space = ARMSS_Root, |
| }; |
| ARMCPU *cpu = env_archcpu(env); |
| uint64_t gpccr = env->cp15.gpccr_el3; |
| unsigned pps, pgs, l0gptsz, level = 0; |
| uint64_t tableaddr, pps_mask, align, entry, index; |
| AddressSpace *as; |
| MemTxResult result; |
| int gpi; |
| |
| if (!FIELD_EX64(gpccr, GPCCR, GPC)) { |
| return true; |
| } |
| |
| /* |
| * GPC Priority 1 (R_GMGRR): |
| * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, |
| * the access fails as GPT walk fault at level 0. |
| */ |
| |
| /* |
| * Configuration of PPS to a value exceeding the implemented |
| * physical address size is invalid. |
| */ |
| pps = FIELD_EX64(gpccr, GPCCR, PPS); |
| if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { |
| goto fault_walk; |
| } |
| pps = pamax_map[pps]; |
| pps_mask = MAKE_64BIT_MASK(0, pps); |
| |
| switch (FIELD_EX64(gpccr, GPCCR, SH)) { |
| case 0b10: /* outer shareable */ |
| break; |
| case 0b00: /* non-shareable */ |
| case 0b11: /* inner shareable */ |
| /* Inner and Outer non-cacheable requires Outer shareable. */ |
| if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && |
| FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { |
| goto fault_walk; |
| } |
| break; |
| default: /* reserved */ |
| goto fault_walk; |
| } |
| |
| switch (FIELD_EX64(gpccr, GPCCR, PGS)) { |
| case 0b00: /* 4KB */ |
| pgs = 12; |
| break; |
| case 0b01: /* 64KB */ |
| pgs = 16; |
| break; |
| case 0b10: /* 16KB */ |
| pgs = 14; |
| break; |
| default: /* reserved */ |
| goto fault_walk; |
| } |
| |
| /* Note this field is read-only and fixed at reset. */ |
| l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); |
| |
| /* |
| * GPC Priority 2: Secure, Realm or Root address exceeds PPS. |
| * R_CPDSB: A NonSecure physical address input exceeding PPS |
| * does not experience any fault. |
| */ |
| if (paddress & ~pps_mask) { |
| if (pspace == ARMSS_NonSecure) { |
| return true; |
| } |
| goto fault_size; |
| } |
| |
| /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ |
| tableaddr = env->cp15.gptbr_el3 << 12; |
| if (tableaddr & ~pps_mask) { |
| goto fault_size; |
| } |
| |
| /* |
| * BADDR is aligned per a function of PPS and L0GPTSZ. |
| * These bits of GPTBR_EL3 are RES0, but are not a configuration error, |
| * unlike the RES0 bits of the GPT entries (R_XNKFZ). |
| */ |
| align = MAX(pps - l0gptsz + 3, 12); |
| align = MAKE_64BIT_MASK(0, align); |
| tableaddr &= ~align; |
| |
| as = arm_addressspace(env_cpu(env), attrs); |
| |
| /* Level 0 lookup. */ |
| index = extract64(paddress, l0gptsz, pps - l0gptsz); |
| tableaddr += index * 8; |
| entry = address_space_ldq_le(as, tableaddr, attrs, &result); |
| if (result != MEMTX_OK) { |
| goto fault_eabt; |
| } |
| |
| switch (extract32(entry, 0, 4)) { |
| case 1: /* block descriptor */ |
| if (entry >> 8) { |
| goto fault_walk; /* RES0 bits not 0 */ |
| } |
| gpi = extract32(entry, 4, 4); |
| goto found; |
| case 3: /* table descriptor */ |
| tableaddr = entry & ~0xf; |
| align = MAX(l0gptsz - pgs - 1, 12); |
| align = MAKE_64BIT_MASK(0, align); |
| if (tableaddr & (~pps_mask | align)) { |
| goto fault_walk; /* RES0 bits not 0 */ |
| } |
| break; |
| default: /* invalid */ |
| goto fault_walk; |
| } |
| |
| /* Level 1 lookup */ |
| level = 1; |
| index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); |
| tableaddr += index * 8; |
| entry = address_space_ldq_le(as, tableaddr, attrs, &result); |
| if (result != MEMTX_OK) { |
| goto fault_eabt; |
| } |
| |
| switch (extract32(entry, 0, 4)) { |
| case 1: /* contiguous descriptor */ |
| if (entry >> 10) { |
| goto fault_walk; /* RES0 bits not 0 */ |
| } |
| /* |
| * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, |
| * and because we cannot invalidate by pa, and thus will always |
| * flush entire tlbs, we don't actually care about the range here |
| * and can simply extract the GPI as the result. |
| */ |
| if (extract32(entry, 8, 2) == 0) { |
| goto fault_walk; /* reserved contig */ |
| } |
| gpi = extract32(entry, 4, 4); |
| break; |
| default: |
| index = extract64(paddress, pgs, 4); |
| gpi = extract64(entry, index * 4, 4); |
| break; |
| } |
| |
| found: |
| switch (gpi) { |
| case 0b0000: /* no access */ |
| break; |
| case 0b1111: /* all access */ |
| return true; |
| case 0b1000: |
| case 0b1001: |
| case 0b1010: |
| case 0b1011: |
| if (pspace == (gpi & 3)) { |
| return true; |
| } |
| break; |
| default: |
| goto fault_walk; /* reserved */ |
| } |
| |
| fi->gpcf = GPCF_Fail; |
| goto fault_common; |
| fault_eabt: |
| fi->gpcf = GPCF_EABT; |
| goto fault_common; |
| fault_size: |
| fi->gpcf = GPCF_AddressSize; |
| goto fault_common; |
| fault_walk: |
| fi->gpcf = GPCF_Walk; |
| fault_common: |
| fi->level = level; |
| fi->paddr = paddress; |
| fi->paddr_space = pspace; |
| return false; |
| } |
| |
| static bool S1_attrs_are_device(uint8_t attrs) |
| { |
| /* |
| * This slightly under-decodes the MAIR_ELx field: |
| * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE; |
| * 0b0000dd1x is UNPREDICTABLE. |
| */ |
| return (attrs & 0xf0) == 0; |
| } |
| |
| static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) |
| { |
| /* |
| * For an S1 page table walk, the stage 1 attributes are always |
| * some form of "this is Normal memory". The combined S1+S2 |
| * attributes are therefore only Device if stage 2 specifies Device. |
| * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, |
| * ie when cacheattrs.attrs bits [3:2] are 0b00. |
| * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie |
| * when cacheattrs.attrs bit [2] is 0. |
| */ |
| if (hcr & HCR_FWB) { |
| return (attrs & 0x4) == 0; |
| } else { |
| return (attrs & 0xc) == 0; |
| } |
| } |
| |
| static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, |
| ARMMMUIdx s2_mmu_idx) |
| { |
| /* |
| * Return the security space to use for stage 2 when doing |
| * the S1 page table descriptor load. |
| */ |
| if (regime_is_stage2(s2_mmu_idx)) { |
| /* |
| * The security space for ptw reads is almost always the same |
| * as that of the security space of the stage 1 translation. |
| * The only exception is when stage 1 is Secure; in that case |
| * the ptw read might be to the Secure or the NonSecure space |
| * (but never Realm or Root), and the s2_mmu_idx tells us which. |
| * Root translations are always single-stage. |
| */ |
| if (s1_space == ARMSS_Secure) { |
| return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); |
| } else { |
| assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); |
| assert(s1_space != ARMSS_Root); |
| return s1_space; |
| } |
| } else { |
| /* ptw loads are from phys: the mmu idx itself says which space */ |
| return arm_phys_to_space(s2_mmu_idx); |
| } |
| } |
| |
| static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) |
| { |
| /* |
| * For stage 2 faults in Secure EL22, S1NS indicates |
| * whether the faulting IPA is in the Secure or NonSecure |
| * IPA space. For all other kinds of fault, it is false. |
| */ |
| return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) |
| && s2_mmu_idx == ARMMMUIdx_Stage2_S; |
| } |
| |
| /* Translate a S1 pagetable walk through S2 if needed. */ |
| static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, |
| hwaddr addr, ARMMMUFaultInfo *fi) |
| { |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; |
| uint8_t pte_attrs; |
| |
| ptw->out_virt = addr; |
| |
| if (unlikely(ptw->in_debug)) { |
| /* |
| * From gdbstub, do not use softmmu so that we don't modify the |
| * state of the cpu at all, including softmmu tlb contents. |
| */ |
| ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); |
| S1Translate s2ptw = { |
| .in_mmu_idx = s2_mmu_idx, |
| .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), |
| .in_space = s2_space, |
| .in_debug = true, |
| }; |
| GetPhysAddrResult s2 = { }; |
| |
| if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) { |
| goto fail; |
| } |
| |
| ptw->out_phys = s2.f.phys_addr; |
| pte_attrs = s2.cacheattrs.attrs; |
| ptw->out_host = NULL; |
| ptw->out_rw = false; |
| ptw->out_space = s2.f.attrs.space; |
| } else { |
| #ifdef CONFIG_TCG |
| CPUTLBEntryFull *full; |
| int flags; |
| |
| env->tlb_fi = fi; |
| flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, |
| arm_to_core_mmu_idx(s2_mmu_idx), |
| &ptw->out_host, &full); |
| env->tlb_fi = NULL; |
| |
| if (unlikely(flags & TLB_INVALID_MASK)) { |
| goto fail; |
| } |
| ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); |
| ptw->out_rw = full->prot & PAGE_WRITE; |
| pte_attrs = full->extra.arm.pte_attrs; |
| ptw->out_space = full->attrs.space; |
| #else |
| g_assert_not_reached(); |
| #endif |
| } |
| |
| if (regime_is_stage2(s2_mmu_idx)) { |
| uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); |
| |
| if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { |
| /* |
| * PTW set and S1 walk touched S2 Device memory: |
| * generate Permission fault. |
| */ |
| fi->type = ARMFault_Permission; |
| fi->s2addr = addr; |
| fi->stage2 = true; |
| fi->s1ptw = true; |
| fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); |
| return false; |
| } |
| } |
| |
| ptw->out_be = regime_translation_big_endian(env, mmu_idx); |
| return true; |
| |
| fail: |
| assert(fi->type != ARMFault_None); |
| if (fi->type == ARMFault_GPCFOnOutput) { |
| fi->type = ARMFault_GPCFOnWalk; |
| } |
| fi->s2addr = addr; |
| fi->stage2 = regime_is_stage2(s2_mmu_idx); |
| fi->s1ptw = fi->stage2; |
| fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); |
| return false; |
| } |
| |
| /* All loads done in the course of a page table walk go through here. */ |
| static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, |
| ARMMMUFaultInfo *fi) |
| { |
| CPUState *cs = env_cpu(env); |
| void *host = ptw->out_host; |
| uint32_t data; |
| |
| if (likely(host)) { |
| /* Page tables are in RAM, and we have the host address. */ |
| data = qatomic_read((uint32_t *)host); |
| if (ptw->out_be) { |
| data = be32_to_cpu(data); |
| } else { |
| data = le32_to_cpu(data); |
| } |
| } else { |
| /* Page tables are in MMIO. */ |
| MemTxAttrs attrs = { |
| .space = ptw->out_space, |
| .secure = arm_space_is_secure(ptw->out_space), |
| }; |
| AddressSpace *as = arm_addressspace(cs, attrs); |
| MemTxResult result = MEMTX_OK; |
| |
| if (ptw->out_be) { |
| data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); |
| } else { |
| data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); |
| } |
| if (unlikely(result != MEMTX_OK)) { |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| return 0; |
| } |
| } |
| return data; |
| } |
| |
| static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, |
| ARMMMUFaultInfo *fi) |
| { |
| CPUState *cs = env_cpu(env); |
| void *host = ptw->out_host; |
| uint64_t data; |
| |
| if (likely(host)) { |
| /* Page tables are in RAM, and we have the host address. */ |
| #ifdef CONFIG_ATOMIC64 |
| data = qatomic_read__nocheck((uint64_t *)host); |
| if (ptw->out_be) { |
| data = be64_to_cpu(data); |
| } else { |
| data = le64_to_cpu(data); |
| } |
| #else |
| if (ptw->out_be) { |
| data = ldq_be_p(host); |
| } else { |
| data = ldq_le_p(host); |
| } |
| #endif |
| } else { |
| /* Page tables are in MMIO. */ |
| MemTxAttrs attrs = { |
| .space = ptw->out_space, |
| .secure = arm_space_is_secure(ptw->out_space), |
| }; |
| AddressSpace *as = arm_addressspace(cs, attrs); |
| MemTxResult result = MEMTX_OK; |
| |
| if (ptw->out_be) { |
| data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); |
| } else { |
| data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); |
| } |
| if (unlikely(result != MEMTX_OK)) { |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| return 0; |
| } |
| } |
| return data; |
| } |
| |
| static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, |
| uint64_t new_val, S1Translate *ptw, |
| ARMMMUFaultInfo *fi) |
| { |
| #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) |
| uint64_t cur_val; |
| void *host = ptw->out_host; |
| |
| if (unlikely(!host)) { |
| /* Page table in MMIO Memory Region */ |
| CPUState *cs = env_cpu(env); |
| MemTxAttrs attrs = { |
| .space = ptw->out_space, |
| .secure = arm_space_is_secure(ptw->out_space), |
| }; |
| AddressSpace *as = arm_addressspace(cs, attrs); |
| MemTxResult result = MEMTX_OK; |
| bool need_lock = !bql_locked(); |
| |
| if (need_lock) { |
| bql_lock(); |
| } |
| if (ptw->out_be) { |
| cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result); |
| if (unlikely(result != MEMTX_OK)) { |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| if (need_lock) { |
| bql_unlock(); |
| } |
| return old_val; |
| } |
| if (cur_val == old_val) { |
| address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result); |
| if (unlikely(result != MEMTX_OK)) { |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| if (need_lock) { |
| bql_unlock(); |
| } |
| return old_val; |
| } |
| cur_val = new_val; |
| } |
| } else { |
| cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result); |
| if (unlikely(result != MEMTX_OK)) { |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| if (need_lock) { |
| bql_unlock(); |
| } |
| return old_val; |
| } |
| if (cur_val == old_val) { |
| address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result); |
| if (unlikely(result != MEMTX_OK)) { |
| fi->type = ARMFault_SyncExternalOnWalk; |
| fi->ea = arm_extabort_type(result); |
| if (need_lock) { |
| bql_unlock(); |
| } |
| return old_val; |
| } |
| cur_val = new_val; |
| } |
| } |
| if (need_lock) { |
| bql_unlock(); |
| } |
| return cur_val; |
| } |
| |
| /* |
| * Raising a stage2 Protection fault for an atomic update to a read-only |
| * page is delayed until it is certain that there is a change to make. |
| */ |
| if (unlikely(!ptw->out_rw)) { |
| int flags; |
| |
| env->tlb_fi = fi; |
| flags = probe_access_full_mmu(env, ptw->out_virt, 0, |
| MMU_DATA_STORE, |
| arm_to_core_mmu_idx(ptw->in_ptw_idx), |
| NULL, NULL); |
| env->tlb_fi = NULL; |
| |
| if (unlikely(flags & TLB_INVALID_MASK)) { |
| /* |
| * We know this must be a stage 2 fault because the granule |
| * protection table does not separately track read and write |
| * permission, so all GPC faults are caught in S1_ptw_translate(): |
| * we only get here for "readable but not writeable". |
| */ |
| assert(fi->type != ARMFault_None); |
| fi->s2addr = ptw->out_virt; |
| fi->stage2 = true; |
| fi->s1ptw = true; |
| fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); |
| return 0; |
| } |
| |
| /* In case CAS mismatches and we loop, remember writability. */ |
| ptw->out_rw = true; |
| } |
| |
| #ifdef CONFIG_ATOMIC64 |
| if (ptw->out_be) { |
| old_val = cpu_to_be64(old_val); |
| new_val = cpu_to_be64(new_val); |
| cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); |
| cur_val = be64_to_cpu(cur_val); |
| } else { |
| old_val = cpu_to_le64(old_val); |
| new_val = cpu_to_le64(new_val); |
| cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); |
| cur_val = le64_to_cpu(cur_val); |
| } |
| #else |
| /* |
| * We can't support the full 64-bit atomic cmpxchg on the host. |
| * Because this is only used for FEAT_HAFDBS, which is only for AA64, |
| * we know that TCG_OVERSIZED_GUEST is set, which means that we are |
| * running in round-robin mode and could only race with dma i/o. |
| */ |
| #if !TCG_OVERSIZED_GUEST |
| # error "Unexpected configuration" |
| #endif |
| bool locked = bql_locked(); |
| if (!locked) { |
| bql_lock(); |
| } |
| if (ptw->out_be) { |
| cur_val = ldq_be_p(host); |
| if (cur_val == old_val) { |
| stq_be_p(host, new_val); |
| } |
| } else { |
| cur_val = ldq_le_p(host); |
| if (cur_val == old_val) { |
| stq_le_p(host, new_val); |
| } |
| } |
| if (!locked) { |
| bql_unlock(); |
| } |
| #endif |
| |
| return cur_val; |
| #else |
| /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ |
| g_assert_not_reached(); |
| #endif |
| } |
| |
| static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
| uint32_t *table, uint32_t address) |
| { |
| /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
| uint64_t tcr = regime_tcr(env, mmu_idx); |
| int maskshift = extract32(tcr, 0, 3); |
| uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
| uint32_t base_mask; |
| |
| if (address & mask) { |
| if (tcr & TTBCR_PD1) { |
| /* Translation table walk disabled for TTBR1 */ |
| return false; |
| } |
| *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
| } else { |
| if (tcr & TTBCR_PD0) { |
| /* Translation table walk disabled for TTBR0 */ |
| return false; |
| } |
| base_mask = ~((uint32_t)0x3fffu >> maskshift); |
| *table = regime_ttbr(env, mmu_idx, 0) & base_mask; |
| } |
| *table |= (address >> 18) & 0x3ffc; |
| return true; |
| } |
| |
| /* |
| * Translate section/page access permissions to page R/W protection flags |
| * @env: CPUARMState |
| * @mmu_idx: MMU index indicating required translation regime |
| * @ap: The 3-bit access permissions (AP[2:0]) |
| * @domain_prot: The 2-bit domain access permissions |
| * @is_user: TRUE if accessing from PL0 |
| */ |
| static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, |
| int ap, int domain_prot, bool is_user) |
| { |
| if (domain_prot == 3) { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| |
| switch (ap) { |
| case 0: |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| return 0; |
| } |
| switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
| case SCTLR_S: |
| return is_user ? 0 : PAGE_READ; |
| case SCTLR_R: |
| return PAGE_READ; |
| default: |
| return 0; |
| } |
| case 1: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 2: |
| if (is_user) { |
| return PAGE_READ; |
| } else { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| case 3: |
| return PAGE_READ | PAGE_WRITE; |
| case 4: /* Reserved. */ |
| return 0; |
| case 5: |
| return is_user ? 0 : PAGE_READ; |
| case 6: |
| return PAGE_READ; |
| case 7: |
| if (!arm_feature(env, ARM_FEATURE_V6K)) { |
| return 0; |
| } |
| return PAGE_READ; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* |
| * Translate section/page access permissions to page R/W protection flags |
| * @env: CPUARMState |
| * @mmu_idx: MMU index indicating required translation regime |
| * @ap: The 3-bit access permissions (AP[2:0]) |
| * @domain_prot: The 2-bit domain access permissions |
| */ |
| static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, |
| int ap, int domain_prot) |
| { |
| return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, |
| regime_is_user(env, mmu_idx)); |
| } |
| |
| /* |
| * Translate section/page access permissions to page R/W protection flags. |
| * @ap: The 2-bit simple AP (AP[2:1]) |
| * @is_user: TRUE if accessing from PL0 |
| */ |
| static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
| { |
| switch (ap) { |
| case 0: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 1: |
| return PAGE_READ | PAGE_WRITE; |
| case 2: |
| return is_user ? 0 : PAGE_READ; |
| case 3: |
| return PAGE_READ; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) |
| { |
| return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); |
| } |
| |
| static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, |
| uint32_t address, MMUAccessType access_type, |
| GetPhysAddrResult *result, ARMMMUFaultInfo *fi) |
| { |
| int level = 1; |
| uint32_t table; |
| uint32_t desc; |
| int type; |
| int ap; |
| int domain = 0; |
| int domain_prot; |
| hwaddr phys_addr; |
| uint32_t dacr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { |
| /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| if (!S1_ptw_translate(env, ptw, table, fi)) { |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(env, ptw, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| type = (desc & 3); |
| domain = (desc >> 5) & 0x0f; |
| if (regime_el(env, ptw->in_mmu_idx) == 1) { |
| dacr = env->cp15.dacr_ns; |
| } else { |
| dacr = env->cp15.dacr_s; |
| } |
| domain_prot = (dacr >> (domain * 2)) & 3; |
| if (type == 0) { |
| /* Section translation fault. */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| if (type != 2) { |
| level = 2; |
| } |
| if (domain_prot == 0 || domain_prot == 2) { |
| fi->type = ARMFault_Domain; |
| goto do_fault; |
| } |
| if (type == 2) { |
| /* 1Mb section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| ap = (desc >> 10) & 3; |
| result->f.lg_page_size = 20; /* 1MB */ |
| } else { |
| /* Lookup l2 entry. */ |
| if (type == 1) { |
| /* Coarse pagetable. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| } else { |
| /* Fine pagetable. */ |
| table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| } |
| if (!S1_ptw_translate(env, ptw, table, fi)) { |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(env, ptw, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| result->f.lg_page_size = 16; |
| break; |
| case 2: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
| result->f.lg_page_size = 12; |
| break; |
| case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
| if (type == 1) { |
| /* ARMv6/XScale extended small page format */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE) |
| || arm_feature(env, ARM_FEATURE_V6)) { |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| result->f.lg_page_size = 12; |
| } else { |
| /* |
| * UNPREDICTABLE in ARMv5; we choose to take a |
| * page translation fault. |
| */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| } else { |
| phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| result->f.lg_page_size = 10; |
| } |
| ap = (desc >> 4) & 3; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| g_assert_not_reached(); |
| } |
| } |
| result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); |
| result->f.prot |= result->f.prot ? PAGE_EXEC : 0; |
| if (!(result->f.prot & (1 << access_type))) { |
| /* Access permission fault. */ |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| result->f.phys_addr = phys_addr; |
| return false; |
| do_fault: |
| fi->domain = domain; |
| fi->level = level; |
| return true; |
| } |
| |
| static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, |
| uint32_t address, MMUAccessType access_type, |
| GetPhysAddrResult *result, ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| int level = 1; |
| uint32_t table; |
| uint32_t desc; |
| uint32_t xn; |
| uint32_t pxn = 0; |
| int type; |
| int ap; |
| int domain = 0; |
| int domain_prot; |
| hwaddr phys_addr; |
| uint32_t dacr; |
| bool ns; |
| int user_prot; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
| /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| if (!S1_ptw_translate(env, ptw, table, fi)) { |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(env, ptw, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| type = (desc & 3); |
| if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { |
| /* Section translation fault, or attempt to use the encoding |
| * which is Reserved on implementations without PXN. |
| */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| } |
| if ((type == 1) || !(desc & (1 << 18))) { |
| /* Page or Section. */ |
| domain = (desc >> 5) & 0x0f; |
| } |
| if (regime_el(env, mmu_idx) == 1) { |
| dacr = env->cp15.dacr_ns; |
| } else { |
| dacr = env->cp15.dacr_s; |
| } |
| if (type == 1) { |
| level = 2; |
| } |
| domain_prot = (dacr >> (domain * 2)) & 3; |
| if (domain_prot == 0 || domain_prot == 2) { |
| /* Section or Page domain fault */ |
| fi->type = ARMFault_Domain; |
| goto do_fault; |
| } |
| if (type != 1) { |
| if (desc & (1 << 18)) { |
| /* Supersection. */ |
| phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
| phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; |
| result->f.lg_page_size = 24; /* 16MB */ |
| } else { |
| /* Section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| result->f.lg_page_size = 20; /* 1MB */ |
| } |
| ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| xn = desc & (1 << 4); |
| pxn = desc & 1; |
| ns = extract32(desc, 19, 1); |
| } else { |
| if (cpu_isar_feature(aa32_pxn, cpu)) { |
| pxn = (desc >> 2) & 1; |
| } |
| ns = extract32(desc, 3, 1); |
| /* Lookup l2 entry. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| if (!S1_ptw_translate(env, ptw, table, fi)) { |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(env, ptw, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| fi->type = ARMFault_Translation; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| xn = desc & (1 << 15); |
| result->f.lg_page_size = 16; |
| break; |
| case 2: case 3: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| xn = desc & 1; |
| result->f.lg_page_size = 12; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| g_assert_not_reached(); |
| } |
| } |
| if (domain_prot == 3) { |
| result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } else { |
| if (pxn && !regime_is_user(env, mmu_idx)) { |
| xn = 1; |
| } |
| if (xn && access_type == MMU_INST_FETCH) { |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V6K) && |
| (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { |
| /* The simplified model uses AP[0] as an access control bit. */ |
| if ((ap & 1) == 0) { |
| /* Access flag fault. */ |
| fi->type = ARMFault_AccessFlag; |
| goto do_fault; |
| } |
| result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); |
| user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1); |
| } else { |
| result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
| user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); |
| } |
| if (result->f.prot && !xn) { |
| result->f.prot |= PAGE_EXEC; |
| } |
| if (!(result->f.prot & (1 << access_type))) { |
| /* Access permission fault. */ |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| if (regime_is_pan(env, mmu_idx) && |
| !regime_is_user(env, mmu_idx) && |
| user_prot && |
| access_type != MMU_INST_FETCH) { |
| /* Privileged Access Never fault */ |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| } |
| if (ns) { |
| /* The NS bit will (as required by the architecture) have no effect if |
| * the CPU doesn't support TZ or this is a non-secure translation |
| * regime, because the attribute will already be non-secure. |
| */ |
| result->f.attrs.secure = false; |
| result->f.attrs.space = ARMSS_NonSecure; |
| } |
| result->f.phys_addr = phys_addr; |
| return false; |
| do_fault: |
| fi->domain = domain; |
| fi->level = level; |
| return true; |
| } |
| |
| /* |
| * Translate S2 section/page access permissions to protection flags |
| * @env: CPUARMState |
| * @s2ap: The 2-bit stage2 access permissions (S2AP) |
| * @xn: XN (execute-never) bits |
| * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 |
| */ |
| static int get_S2prot_noexecute(int s2ap) |
| { |
| int prot = 0; |
| |
| if (s2ap & 1) { |
| prot |= PAGE_READ; |
| } |
| if (s2ap & 2) { |
| prot |= PAGE_WRITE; |
| } |
| return prot; |
| } |
| |
| static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) |
| { |
| int prot = get_S2prot_noexecute(s2ap); |
| |
| if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { |
| switch (xn) { |
| case 0: |
| prot |= PAGE_EXEC; |
| break; |
| case 1: |
| if (s1_is_el0) { |
| prot |= PAGE_EXEC; |
| } |
| break; |
| case 2: |
| break; |
| case 3: |
| if (!s1_is_el0) { |
| prot |= PAGE_EXEC; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| if (!extract32(xn, 1, 1)) { |
| if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
| prot |= PAGE_EXEC; |
| } |
| } |
| } |
| return prot; |
| } |
| |
| /* |
| * Translate section/page access permissions to protection flags |
| * @env: CPUARMState |
| * @mmu_idx: MMU index indicating required translation regime |
| * @is_aa64: TRUE if AArch64 |
| * @ap: The 2-bit simple AP (AP[2:1]) |
| * @xn: XN (execute-never) bit |
| * @pxn: PXN (privileged execute-never) bit |
| * @in_pa: The original input pa space |
| * @out_pa: The output pa space, modified by NSTable, NS, and NSE |
| */ |
| static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, |
| int ap, int xn, int pxn, |
| ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| bool is_user = regime_is_user(env, mmu_idx); |
| int prot_rw, user_rw; |
| bool have_wxn; |
| int wxn = 0; |
| |
| assert(!regime_is_stage2(mmu_idx)); |
| |
| user_rw = simple_ap_to_rw_prot_is_user(ap, true); |
| if (is_user) { |
| prot_rw = user_rw; |
| } else { |
| /* |
| * PAN controls can forbid data accesses but don't affect insn fetch. |
| * Plain PAN forbids data accesses if EL0 has data permissions; |
| * PAN3 forbids data accesses if EL0 has either data or exec perms. |
| * Note that for AArch64 the 'user can exec' case is exactly !xn. |
| * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 |
| * do not affect EPAN. |
| */ |
| if (user_rw && regime_is_pan(env, mmu_idx)) { |
| prot_rw = 0; |
| } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && |
| regime_is_pan(env, mmu_idx) && |
| (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { |
| prot_rw = 0; |
| } else { |
| prot_rw = simple_ap_to_rw_prot_is_user(ap, false); |
| } |
| } |
| |
| if (in_pa != out_pa) { |
| switch (in_pa) { |
| case ARMSS_Root: |
| /* |
| * R_ZWRVD: permission fault for insn fetched from non-Root, |
| * I_WWBFB: SIF has no effect in EL3. |
| */ |
| return prot_rw; |
| case ARMSS_Realm: |
| /* |
| * R_PKTDS: permission fault for insn fetched from non-Realm, |
| * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 |
| * happens during any stage2 translation. |
| */ |
| switch (mmu_idx) { |
| case ARMMMUIdx_E2: |
| case ARMMMUIdx_E20_0: |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| return prot_rw; |
| default: |
| break; |
| } |
| break; |
| case ARMSS_Secure: |
| if (env->cp15.scr_el3 & SCR_SIF) { |
| return prot_rw; |
| } |
| break; |
| default: |
| /* Input NonSecure must have output NonSecure. */ |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* TODO have_wxn should be replaced with |
| * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) |
| * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE |
| * compatible processors have EL2, which is required for [U]WXN. |
| */ |
| have_wxn = arm_feature(env, ARM_FEATURE_LPAE); |
| |
| if (have_wxn) { |
| wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; |
| } |
| |
| if (is_aa64) { |
| if (regime_has_2_ranges(mmu_idx) && !is_user) { |
| xn = pxn || (user_rw & PAGE_WRITE); |
| } |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| switch (regime_el(env, mmu_idx)) { |
| case 1: |
| case 3: |
| if (is_user) { |
| xn = xn || !(user_rw & PAGE_READ); |
| } else { |
| int uwxn = 0; |
| if (have_wxn) { |
| uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; |
| } |
| xn = xn || !(prot_rw & PAGE_READ) || pxn || |
| (uwxn && (user_rw & PAGE_WRITE)); |
| } |
| break; |
| case 2: |
| break; |
| } |
| } else { |
| xn = wxn = 0; |
| } |
| |
| if (xn || (wxn && (prot_rw & PAGE_WRITE))) { |
| return prot_rw; |
| } |
| return prot_rw | PAGE_EXEC; |
| } |
| |
| static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, |
| ARMMMUIdx mmu_idx) |
| { |
| uint64_t tcr = regime_tcr(env, mmu_idx); |
| uint32_t el = regime_el(env, mmu_idx); |
| int select, tsz; |
| bool epd, hpd; |
| |
| assert(mmu_idx != ARMMMUIdx_Stage2_S); |
| |
| if (mmu_idx == ARMMMUIdx_Stage2) { |
| /* VTCR */ |
| bool sext = extract32(tcr, 4, 1); |
| bool sign = extract32(tcr, 3, 1); |
| |
| /* |
| * If the sign-extend bit is not the same as t0sz[3], the result |
| * is unpredictable. Flag this as a guest error. |
| */ |
| if (sign != sext) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); |
| } |
| tsz = sextract32(tcr, 0, 4) + 8; |
| select = 0; |
| hpd = false; |
| epd = false; |
| } else if (el == 2) { |
| /* HTCR */ |
| tsz = extract32(tcr, 0, 3); |
| select = 0; |
| hpd = extract64(tcr, 24, 1); |
| epd = false; |
| } else { |
| int t0sz = extract32(tcr, 0, 3); |
| int t1sz = extract32(tcr, 16, 3); |
| |
| if (t1sz == 0) { |
| select = va > (0xffffffffu >> t0sz); |
| } else { |
| /* Note that we will detect errors later. */ |
| select = va >= ~(0xffffffffu >> t1sz); |
| } |
| if (!select) { |
| tsz = t0sz; |
| epd = extract32(tcr, 7, 1); |
| hpd = extract64(tcr, 41, 1); |
| } else { |
| tsz = t1sz; |
| epd = extract32(tcr, 23, 1); |
| hpd = extract64(tcr, 42, 1); |
| } |
| /* For aarch32, hpd0 is not enabled without t2e as well. */ |
| hpd &= extract32(tcr, 6, 1); |
| } |
| |
| return (ARMVAParameters) { |
| .tsz = tsz, |
| .select = select, |
| .epd = epd, |
| .hpd = hpd, |
| }; |
| } |
| |
| /* |
| * check_s2_mmu_setup |
| * @cpu: ARMCPU |
| * @is_aa64: True if the translation regime is in AArch64 state |
| * @tcr: VTCR_EL2 or VSTCR_EL2 |
| * @ds: Effective value of TCR.DS. |
| * @iasize: Bitsize of IPAs |
| * @stride: Page-table stride (See the ARM ARM) |
| * |
| * Decode the starting level of the S2 lookup, returning INT_MIN if |
| * the configuration is invalid. |
| */ |
| static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, |
| bool ds, int iasize, int stride) |
| { |
| int sl0, sl2, startlevel, granulebits, levels; |
| int s1_min_iasize, s1_max_iasize; |
| |
| sl0 = extract32(tcr, 6, 2); |
| if (is_aa64) { |
| /* |
| * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, |
| * so interleave AArch64.S2StartLevel. |
| */ |
| switch (stride) { |
| case 9: /* 4KB */ |
| /* SL2 is RES0 unless DS=1 & 4KB granule. */ |
| sl2 = extract64(tcr, 33, 1); |
| if (ds && sl2) { |
| if (sl0 != 0) { |
| goto fail; |
| } |
| startlevel = -1; |
| } else { |
| startlevel = 2 - sl0; |
| switch (sl0) { |
| case 2: |
| if (arm_pamax(cpu) < 44) { |
| goto fail; |
| } |
| break; |
| case 3: |
| if (!cpu_isar_feature(aa64_st, cpu)) { |
| goto fail; |
| } |
| startlevel = 3; |
| break; |
| } |
| } |
| break; |
| case 11: /* 16KB */ |
| switch (sl0) { |
| case 2: |
| if (arm_pamax(cpu) < 42) { |
| goto fail; |
| } |
| break; |
| case 3: |
| if (!ds) { |
| goto fail; |
| } |
| break; |
| } |
| startlevel = 3 - sl0; |
| break; |
| case 13: /* 64KB */ |
| switch (sl0) { |
| case 2: |
| if (arm_pamax(cpu) < 44) { |
| goto fail; |
| } |
| break; |
| case 3: |
| goto fail; |
| } |
| startlevel = 3 - sl0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| /* |
| * Things are simpler for AArch32 EL2, with only 4k pages. |
| * There is no separate S2InvalidSL function, but AArch32.S2Walk |
| * begins with walkparms.sl0 in {'1x'}. |
| */ |
| assert(stride == 9); |
| if (sl0 >= 2) { |
| goto fail; |
| } |
| startlevel = 2 - sl0; |
| } |
| |
| /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ |
| levels = 3 - startlevel; |
| granulebits = stride + 3; |
| |
| s1_min_iasize = levels * stride + granulebits + 1; |
| s1_max_iasize = s1_min_iasize + (stride - 1) + 4; |
| |
| if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { |
| return startlevel; |
| } |
| |
| fail: |
| return INT_MIN; |
| } |
| |
| static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, |
| ARMGranuleSize gran, int level) |
| { |
| /* |
| * See pseudocode AArch46.BlockDescSupported(): block descriptors |
| * are not valid at all levels, depending on the page size. |
| */ |
| switch (gran) { |
| case Gran4K: |
| return (level == 0 && ds) || level == 1 || level == 2; |
| case Gran16K: |
| return (level == 1 && ds) || level == 2; |
| case Gran64K: |
| return (level == 1 && arm_pamax(cpu) == 52) || level == 2; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) |
| { |
| uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); |
| return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); |
| } |
| |
| /** |
| * get_phys_addr_lpae: perform one stage of page table walk, LPAE format |
| * |
| * Returns false if the translation was successful. Otherwise, phys_ptr, |
| * attrs, prot and page_size may not be filled in, and the populated fsr |
| * value provides information on why the translation aborted, in the format |
| * of a long-format DFSR/IFSR fault register, with the following caveat: |
| * the WnR bit is never set (the caller must do this). |
| * |
| * @env: CPUARMState |
| * @ptw: Current and next stage parameters for the walk. |
| * @address: virtual address to get physical address for |
| * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH |
| * @result: set on translation success, |
| * @fi: set to fault info if the translation fails |
| */ |
| static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, |
| uint64_t address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| int32_t level; |
| ARMVAParameters param; |
| uint64_t ttbr; |
| hwaddr descaddr, indexmask, indexmask_grainsize; |
| uint32_t tableattrs; |
| target_ulong page_size; |
| uint64_t attrs; |
| int32_t stride; |
| int addrsize, inputsize, outputsize; |
| uint64_t tcr = regime_tcr(env, mmu_idx); |
| int ap, xn, pxn; |
| uint32_t el = regime_el(env, mmu_idx); |
| uint64_t descaddrmask; |
| bool aarch64 = arm_el_is_aa64(env, el); |
| uint64_t descriptor, new_descriptor; |
| ARMSecuritySpace out_space; |
| bool device; |
| |
| /* TODO: This code does not support shareability levels. */ |
| if (aarch64) { |
| int ps; |
| |
| param = aa64_va_parameters(env, address, mmu_idx, |
| access_type != MMU_INST_FETCH, |
| !arm_el_is_aa64(env, 1)); |
| level = 0; |
| |
| /* |
| * If TxSZ is programmed to a value larger than the maximum, |
| * or smaller than the effective minimum, it is IMPLEMENTATION |
| * DEFINED whether we behave as if the field were programmed |
| * within bounds, or if a level 0 Translation fault is generated. |
| * |
| * With FEAT_LVA, fault on less than minimum becomes required, |
| * so our choice is to always raise the fault. |
| */ |
| if (param.tsz_oob) { |
| goto do_translation_fault; |
| } |
| |
| addrsize = 64 - 8 * param.tbi; |
| inputsize = 64 - param.tsz; |
| |
| /* |
| * Bound PS by PARANGE to find the effective output address size. |
| * ID_AA64MMFR0 is a read-only register so values outside of the |
| * supported mappings can be considered an implementation error. |
| */ |
| ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); |
| ps = MIN(ps, param.ps); |
| assert(ps < ARRAY_SIZE(pamax_map)); |
| outputsize = pamax_map[ps]; |
| |
| /* |
| * With LPA2, the effective output address (OA) size is at most 48 bits |
| * unless TCR.DS == 1 |
| */ |
| if (!param.ds && param.gran != Gran64K) { |
| outputsize = MIN(outputsize, 48); |
| } |
| } else { |
| param = aa32_va_parameters(env, address, mmu_idx); |
| level = 1; |
| addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); |
| inputsize = addrsize - param.tsz; |
| outputsize = 40; |
| } |
| |
| /* |
| * We determined the region when collecting the parameters, but we |
| * have not yet validated that the address is valid for the region. |
| * Extract the top bits and verify that they all match select. |
| * |
| * For aa32, if inputsize == addrsize, then we have selected the |
| * region by exclusion in aa32_va_parameters and there is no more |
| * validation to do here. |
| */ |
| if (inputsize < addrsize) { |
| target_ulong top_bits = sextract64(address, inputsize, |
| addrsize - inputsize); |
| if (-top_bits != param.select) { |
| /* The gap between the two regions is a Translation fault */ |
| goto do_translation_fault; |
| } |
| } |
| |
| stride = arm_granule_bits(param.gran) - 3; |
| |
| /* |
| * Note that QEMU ignores shareability and cacheability attributes, |
| * so we don't need to do anything with the SH, ORGN, IRGN fields |
| * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the |
| * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently |
| * implement any ASID-like capability so we can ignore it (instead |
| * we will always flush the TLB any time the ASID is changed). |
| */ |
| ttbr = regime_ttbr(env, mmu_idx, param.select); |
| |
| /* |
| * Here we should have set up all the parameters for the translation: |
| * inputsize, ttbr, epd, stride, tbi |
| */ |
| |
| if (param.epd) { |
| /* |
| * Translation table walk disabled => Translation fault on TLB miss |
| * Note: This is always 0 on 64-bit EL2 and EL3. |
| */ |
| goto do_translation_fault; |
| } |
| |
| if (!regime_is_stage2(mmu_idx)) { |
| /* |
| * The starting level depends on the virtual address size (which can |
| * be up to 48 bits) and the translation granule size. It indicates |
| * the number of strides (stride bits at a time) needed to |
| * consume the bits of the input address. In the pseudocode this is: |
| * level = 4 - RoundUp((inputsize - grainsize) / stride) |
| * where their 'inputsize' is our 'inputsize', 'grainsize' is |
| * our 'stride + 3' and 'stride' is our 'stride'. |
| * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: |
| * = 4 - (inputsize - stride - 3 + stride - 1) / stride |
| * = 4 - (inputsize - 4) / stride; |
| */ |
| level = 4 - (inputsize - 4) / stride; |
| } else { |
| int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, |
| inputsize, stride); |
| if (startlevel == INT_MIN) { |
| level = 0; |
| goto do_translation_fault; |
| } |
| level = startlevel; |
| } |
| |
| indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); |
| indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); |
| |
| /* Now we can extract the actual base address from the TTBR */ |
| descaddr = extract64(ttbr, 0, 48); |
| |
| /* |
| * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. |
| * |
| * Otherwise, if the base address is out of range, raise AddressSizeFault. |
| * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), |
| * but we've just cleared the bits above 47, so simplify the test. |
| */ |
| if (outputsize > 48) { |
| descaddr |= extract64(ttbr, 2, 4) << 48; |
| } else if (descaddr >> outputsize) { |
| level = 0; |
| fi->type = ARMFault_AddressSize; |
| goto do_fault; |
| } |
| |
| /* |
| * We rely on this masking to clear the RES0 bits at the bottom of the TTBR |
| * and also to mask out CnP (bit 0) which could validly be non-zero. |
| */ |
| descaddr &= ~indexmask; |
| |
| /* |
| * For AArch32, the address field in the descriptor goes up to bit 39 |
| * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 |
| * or an AddressSize fault is raised. So for v8 we extract those SBZ |
| * bits as part of the address, which will be checked via outputsize. |
| * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; |
| * the highest bits of a 52-bit output are placed elsewhere. |
| */ |
| if (param.ds) { |
| descaddrmask = MAKE_64BIT_MASK(0, 50); |
| } else if (arm_feature(env, ARM_FEATURE_V8)) { |
| descaddrmask = MAKE_64BIT_MASK(0, 48); |
| } else { |
| descaddrmask = MAKE_64BIT_MASK(0, 40); |
| } |
| descaddrmask &= ~indexmask_grainsize; |
| tableattrs = 0; |
| |
| next_level: |
| descaddr |= (address >> (stride * (4 - level))) & indexmask; |
| descaddr &= ~7ULL; |
| |
| /* |
| * Process the NSTable bit from the previous level. This changes |
| * the table address space and the output space from Secure to |
| * NonSecure. With RME, the EL3 translation regime does not change |
| * from Root to NonSecure. |
| */ |
| if (ptw->in_space == ARMSS_Secure |
| && !regime_is_stage2(mmu_idx) |
| && extract32(tableattrs, 4, 1)) { |
| /* |
| * Stage2_S -> Stage2 or Phys_S -> Phys_NS |
| * Assert the relative order of the secure/non-secure indexes. |
| */ |
| QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); |
| QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); |
| ptw->in_ptw_idx += 1; |
| ptw->in_space = ARMSS_NonSecure; |
| } |
| |
| if (!S1_ptw_translate(env, ptw, descaddr, fi)) { |
| goto do_fault; |
| } |
| descriptor = arm_ldq_ptw(env, ptw, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| new_descriptor = descriptor; |
| |
| restart_atomic_update: |
| if (!(descriptor & 1) || |
| (!(descriptor & 2) && |
| !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { |
| /* Invalid, or a block descriptor at an invalid level */ |
| goto do_translation_fault; |
| } |
| |
| descaddr = descriptor & descaddrmask; |
| |
| /* |
| * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] |
| * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of |
| * descaddr are in [9:8]. Otherwise, if descaddr is out of range, |
| * raise AddressSizeFault. |
| */ |
| if (outputsize > 48) { |
| if (param.ds) { |
| descaddr |= extract64(descriptor, 8, 2) << 50; |
| } else { |
| descaddr |= extract64(descriptor, 12, 4) << 48; |
| } |
| } else if (descaddr >> outputsize) { |
| fi->type = ARMFault_AddressSize; |
| goto do_fault; |
| } |
| |
| if ((descriptor & 2) && (level < 3)) { |
| /* |
| * Table entry. The top five bits are attributes which may |
| * propagate down through lower levels of the table (and |
| * which are all arranged so that 0 means "no effect", so |
| * we can gather them up by ORing in the bits at each level). |
| */ |
| tableattrs |= extract64(descriptor, 59, 5); |
| level++; |
| indexmask = indexmask_grainsize; |
| goto next_level; |
| } |
| |
| /* |
| * Block entry at level 1 or 2, or page entry at level 3. |
| * These are basically the same thing, although the number |
| * of bits we pull in from the vaddr varies. Note that although |
| * descaddrmask masks enough of the low bits of the descriptor |
| * to give a correct page or table address, the address field |
| * in a block descriptor is smaller; so we need to explicitly |
| * clear the lower bits here before ORing in the low vaddr bits. |
| * |
| * Afterward, descaddr is the final physical address. |
| */ |
| page_size = (1ULL << ((stride * (4 - level)) + 3)); |
| descaddr &= ~(hwaddr)(page_size - 1); |
| descaddr |= (address & (page_size - 1)); |
| |
| if (likely(!ptw->in_debug)) { |
| /* |
| * Access flag. |
| * If HA is enabled, prepare to update the descriptor below. |
| * Otherwise, pass the access fault on to software. |
| */ |
| if (!(descriptor & (1 << 10))) { |
| if (param.ha) { |
| new_descriptor |= 1 << 10; /* AF */ |
| } else { |
| fi->type = ARMFault_AccessFlag; |
| goto do_fault; |
| } |
| } |
| |
| /* |
| * Dirty Bit. |
| * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP |
| * bit for writeback. The actual write protection test may still be |
| * overridden by tableattrs, to be merged below. |
| */ |
| if (param.hd |
| && extract64(descriptor, 51, 1) /* DBM */ |
| && access_type == MMU_DATA_STORE) { |
| if (regime_is_stage2(mmu_idx)) { |
| new_descriptor |= 1ull << 7; /* set S2AP[1] */ |
| } else { |
| new_descriptor &= ~(1ull << 7); /* clear AP[2] */ |
| } |
| } |
| } |
| |
| /* |
| * Extract attributes from the (modified) descriptor, and apply |
| * table descriptors. Stage 2 table descriptors do not include |
| * any attribute fields. HPD disables all the table attributes |
| * except NSTable (which we have already handled). |
| */ |
| attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); |
| if (!regime_is_stage2(mmu_idx)) { |
| if (!param.hpd) { |
| attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ |
| /* |
| * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
| * means "force PL1 access only", which means forcing AP[1] to 0. |
| */ |
| attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ |
| attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ |
| } |
| } |
| |
| ap = extract32(attrs, 6, 2); |
| out_space = ptw->in_space; |
| if (regime_is_stage2(mmu_idx)) { |
| /* |
| * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. |
| * The bit remains ignored for other security states. |
| * R_YMCSL: Executing an insn fetched from non-Realm causes |
| * a stage2 permission fault. |
| */ |
| if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { |
| out_space = ARMSS_NonSecure; |
| result->f.prot = get_S2prot_noexecute(ap); |
| } else { |
| xn = extract64(attrs, 53, 2); |
| result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); |
| } |
| } else { |
| int nse, ns = extract32(attrs, 5, 1); |
| switch (out_space) { |
| case ARMSS_Root: |
| /* |
| * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. |
| * R_XTYPW: NSE and NS together select the output pa space. |
| */ |
| nse = extract32(attrs, 11, 1); |
| out_space = (nse << 1) | ns; |
| if (out_space == ARMSS_Secure && |
| !cpu_isar_feature(aa64_sel2, cpu)) { |
| out_space = ARMSS_NonSecure; |
| } |
| break; |
| case ARMSS_Secure: |
| if (ns) { |
| out_space = ARMSS_NonSecure; |
| } |
| break; |
| case ARMSS_Realm: |
| switch (mmu_idx) { |
| case ARMMMUIdx_Stage1_E0: |
| case ARMMMUIdx_Stage1_E1: |
| case ARMMMUIdx_Stage1_E1_PAN: |
| /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ |
| break; |
| case ARMMMUIdx_E2: |
| case ARMMMUIdx_E20_0: |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| /* |
| * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, |
| * NS changes the output to non-secure space. |
| */ |
| if (ns) { |
| out_space = ARMSS_NonSecure; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| case ARMSS_NonSecure: |
| /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| xn = extract64(attrs, 54, 1); |
| pxn = extract64(attrs, 53, 1); |
| |
| if (el == 1 && nv_nv1_enabled(env, ptw)) { |
| /* |
| * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page |
| * descriptor bit 54 holds PXN, 53 is RES0, and the effective value |
| * of UXN is 0. Similarly for bits 59 and 60 in table descriptors |
| * (which we have already folded into bits 53 and 54 of attrs). |
| * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. |
| * Similarly, APTable[0] from the table descriptor is treated as 0; |
| * we already folded this into AP[1] and squashing that to 0 does |
| * the right thing. |
| */ |
| pxn = xn; |
| xn = 0; |
| ap &= ~1; |
| } |
| /* |
| * Note that we modified ptw->in_space earlier for NSTable, but |
| * result->f.attrs retains a copy of the original security space. |
| */ |
| result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn, |
| result->f.attrs.space, out_space); |
| } |
| |
| if (!(result->f.prot & (1 << access_type))) { |
| fi->type = ARMFault_Permission; |
| goto do_fault; |
| } |
| |
| /* If FEAT_HAFDBS has made changes, update the PTE. */ |
| if (new_descriptor != descriptor) { |
| new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); |
| if (fi->type != ARMFault_None) { |
| goto do_fault; |
| } |
| /* |
| * I_YZSVV says that if the in-memory descriptor has changed, |
| * then we must use the information in that new value |
| * (which might include a different output address, different |
| * attributes, or generate a fault). |
| * Restart the handling of the descriptor value from scratch. |
| */ |
| if (new_descriptor != descriptor) { |
| descriptor = new_descriptor; |
| goto restart_atomic_update; |
| } |
| } |
| |
| result->f.attrs.space = out_space; |
| result->f.attrs.secure = arm_space_is_secure(out_space); |
| |
| if (regime_is_stage2(mmu_idx)) { |
| result->cacheattrs.is_s2_format = true; |
| result->cacheattrs.attrs = extract32(attrs, 2, 4); |
| /* |
| * Security state does not really affect HCR_EL2.FWB; |
| * we only need to filter FWB for aa32 or other FEAT. |
| */ |
| device = S2_attrs_are_device(arm_hcr_el2_eff(env), |
| result->cacheattrs.attrs); |
| } else { |
| /* Index into MAIR registers for cache attributes */ |
| uint8_t attrindx = extract32(attrs, 2, 3); |
| uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; |
| assert(attrindx <= 7); |
| result->cacheattrs.is_s2_format = false; |
| result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); |
| |
| /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ |
| if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { |
| result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ |
| } |
| device = S1_attrs_are_device(result->cacheattrs.attrs); |
| } |
| |
| /* |
| * Enable alignment checks on Device memory. |
| * |
| * Per R_XCHFJ, this check is mis-ordered. The correct ordering |
| * for alignment, permission, and stage 2 faults should be: |
| * - Alignment fault caused by the memory type |
| * - Permission fault |
| * - A stage 2 fault on the memory access |
| * but due to the way the TCG softmmu TLB operates, we will have |
| * implicitly done the permission check and the stage2 lookup in |
| * finding the TLB entry, so the alignment check cannot be done sooner. |
| * |
| * In v7, for a CPU without the Virtualization Extensions this |
| * access is UNPREDICTABLE; we choose to make it take the alignment |
| * fault as is required for a v7VE CPU. (QEMU doesn't emulate any |
| * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.) |
| */ |
| if (device) { |
| result->f.tlb_fill_flags |= TLB_CHECK_ALIGNED; |
| } |
| |
| /* |
| * For FEAT_LPA2 and effective DS, the SH field in the attributes |
| * was re-purposed for output address bits. The SH attribute in |
| * that case comes from TCR_ELx, which we extracted earlier. |
| */ |
| if (param.ds) { |
| result->cacheattrs.shareability = param.sh; |
| } else { |
| result->cacheattrs.shareability = extract32(attrs, 8, 2); |
| } |
| |
| result->f.phys_addr = descaddr; |
| result->f.lg_page_size = ctz64(page_size); |
| return false; |
| |
| do_translation_fault: |
| fi->type = ARMFault_Translation; |
| do_fault: |
| if (fi->s1ptw) { |
| /* Retain the existing stage 2 fi->level */ |
| assert(fi->stage2); |
| } else { |
| fi->level = level; |
| fi->stage2 = regime_is_stage2(mmu_idx); |
| } |
| fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); |
| return true; |
| } |
| |
| static bool get_phys_addr_pmsav5(CPUARMState *env, |
| S1Translate *ptw, |
| uint32_t address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| int n; |
| uint32_t mask; |
| uint32_t base; |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| bool is_user = regime_is_user(env, mmu_idx); |
| |
| if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { |
| /* MPU disabled. */ |
| result->f.phys_addr = address; |
| result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return false; |
| } |
| |
| result->f.phys_addr = address; |
| for (n = 7; n >= 0; n--) { |
| base = env->cp15.c6_region[n]; |
| if ((base & 1) == 0) { |
| continue; |
| } |
| mask = 1 << ((base >> 1) & 0x1f); |
| /* Keep this shift separate from the above to avoid an |
| (undefined) << 32. */ |
| mask = (mask << 1) - 1; |
| if (((base ^ address) & ~mask) == 0) { |
| break; |
| } |
| } |
| if (n < 0) { |
| fi->type = ARMFault_Background; |
| return true; |
| } |
| |
| if (access_type == MMU_INST_FETCH) { |
| mask = env->cp15.pmsav5_insn_ap; |
| } else { |
| mask = env->cp15.pmsav5_data_ap; |
| } |
| mask = (mask >> (n * 4)) & 0xf; |
| switch (mask) { |
| case 0: |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| case 1: |
| if (is_user) { |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| } |
| result->f.prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 2: |
| result->f.prot = PAGE_READ; |
| if (!is_user) { |
| result->f.prot |= PAGE_WRITE; |
| } |
| break; |
| case 3: |
| result->f.prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 5: |
| if (is_user) { |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| } |
| result->f.prot = PAGE_READ; |
| break; |
| case 6: |
| result->f.prot = PAGE_READ; |
| break; |
| default: |
| /* Bad permission. */ |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return true; |
| } |
| result->f.prot |= PAGE_EXEC; |
| return false; |
| } |
| |
| static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, |
| int32_t address, uint8_t *prot) |
| { |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| *prot = PAGE_READ | PAGE_WRITE; |
| switch (address) { |
| case 0xF0000000 ... 0xFFFFFFFF: |
| if (regime_sctlr(env, mmu_idx) & SCTLR_V) { |
| /* hivecs execing is ok */ |
| *prot |= PAGE_EXEC; |
| } |
| break; |
| case 0x00000000 ... 0x7FFFFFFF: |
| *prot |= PAGE_EXEC; |
| break; |
| } |
| } else { |
| /* Default system address map for M profile cores. |
| * The architecture specifies which regions are execute-never; |
| * at the MPU level no other checks are defined. |
| */ |
| switch (address) { |
| case 0x00000000 ... 0x1fffffff: /* ROM */ |
| case 0x20000000 ... 0x3fffffff: /* SRAM */ |
| case 0x60000000 ... 0x7fffffff: /* RAM */ |
| case 0x80000000 ... 0x9fffffff: /* RAM */ |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| break; |
| case 0x40000000 ... 0x5fffffff: /* Peripheral */ |
| case 0xa0000000 ... 0xbfffffff: /* Device */ |
| case 0xc0000000 ... 0xdfffffff: /* Device */ |
| case 0xe0000000 ... 0xffffffff: /* System */ |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| } |
| |
| static bool m_is_ppb_region(CPUARMState *env, uint32_t address) |
| { |
| /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ |
| return arm_feature(env, ARM_FEATURE_M) && |
| extract32(address, 20, 12) == 0xe00; |
| } |
| |
| static bool m_is_system_region(CPUARMState *env, uint32_t address) |
| { |
| /* |
| * True if address is in the M profile system region |
| * 0xe0000000 - 0xffffffff |
| */ |
| return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; |
| } |
| |
| static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, |
| bool is_secure, bool is_user) |
| { |
| /* |
| * Return true if we should use the default memory map as a |
| * "background" region if there are no hits against any MPU regions. |
| */ |
| CPUARMState *env = &cpu->env; |
| |
| if (is_user) { |
| return false; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; |
| } |
| |
| if (mmu_idx == ARMMMUIdx_Stage2) { |
| return false; |
| } |
| |
| return regime_sctlr(env, mmu_idx) & SCTLR_BR; |
| } |
| |
| static bool get_phys_addr_pmsav7(CPUARMState *env, |
| S1Translate *ptw, |
| uint32_t address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| int n; |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| bool is_user = regime_is_user(env, mmu_idx); |
| bool secure = arm_space_is_secure(ptw->in_space); |
| |
| result->f.phys_addr = address; |
| result->f.lg_page_size = TARGET_PAGE_BITS; |
| result->f.prot = 0; |
| |
| if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || |
| m_is_ppb_region(env, address)) { |
| /* |
| * MPU disabled or M profile PPB access: use default memory map. |
| * The other case which uses the default memory map in the |
| * v7M ARM ARM pseudocode is exception vector reads from the vector |
| * table. In QEMU those accesses are done in arm_v7m_load_vector(), |
| * which always does a direct read using address_space_ldl(), rather |
| * than going via this function, so we don't need to check that here. |
| */ |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); |
| } else { /* MPU enabled */ |
| for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
| /* region search */ |
| uint32_t base = env->pmsav7.drbar[n]; |
| uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); |
| uint32_t rmask; |
| bool srdis = false; |
| |
| if (!(env->pmsav7.drsr[n] & 0x1)) { |
| continue; |
| } |
| |
| if (!rsize) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRSR[%d]: Rsize field cannot be 0\n", n); |
| continue; |
| } |
| rsize++; |
| rmask = (1ull << rsize) - 1; |
| |
| if (base & rmask) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRBAR[%d]: 0x%" PRIx32 " misaligned " |
| "to DRSR region size, mask = 0x%" PRIx32 "\n", |
| n, base, rmask); |
| continue; |
| } |
| |
| if (address < base || address > base + rmask) { |
| /* |
| * Address not in this region. We must check whether the |
| * region covers addresses in the same page as our address. |
| * In that case we must not report a size that covers the |
| * whole page for a subsequent hit against a different MPU |
| * region or the background region, because it would result in |
| * incorrect TLB hits for subsequent accesses to addresses that |
| * are in this MPU region. |
| */ |
| if (ranges_overlap(base, rmask, |
| address & TARGET_PAGE_MASK, |
| TARGET_PAGE_SIZE)) { |
| result->f.lg_page_size = 0; |
| } |
| continue; |
| } |
| |
| /* Region matched */ |
| |
| if (rsize >= 8) { /* no subregions for regions < 256 bytes */ |
| int i, snd; |
| uint32_t srdis_mask; |
| |
| rsize -= 3; /* sub region size (power of 2) */ |
| snd = ((address - base) >> rsize) & 0x7; |
| srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); |
| |
| srdis_mask = srdis ? 0x3 : 0x0; |
| for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { |
| /* |
| * This will check in groups of 2, 4 and then 8, whether |
| * the subregion bits are consistent. rsize is incremented |
| * back up to give the region size, considering consistent |
| * adjacent subregions as one region. Stop testing if rsize |
| * is already big enough for an entire QEMU page. |
| */ |
| int snd_rounded = snd & ~(i - 1); |
| uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], |
| snd_rounded + 8, i); |
| if (srdis_mask ^ srdis_multi) { |
| break; |
| } |
| srdis_mask = (srdis_mask << i) | srdis_mask; |
| rsize++; |
| } |
| } |
| if (srdis) { |
| continue; |
| } |
| if (rsize < TARGET_PAGE_BITS) { |
| result->f.lg_page_size = rsize; |
| } |
| break; |
| } |
| |
| if (n == -1) { /* no hits */ |
| if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { |
| /* background fault */ |
| fi->type = ARMFault_Background; |
| return true; |
| } |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, |
| &result->f.prot); |
| } else { /* a MPU hit! */ |
| uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); |
| uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); |
| |
| if (m_is_system_region(env, address)) { |
| /* System space is always execute never */ |
| xn = 1; |
| } |
| |
| if (is_user) { /* User mode AP bit decoding */ |
| switch (ap) { |
| case 0: |
| case 1: |
| case 5: |
| break; /* no access */ |
| case 3: |
| result->f.prot |= PAGE_WRITE; |
| /* fall through */ |
| case 2: |
| case 6: |
| result->f.prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| case 7: |
| /* for v7M, same as 6; for R profile a reserved value */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| result->f.prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| } |
| /* fall through */ |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRACR[%d]: Bad value for AP bits: 0x%" |
| PRIx32 "\n", n, ap); |
| } |
| } else { /* Priv. mode AP bits decoding */ |
| switch (ap) { |
| case 0: |
| break; /* no access */ |
| case 1: |
| case 2: |
| case 3: |
| result->f.prot |= PAGE_WRITE; |
| /* fall through */ |
| case 5: |
| case 6: |
| result->f.prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| case 7: |
| /* for v7M, same as 6; for R profile a reserved value */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| result->f.prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| } |
| /* fall through */ |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "DRACR[%d]: Bad value for AP bits: 0x%" |
| PRIx32 "\n", n, ap); |
| } |
| } |
| |
| /* execute never */ |
| if (xn) { |
| result->f.prot &= ~PAGE_EXEC; |
| } |
| } |
| } |
| |
| fi->type = ARMFault_Permission; |
| fi->level = 1; |
| return !(result->f.prot & (1 << access_type)); |
| } |
| |
| static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, |
| uint32_t secure) |
| { |
| if (regime_el(env, mmu_idx) == 2) { |
| return env->pmsav8.hprbar; |
| } else { |
| return env->pmsav8.rbar[secure]; |
| } |
| } |
| |
| static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, |
| uint32_t secure) |
| { |
| if (regime_el(env, mmu_idx) == 2) { |
| return env->pmsav8.hprlar; |
| } else { |
| return env->pmsav8.rlar[secure]; |
| } |
| } |
| |
| bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| bool secure, GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi, uint32_t *mregion) |
| { |
| /* |
| * Perform a PMSAv8 MPU lookup (without also doing the SAU check |
| * that a full phys-to-virt translation does). |
| * mregion is (if not NULL) set to the region number which matched, |
| * or -1 if no region number is returned (MPU off, address did not |
| * hit a region, address hit in multiple regions). |
| * If the region hit doesn't cover the entire TARGET_PAGE the address |
| * is within, then we set the result page_size to 1 to force the |
| * memory system to use a subpage. |
| */ |
| ARMCPU *cpu = env_archcpu(env); |
| bool is_user = regime_is_user(env, mmu_idx); |
| int n; |
| int matchregion = -1; |
| bool hit = false; |
| uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
| uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); |
| int region_counter; |
| |
| if (regime_el(env, mmu_idx) == 2) { |
| region_counter = cpu->pmsav8r_hdregion; |
| } else { |
| region_counter = cpu->pmsav7_dregion; |
| } |
| |
| result->f.lg_page_size = TARGET_PAGE_BITS; |
| result->f.phys_addr = address; |
| result->f.prot = 0; |
| if (mregion) { |
| *mregion = -1; |
| } |
| |
| if (mmu_idx == ARMMMUIdx_Stage2) { |
| fi->stage2 = true; |
| } |
| |
| /* |
| * Unlike the ARM ARM pseudocode, we don't need to check whether this |
| * was an exception vector read from the vector table (which is always |
| * done using the default system address map), because those accesses |
| * are done in arm_v7m_load_vector(), which always does a direct |
| * read using address_space_ldl(), rather than going via this function. |
| */ |
| if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { |
| /* MPU disabled */ |
| hit = true; |
| } else if (m_is_ppb_region(env, address)) { |
| hit = true; |
| } else { |
| if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { |
| hit = true; |
| } |
| |
| uint32_t bitmask; |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| bitmask = 0x1f; |
| } else { |
| bitmask = 0x3f; |
| fi->level = 0; |
| } |
| |
| for (n = region_counter - 1; n >= 0; n--) { |
| /* region search */ |
| /* |
| * Note that the base address is bits [31:x] from the register |
| * with bits [x-1:0] all zeroes, but the limit address is bits |
| * [31:x] from the register with bits [x:0] all ones. Where x is |
| * 5 for Cortex-M and 6 for Cortex-R |
| */ |
| uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; |
| uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; |
| |
| if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { |
| /* Region disabled */ |
| continue; |
| } |
| |
| if (address < base || address > limit) { |
| /* |
| * Address not in this region. We must check whether the |
| * region covers addresses in the same page as our address. |
| * In that case we must not report a size that covers the |
| * whole page for a subsequent hit against a different MPU |
| * region or the background region, because it would result in |
| * incorrect TLB hits for subsequent accesses to addresses that |
| * are in this MPU region. |
| */ |
| if (limit >= base && |
| ranges_overlap(base, limit - base + 1, |
| addr_page_base, |
| TARGET_PAGE_SIZE)) { |
| result->f.lg_page_size = 0; |
| } |
| continue; |
| } |
| |
| if (base > addr_page_base || limit < addr_page_limit) { |
| result->f.lg_page_size = 0; |
| } |
| |
| if (matchregion != -1) { |
| /* |
| * Multiple regions match -- always a failure (unlike |
| * PMSAv7 where highest-numbered-region wins) |
| */ |
| fi->type = ARMFault_Permission; |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| fi->level = 1; |
| } |
| return true; |
| } |
| |
| matchregion = n; |
| hit = true; |
| } |
| } |
| |
| if (!hit) { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| fi->type = ARMFault_Background; |
| } else { |
| fi->type = ARMFault_Permission; |
| } |
| return true; |
| } |
| |
| if (matchregion == -1) { |
| /* hit using the background region */ |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); |
| } else { |
| uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; |
| uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; |
| uint32_t ap = extract32(matched_rbar, 1, 2); |
| uint32_t xn = extract32(matched_rbar, 0, 1); |
| bool pxn = false; |
| |
| if (arm_feature(env, ARM_FEATURE_V8_1M)) { |
| pxn = extract32(matched_rlar, 4, 1); |
| } |
| |
| if (m_is_system_region(env, address)) { |
| /* System space is always execute never */ |
| xn = 1; |
| } |
| |
| if (regime_el(env, mmu_idx) == 2) { |
| result->f.prot = simple_ap_to_rw_prot_is_user(ap, |
| mmu_idx != ARMMMUIdx_E2); |
| } else { |
| result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); |
| } |
| |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| uint8_t attrindx = extract32(matched_rlar, 1, 3); |
| uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; |
| uint8_t sh = extract32(matched_rlar, 3, 2); |
| |
| if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && |
| result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { |
| xn = 0x1; |
| } |
| |
| if ((regime_el(env, mmu_idx) == 1) && |
| regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { |
| pxn = 0x1; |
| } |
| |
| result->cacheattrs.is_s2_format = false; |
| result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); |
| result->cacheattrs.shareability = sh; |
| } |
| |
| if (result->f.prot && !xn && !(pxn && !is_user)) { |
| result->f.prot |= PAGE_EXEC; |
| } |
| |
| if (mregion) { |
| *mregion = matchregion; |
| } |
| } |
| |
| fi->type = ARMFault_Permission; |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| fi->level = 1; |
| } |
| return !(result->f.prot & (1 << access_type)); |
| } |
| |
| static bool v8m_is_sau_exempt(CPUARMState *env, |
| uint32_t address, MMUAccessType access_type) |
| { |
| /* |
| * The architecture specifies that certain address ranges are |
| * exempt from v8M SAU/IDAU checks. |
| */ |
| return |
| (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || |
| (address >= 0xe0000000 && address <= 0xe0002fff) || |
| (address >= 0xe000e000 && address <= 0xe000efff) || |
| (address >= 0xe002e000 && address <= 0xe002efff) || |
| (address >= 0xe0040000 && address <= 0xe0041fff) || |
| (address >= 0xe00ff000 && address <= 0xe00fffff); |
| } |
| |
| void v8m_security_lookup(CPUARMState *env, uint32_t address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| bool is_secure, V8M_SAttributes *sattrs) |
| { |
| /* |
| * Look up the security attributes for this address. Compare the |
| * pseudocode SecurityCheck() function. |
| * We assume the caller has zero-initialized *sattrs. |
| */ |
| ARMCPU *cpu = env_archcpu(env); |
| int r; |
| bool idau_exempt = false, idau_ns = true, idau_nsc = true; |
| int idau_region = IREGION_NOTVALID; |
| uint32_t addr_page_base = address & TARGET_PAGE_MASK; |
| uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); |
| |
| if (cpu->idau) { |
| IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); |
| IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); |
| |
| iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, |
| &idau_nsc); |
| } |
| |
| if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { |
| /* 0xf0000000..0xffffffff is always S for insn fetches */ |
| return; |
| } |
| |
| if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { |
| sattrs->ns = !is_secure; |
| return; |
| } |
| |
| if (idau_region != IREGION_NOTVALID) { |
| sattrs->irvalid = true; |
| sattrs->iregion = idau_region; |
| } |
| |
| switch (env->sau.ctrl & 3) { |
| case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ |
| break; |
| case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ |
| sattrs->ns = true; |
| break; |
| default: /* SAU.ENABLE == 1 */ |
| for (r = 0; r < cpu->sau_sregion; r++) { |
| if (env->sau.rlar[r] & 1) { |
| uint32_t base = env->sau.rbar[r] & ~0x1f; |
| uint32_t limit = env->sau.rlar[r] | 0x1f; |
| |
| if (base <= address && limit >= address) { |
| if (base > addr_page_base || limit < addr_page_limit) { |
| sattrs->subpage = true; |
| } |
| if (sattrs->srvalid) { |
| /* |
| * If we hit in more than one region then we must report |
| * as Secure, not NS-Callable, with no valid region |
| * number info. |
| */ |
| sattrs->ns = false; |
| sattrs->nsc = false; |
| sattrs->sregion = 0; |
| sattrs->srvalid = false; |
| break; |
| } else { |
| if (env->sau.rlar[r] & 2) { |
| sattrs->nsc = true; |
| } else { |
| sattrs->ns = true; |
| } |
| sattrs->srvalid = true; |
| sattrs->sregion = r; |
| } |
| } else { |
| /* |
| * Address not in this region. We must check whether the |
| * region covers addresses in the same page as our address. |
| * In that case we must not report a size that covers the |
| * whole page for a subsequent hit against a different MPU |
| * region or the background region, because it would result |
| * in incorrect TLB hits for subsequent accesses to |
| * addresses that are in this MPU region. |
| */ |
| if (limit >= base && |
| ranges_overlap(base, limit - base + 1, |
| addr_page_base, |
| TARGET_PAGE_SIZE)) { |
| sattrs->subpage = true; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| /* |
| * The IDAU will override the SAU lookup results if it specifies |
| * higher security than the SAU does. |
| */ |
| if (!idau_ns) { |
| if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { |
| sattrs->ns = false; |
| sattrs->nsc = idau_nsc; |
| } |
| } |
| } |
| |
| static bool get_phys_addr_pmsav8(CPUARMState *env, |
| S1Translate *ptw, |
| uint32_t address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| V8M_SAttributes sattrs = {}; |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| bool secure = arm_space_is_secure(ptw->in_space); |
| bool ret; |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| v8m_security_lookup(env, address, access_type, mmu_idx, |
| secure, &sattrs); |
| if (access_type == MMU_INST_FETCH) { |
| /* |
| * Instruction fetches always use the MMU bank and the |
| * transaction attribute determined by the fetch address, |
| * regardless of CPU state. This is painful for QEMU |
| * to handle, because it would mean we need to encode |
| * into the mmu_idx not just the (user, negpri) information |
| * for the current security state but also that for the |
| * other security state, which would balloon the number |
| * of mmu_idx values needed alarmingly. |
| * Fortunately we can avoid this because it's not actually |
| * possible to arbitrarily execute code from memory with |
| * the wrong security attribute: it will always generate |
| * an exception of some kind or another, apart from the |
| * special case of an NS CPU executing an SG instruction |
| * in S&NSC memory. So we always just fail the translation |
| * here and sort things out in the exception handler |
| * (including possibly emulating an SG instruction). |
| */ |
| if (sattrs.ns != !secure) { |
| if (sattrs.nsc) { |
| fi->type = ARMFault_QEMU_NSCExec; |
| } else { |
| fi->type = ARMFault_QEMU_SFault; |
| } |
| result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; |
| result->f.phys_addr = address; |
| result->f.prot = 0; |
| return true; |
| } |
| } else { |
| /* |
| * For data accesses we always use the MMU bank indicated |
| * by the current CPU state, but the security attributes |
| * might downgrade a secure access to nonsecure. |
| */ |
| if (sattrs.ns) { |
| result->f.attrs.secure = false; |
| result->f.attrs.space = ARMSS_NonSecure; |
| } else if (!secure) { |
| /* |
| * NS access to S memory must fault. |
| * Architecturally we should first check whether the |
| * MPU information for this address indicates that we |
| * are doing an unaligned access to Device memory, which |
| * should generate a UsageFault instead. QEMU does not |
| * currently check for that kind of unaligned access though. |
| * If we added it we would need to do so as a special case |
| * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). |
| */ |
| fi->type = ARMFault_QEMU_SFault; |
| result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; |
| result->f.phys_addr = address; |
| result->f.prot = 0; |
| return true; |
| } |
| } |
| } |
| |
| ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, |
| result, fi, NULL); |
| if (sattrs.subpage) { |
| result->f.lg_page_size = 0; |
| } |
| return ret; |
| } |
| |
| /* |
| * Translate from the 4-bit stage 2 representation of |
| * memory attributes (without cache-allocation hints) to |
| * the 8-bit representation of the stage 1 MAIR registers |
| * (which includes allocation hints). |
| * |
| * ref: shared/translation/attrs/S2AttrDecode() |
| * .../S2ConvertAttrsHints() |
| */ |
| static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) |
| { |
| uint8_t hiattr = extract32(s2attrs, 2, 2); |
| uint8_t loattr = extract32(s2attrs, 0, 2); |
| uint8_t hihint = 0, lohint = 0; |
| |
| if (hiattr != 0) { /* normal memory */ |
| if (hcr & HCR_CD) { /* cache disabled */ |
| hiattr = loattr = 1; /* non-cacheable */ |
| } else { |
| if (hiattr != 1) { /* Write-through or write-back */ |
| hihint = 3; /* RW allocate */ |
| } |
| if (loattr != 1) { /* Write-through or write-back */ |
| lohint = 3; /* RW allocate */ |
| } |
| } |
| } |
| |
| return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; |
| } |
| |
| /* |
| * Combine either inner or outer cacheability attributes for normal |
| * memory, according to table D4-42 and pseudocode procedure |
| * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). |
| * |
| * NB: only stage 1 includes allocation hints (RW bits), leading to |
| * some asymmetry. |
| */ |
| static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) |
| { |
| if (s1 == 4 || s2 == 4) { |
| /* non-cacheable has precedence */ |
| return 4; |
| } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { |
| /* stage 1 write-through takes precedence */ |
| return s1; |
| } else if (extract32(s2, 2, 2) == 2) { |
| /* stage 2 write-through takes precedence, but the allocation hint |
| * is still taken from stage 1 |
| */ |
| return (2 << 2) | extract32(s1, 0, 2); |
| } else { /* write-back */ |
| return s1; |
| } |
| } |
| |
| /* |
| * Combine the memory type and cacheability attributes of |
| * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the |
| * combined attributes in MAIR_EL1 format. |
| */ |
| static uint8_t combined_attrs_nofwb(uint64_t hcr, |
| ARMCacheAttrs s1, ARMCacheAttrs s2) |
| { |
| uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; |
| |
| if (s2.is_s2_format) { |
| s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); |
| } else { |
| s2_mair_attrs = s2.attrs; |
| } |
| |
| s1lo = extract32(s1.attrs, 0, 4); |
| s2lo = extract32(s2_mair_attrs, 0, 4); |
| s1hi = extract32(s1.attrs, 4, 4); |
| s2hi = extract32(s2_mair_attrs, 4, 4); |
| |
| /* Combine memory type and cacheability attributes */ |
| if (s1hi == 0 || s2hi == 0) { |
| /* Device has precedence over normal */ |
| if (s1lo == 0 || s2lo == 0) { |
| /* nGnRnE has precedence over anything */ |
| ret_attrs = 0; |
| } else if (s1lo == 4 || s2lo == 4) { |
| /* non-Reordering has precedence over Reordering */ |
| ret_attrs = 4; /* nGnRE */ |
| } else if (s1lo == 8 || s2lo == 8) { |
| /* non-Gathering has precedence over Gathering */ |
| ret_attrs = 8; /* nGRE */ |
| } else { |
| ret_attrs = 0xc; /* GRE */ |
| } |
| } else { /* Normal memory */ |
| /* Outer/inner cacheability combine independently */ |
| ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 |
| | combine_cacheattr_nibble(s1lo, s2lo); |
| } |
| return ret_attrs; |
| } |
| |
| static uint8_t force_cacheattr_nibble_wb(uint8_t attr) |
| { |
| /* |
| * Given the 4 bits specifying the outer or inner cacheability |
| * in MAIR format, return a value specifying Normal Write-Back, |
| * with the allocation and transient hints taken from the input |
| * if the input specified some kind of cacheable attribute. |
| */ |
| if (attr == 0 || attr == 4) { |
| /* |
| * 0 == an UNPREDICTABLE encoding |
| * 4 == Non-cacheable |
| * Either way, force Write-Back RW allocate non-transient |
| */ |
| return 0xf; |
| } |
| /* Change WriteThrough to WriteBack, keep allocation and transient hints */ |
| return attr | 4; |
| } |
| |
| /* |
| * Combine the memory type and cacheability attributes of |
| * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the |
| * combined attributes in MAIR_EL1 format. |
| */ |
| static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) |
| { |
| assert(s2.is_s2_format && !s1.is_s2_format); |
| |
| switch (s2.attrs) { |
| case 7: |
| /* Use stage 1 attributes */ |
| return s1.attrs; |
| case 6: |
| /* |
| * Force Normal Write-Back. Note that if S1 is Normal cacheable |
| * then we take the allocation hints from it; otherwise it is |
| * RW allocate, non-transient. |
| */ |
| if ((s1.attrs & 0xf0) == 0) { |
| /* S1 is Device */ |
| return 0xff; |
| } |
| /* Need to check the Inner and Outer nibbles separately */ |
| return force_cacheattr_nibble_wb(s1.attrs & 0xf) | |
| force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; |
| case 5: |
| /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ |
| if ((s1.attrs & 0xf0) == 0) { |
| return s1.attrs; |
| } |
| return 0x44; |
| case 0 ... 3: |
| /* Force Device, of subtype specified by S2 */ |
| return s2.attrs << 2; |
| default: |
| /* |
| * RESERVED values (including RES0 descriptor bit [5] being nonzero); |
| * arbitrarily force Device. |
| */ |
| return 0; |
| } |
| } |
| |
| /* |
| * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 |
| * and CombineS1S2Desc() |
| * |
| * @env: CPUARMState |
| * @s1: Attributes from stage 1 walk |
| * @s2: Attributes from stage 2 walk |
| */ |
| static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, |
| ARMCacheAttrs s1, ARMCacheAttrs s2) |
| { |
| ARMCacheAttrs ret; |
| bool tagged = false; |
| |
| assert(!s1.is_s2_format); |
| ret.is_s2_format = false; |
| |
| if (s1.attrs == 0xf0) { |
| tagged = true; |
| s1.attrs = 0xff; |
| } |
| |
| /* Combine shareability attributes (table D4-43) */ |
| if (s1.shareability == 2 || s2.shareability == 2) { |
| /* if either are outer-shareable, the result is outer-shareable */ |
| ret.shareability = 2; |
| } else if (s1.shareability == 3 || s2.shareability == 3) { |
| /* if either are inner-shareable, the result is inner-shareable */ |
| ret.shareability = 3; |
| } else { |
| /* both non-shareable */ |
| ret.shareability = 0; |
| } |
| |
| /* Combine memory type and cacheability attributes */ |
| if (hcr & HCR_FWB) { |
| ret.attrs = combined_attrs_fwb(s1, s2); |
| } else { |
| ret.attrs = combined_attrs_nofwb(hcr, s1, s2); |
| } |
| |
| /* |
| * Any location for which the resultant memory type is any |
| * type of Device memory is always treated as Outer Shareable. |
| * Any location for which the resultant memory type is Normal |
| * Inner Non-cacheable, Outer Non-cacheable is always treated |
| * as Outer Shareable. |
| * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC |
| */ |
| if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { |
| ret.shareability = 2; |
| } |
| |
| /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ |
| if (tagged && ret.attrs == 0xff) { |
| ret.attrs = 0xf0; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * MMU disabled. S1 addresses within aa64 translation regimes are |
| * still checked for bounds -- see AArch64.S1DisabledOutput(). |
| */ |
| static bool get_phys_addr_disabled(CPUARMState *env, |
| S1Translate *ptw, |
| target_ulong address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| uint8_t memattr = 0x00; /* Device nGnRnE */ |
| uint8_t shareability = 0; /* non-shareable */ |
| int r_el; |
| |
| switch (mmu_idx) { |
| case ARMMMUIdx_Stage2: |
| case ARMMMUIdx_Stage2_S: |
| case ARMMMUIdx_Phys_S: |
| case ARMMMUIdx_Phys_NS: |
| case ARMMMUIdx_Phys_Root: |
| case ARMMMUIdx_Phys_Realm: |
| break; |
| |
| default: |
| r_el = regime_el(env, mmu_idx); |
| if (arm_el_is_aa64(env, r_el)) { |
| int pamax = arm_pamax(env_archcpu(env)); |
| uint64_t tcr = env->cp15.tcr_el[r_el]; |
| int addrtop, tbi; |
| |
| tbi = aa64_va_parameter_tbi(tcr, mmu_idx); |
| if (access_type == MMU_INST_FETCH) { |
| tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); |
| } |
| tbi = (tbi >> extract64(address, 55, 1)) & 1; |
| addrtop = (tbi ? 55 : 63); |
| |
| if (extract64(address, pamax, addrtop - pamax + 1) != 0) { |
| fi->type = ARMFault_AddressSize; |
| fi->level = 0; |
| fi->stage2 = false; |
| return 1; |
| } |
| |
| /* |
| * When TBI is disabled, we've just validated that all of the |
| * bits above PAMax are zero, so logically we only need to |
| * clear the top byte for TBI. But it's clearer to follow |
| * the pseudocode set of addrdesc.paddress. |
| */ |
| address = extract64(address, 0, 52); |
| } |
| |
| /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ |
| if (r_el == 1) { |
| uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); |
| if (hcr & HCR_DC) { |
| if (hcr & HCR_DCT) { |
| memattr = 0xf0; /* Tagged, Normal, WB, RWA */ |
| } else { |
| memattr = 0xff; /* Normal, WB, RWA */ |
| } |
| } |
| } |
| if (memattr == 0) { |
| if (access_type == MMU_INST_FETCH) { |
| if (regime_sctlr(env, mmu_idx) & SCTLR_I) { |
| memattr = 0xee; /* Normal, WT, RA, NT */ |
| } else { |
| memattr = 0x44; /* Normal, NC, No */ |
| } |
| } |
| shareability = 2; /* outer shareable */ |
| } |
| result->cacheattrs.is_s2_format = false; |
| break; |
| } |
| |
| result->f.phys_addr = address; |
| result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| result->f.lg_page_size = TARGET_PAGE_BITS; |
| result->cacheattrs.shareability = shareability; |
| result->cacheattrs.attrs = memattr; |
| return false; |
| } |
| |
| static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, |
| target_ulong address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| hwaddr ipa; |
| int s1_prot, s1_lgpgsz; |
| ARMSecuritySpace in_space = ptw->in_space; |
| bool ret, ipa_secure, s1_guarded; |
| ARMCacheAttrs cacheattrs1; |
| ARMSecuritySpace ipa_space; |
| uint64_t hcr; |
| |
| ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi); |
| |
| /* If S1 fails, return early. */ |
| if (ret) { |
| return ret; |
| } |
| |
| ipa = result->f.phys_addr; |
| ipa_secure = result->f.attrs.secure; |
| ipa_space = result->f.attrs.space; |
| |
| ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; |
| ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; |
| ptw->in_space = ipa_space; |
| ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); |
| |
| /* |
| * S1 is done, now do S2 translation. |
| * Save the stage1 results so that we may merge prot and cacheattrs later. |
| */ |
| s1_prot = result->f.prot; |
| s1_lgpgsz = result->f.lg_page_size; |
| s1_guarded = result->f.extra.arm.guarded; |
| cacheattrs1 = result->cacheattrs; |
| memset(result, 0, sizeof(*result)); |
| |
| ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi); |
| fi->s2addr = ipa; |
| |
| /* Combine the S1 and S2 perms. */ |
| result->f.prot &= s1_prot; |
| |
| /* If S2 fails, return early. */ |
| if (ret) { |
| return ret; |
| } |
| |
| /* |
| * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, |
| * this means "don't put this in the TLB"; in this case, return a |
| * result with lg_page_size == 0 to achieve that. Otherwise, |
| * use the maximum of the S1 & S2 page size, so that invalidation |
| * of pages > TARGET_PAGE_SIZE works correctly. (This works even though |
| * we know the combined result permissions etc only cover the minimum |
| * of the S1 and S2 page size, because we know that the common TLB code |
| * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, |
| * and passing a larger page size value only affects invalidations.) |
| */ |
| if (result->f.lg_page_size < TARGET_PAGE_BITS || |
| s1_lgpgsz < TARGET_PAGE_BITS) { |
| result->f.lg_page_size = 0; |
| } else if (result->f.lg_page_size < s1_lgpgsz) { |
| result->f.lg_page_size = s1_lgpgsz; |
| } |
| |
| /* Combine the S1 and S2 cache attributes. */ |
| hcr = arm_hcr_el2_eff_secstate(env, in_space); |
| if (hcr & HCR_DC) { |
| /* |
| * HCR.DC forces the first stage attributes to |
| * Normal Non-Shareable, |
| * Inner Write-Back Read-Allocate Write-Allocate, |
| * Outer Write-Back Read-Allocate Write-Allocate. |
| * Do not overwrite Tagged within attrs. |
| */ |
| if (cacheattrs1.attrs != 0xf0) { |
| cacheattrs1.attrs = 0xff; |
| } |
| cacheattrs1.shareability = 0; |
| } |
| result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, |
| result->cacheattrs); |
| |
| /* No BTI GP information in stage 2, we just use the S1 value */ |
| result->f.extra.arm.guarded = s1_guarded; |
| |
| /* |
| * Check if IPA translates to secure or non-secure PA space. |
| * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. |
| */ |
| if (in_space == ARMSS_Secure) { |
| result->f.attrs.secure = |
| !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) |
| && (ipa_secure |
| || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); |
| result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); |
| } |
| |
| return false; |
| } |
| |
| static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, |
| target_ulong address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMMMUIdx mmu_idx = ptw->in_mmu_idx; |
| ARMMMUIdx s1_mmu_idx; |
| |
| /* |
| * The page table entries may downgrade Secure to NonSecure, but |
| * cannot upgrade a NonSecure translation regime's attributes |
| * to Secure or Realm. |
| */ |
| result->f.attrs.space = ptw->in_space; |
| result->f.attrs.secure = arm_space_is_secure(ptw->in_space); |
| |
| switch (mmu_idx) { |
| case ARMMMUIdx_Phys_S: |
| case ARMMMUIdx_Phys_NS: |
| case ARMMMUIdx_Phys_Root: |
| case ARMMMUIdx_Phys_Realm: |
| /* Checking Phys early avoids special casing later vs regime_el. */ |
| return get_phys_addr_disabled(env, ptw, address, access_type, |
| result, fi); |
| |
| case ARMMMUIdx_Stage1_E0: |
| case ARMMMUIdx_Stage1_E1: |
| case ARMMMUIdx_Stage1_E1_PAN: |
| /* |
| * First stage lookup uses second stage for ptw; only |
| * Secure has both S and NS IPA and starts with Stage2_S. |
| */ |
| ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? |
| ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; |
| break; |
| |
| case ARMMMUIdx_Stage2: |
| case ARMMMUIdx_Stage2_S: |
| /* |
| * Second stage lookup uses physical for ptw; whether this is S or |
| * NS may depend on the SW/NSW bits if this is a stage 2 lookup for |
| * the Secure EL2&0 regime. |
| */ |
| ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); |
| break; |
| |
| case ARMMMUIdx_E10_0: |
| s1_mmu_idx = ARMMMUIdx_Stage1_E0; |
| goto do_twostage; |
| case ARMMMUIdx_E10_1: |
| s1_mmu_idx = ARMMMUIdx_Stage1_E1; |
| goto do_twostage; |
| case ARMMMUIdx_E10_1_PAN: |
| s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; |
| do_twostage: |
| /* |
| * Call ourselves recursively to do the stage 1 and then stage 2 |
| * translations if mmu_idx is a two-stage regime, and EL2 present. |
| * Otherwise, a stage1+stage2 translation is just stage 1. |
| */ |
| ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; |
| if (arm_feature(env, ARM_FEATURE_EL2) && |
| !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { |
| return get_phys_addr_twostage(env, ptw, address, access_type, |
| result, fi); |
| } |
| /* fall through */ |
| |
| default: |
| /* Single stage uses physical for ptw. */ |
| ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); |
| break; |
| } |
| |
| result->f.attrs.user = regime_is_user(env, mmu_idx); |
| |
| /* |
| * Fast Context Switch Extension. This doesn't exist at all in v8. |
| * In v7 and earlier it affects all stage 1 translations. |
| */ |
| if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 |
| && !arm_feature(env, ARM_FEATURE_V8)) { |
| if (regime_el(env, mmu_idx) == 3) { |
| address += env->cp15.fcseidr_s; |
| } else { |
| address += env->cp15.fcseidr_ns; |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_PMSA)) { |
| bool ret; |
| result->f.lg_page_size = TARGET_PAGE_BITS; |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* PMSAv8 */ |
| ret = get_phys_addr_pmsav8(env, ptw, address, access_type, |
| result, fi); |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| /* PMSAv7 */ |
| ret = get_phys_addr_pmsav7(env, ptw, address, access_type, |
| result, fi); |
| } else { |
| /* Pre-v7 MPU */ |
| ret = get_phys_addr_pmsav5(env, ptw, address, access_type, |
| result, fi); |
| } |
| qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 |
| " mmu_idx %u -> %s (prot %c%c%c)\n", |
| access_type == MMU_DATA_LOAD ? "reading" : |
| (access_type == MMU_DATA_STORE ? "writing" : "execute"), |
| (uint32_t)address, mmu_idx, |
| ret ? "Miss" : "Hit", |
| result->f.prot & PAGE_READ ? 'r' : '-', |
| result->f.prot & PAGE_WRITE ? 'w' : '-', |
| result->f.prot & PAGE_EXEC ? 'x' : '-'); |
| |
| return ret; |
| } |
| |
| /* Definitely a real MMU, not an MPU */ |
| |
| if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { |
| return get_phys_addr_disabled(env, ptw, address, access_type, |
| result, fi); |
| } |
| |
| if (regime_using_lpae_format(env, mmu_idx)) { |
| return get_phys_addr_lpae(env, ptw, address, access_type, result, fi); |
| } else if (arm_feature(env, ARM_FEATURE_V7) || |
| regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
| return get_phys_addr_v6(env, ptw, address, access_type, result, fi); |
| } else { |
| return get_phys_addr_v5(env, ptw, address, access_type, result, fi); |
| } |
| } |
| |
| static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, |
| target_ulong address, |
| MMUAccessType access_type, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) { |
| return true; |
| } |
| if (!granule_protection_check(env, result->f.phys_addr, |
| result->f.attrs.space, fi)) { |
| fi->type = ARMFault_GPCFOnOutput; |
| return true; |
| } |
| return false; |
| } |
| |
| bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, |
| ARMMMUIdx mmu_idx, ARMSecuritySpace space, |
| GetPhysAddrResult *result, |
| ARMMMUFaultInfo *fi) |
| { |
| S1Translate ptw = { |
| .in_mmu_idx = mmu_idx, |
| .in_space = space, |
| }; |
| return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi); |
| } |
| |
| bool get_phys_addr(CPUARMState *env, target_ulong address, |
| MMUAccessType access_type, ARMMMUIdx mmu_idx, |
| GetPhysAddrResult *result, ARMMMUFaultInfo *fi) |
| { |
| S1Translate ptw = { |
| .in_mmu_idx = mmu_idx, |
| }; |
| ARMSecuritySpace ss; |
| |
| switch (mmu_idx) { |
| case ARMMMUIdx_E10_0: |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| case ARMMMUIdx_E20_0: |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| case ARMMMUIdx_Stage1_E0: |
| case ARMMMUIdx_Stage1_E1: |
| case ARMMMUIdx_Stage1_E1_PAN: |
| case ARMMMUIdx_E2: |
| if (arm_aa32_secure_pl1_0(env)) { |
| ss = ARMSS_Secure; |
| } else { |
| ss = arm_security_space_below_el3(env); |
| } |
| break; |
| case ARMMMUIdx_Stage2: |
| /* |
| * For Secure EL2, we need this index to be NonSecure; |
| * otherwise this will already be NonSecure or Realm. |
| */ |
| ss = arm_security_space_below_el3(env); |
| if (ss == ARMSS_Secure) { |
| ss = ARMSS_NonSecure; |
| } |
| break; |
| case ARMMMUIdx_Phys_NS: |
| case ARMMMUIdx_MPrivNegPri: |
| case ARMMMUIdx_MUserNegPri: |
| case ARMMMUIdx_MPriv: |
| case ARMMMUIdx_MUser: |
| ss = ARMSS_NonSecure; |
| break; |
| case ARMMMUIdx_Stage2_S: |
| case ARMMMUIdx_Phys_S: |
| case ARMMMUIdx_MSPrivNegPri: |
| case ARMMMUIdx_MSUserNegPri: |
| case ARMMMUIdx_MSPriv: |
| case ARMMMUIdx_MSUser: |
| ss = ARMSS_Secure; |
| break; |
| case ARMMMUIdx_E3: |
| if (arm_feature(env, ARM_FEATURE_AARCH64) && |
| cpu_isar_feature(aa64_rme, env_archcpu(env))) { |
| ss = ARMSS_Root; |
| } else { |
| ss = ARMSS_Secure; |
| } |
| break; |
| case ARMMMUIdx_Phys_Root: |
| ss = ARMSS_Root; |
| break; |
| case ARMMMUIdx_Phys_Realm: |
| ss = ARMSS_Realm; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| ptw.in_space = ss; |
| return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi); |
| } |
| |
| hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
| MemTxAttrs *attrs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| ARMMMUIdx mmu_idx = arm_mmu_idx(env); |
| ARMSecuritySpace ss = arm_security_space(env); |
| S1Translate ptw = { |
| .in_mmu_idx = mmu_idx, |
| .in_space = ss, |
| .in_debug = true, |
| }; |
| GetPhysAddrResult res = {}; |
| ARMMMUFaultInfo fi = {}; |
| bool ret; |
| |
| ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi); |
| *attrs = res.f.attrs; |
| |
| if (ret) { |
| return -1; |
| } |
| return res.f.phys_addr; |
| } |