blob: 9ff09ebdb6f6a046779459395b70ce2656ba89c1 [file] [log] [blame]
/*
* RISC-V emulation for qemu: main translation routines.
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "tcg/tcg-op.h"
#include "disas/disas.h"
#include "exec/cpu_ldst.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "exec/translator.h"
#include "exec/log.h"
#include "semihosting/semihost.h"
#include "instmap.h"
#include "internals.h"
#define HELPER_H "helper.h"
#include "exec/helper-info.c.inc"
#undef HELPER_H
/* global register indices */
static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart;
static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */
static TCGv load_res;
static TCGv load_val;
/* globals for PM CSRs */
static TCGv pm_mask;
static TCGv pm_base;
/*
* If an operation is being performed on less than TARGET_LONG_BITS,
* it may require the inputs to be sign- or zero-extended; which will
* depend on the exact operation being performed.
*/
typedef enum {
EXT_NONE,
EXT_SIGN,
EXT_ZERO,
} DisasExtend;
typedef struct DisasContext {
DisasContextBase base;
target_ulong cur_insn_len;
target_ulong pc_save;
target_ulong priv_ver;
RISCVMXL misa_mxl_max;
RISCVMXL xl;
RISCVMXL address_xl;
uint32_t misa_ext;
uint32_t opcode;
RISCVExtStatus mstatus_fs;
RISCVExtStatus mstatus_vs;
uint32_t mem_idx;
uint32_t priv;
/*
* Remember the rounding mode encoded in the previous fp instruction,
* which we have already installed into env->fp_status. Or -1 for
* no previous fp instruction. Note that we exit the TB when writing
* to any system register, which includes CSR_FRM, so we do not have
* to reset this known value.
*/
int frm;
RISCVMXL ol;
bool virt_inst_excp;
bool virt_enabled;
const RISCVCPUConfig *cfg_ptr;
/* vector extension */
bool vill;
/*
* Encode LMUL to lmul as follows:
* LMUL vlmul lmul
* 1 000 0
* 2 001 1
* 4 010 2
* 8 011 3
* - 100 -
* 1/8 101 -3
* 1/4 110 -2
* 1/2 111 -1
*/
int8_t lmul;
uint8_t sew;
uint8_t vta;
uint8_t vma;
bool cfg_vta_all_1s;
bool vstart_eq_zero;
bool vl_eq_vlmax;
CPUState *cs;
TCGv zero;
/* PointerMasking extension */
bool pm_mask_enabled;
bool pm_base_enabled;
/* Ztso */
bool ztso;
/* Use icount trigger for native debug */
bool itrigger;
/* FRM is known to contain a valid value. */
bool frm_valid;
bool insn_start_updated;
} DisasContext;
static inline bool has_ext(DisasContext *ctx, uint32_t ext)
{
return ctx->misa_ext & ext;
}
#ifdef TARGET_RISCV32
#define get_xl(ctx) MXL_RV32
#elif defined(CONFIG_USER_ONLY)
#define get_xl(ctx) MXL_RV64
#else
#define get_xl(ctx) ((ctx)->xl)
#endif
#ifdef TARGET_RISCV32
#define get_address_xl(ctx) MXL_RV32
#elif defined(CONFIG_USER_ONLY)
#define get_address_xl(ctx) MXL_RV64
#else
#define get_address_xl(ctx) ((ctx)->address_xl)
#endif
/* The word size for this machine mode. */
static inline int __attribute__((unused)) get_xlen(DisasContext *ctx)
{
return 16 << get_xl(ctx);
}
/* The operation length, as opposed to the xlen. */
#ifdef TARGET_RISCV32
#define get_ol(ctx) MXL_RV32
#else
#define get_ol(ctx) ((ctx)->ol)
#endif
static inline int get_olen(DisasContext *ctx)
{
return 16 << get_ol(ctx);
}
/* The maximum register length */
#ifdef TARGET_RISCV32
#define get_xl_max(ctx) MXL_RV32
#else
#define get_xl_max(ctx) ((ctx)->misa_mxl_max)
#endif
/*
* RISC-V requires NaN-boxing of narrower width floating point values.
* This applies when a 32-bit value is assigned to a 64-bit FP register.
* For consistency and simplicity, we nanbox results even when the RVD
* extension is not present.
*/
static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in)
{
tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32));
}
static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in)
{
tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48));
}
/*
* A narrow n-bit operation, where n < FLEN, checks that input operands
* are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1.
* If so, the least-significant bits of the input are used, otherwise the
* input value is treated as an n-bit canonical NaN (v2.2 section 9.2).
*
* Here, the result is always nan-boxed, even the canonical nan.
*/
static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in)
{
TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull);
TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull);
tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
}
static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in)
{
TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull);
TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull);
tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
}
static void decode_save_opc(DisasContext *ctx)
{
assert(!ctx->insn_start_updated);
ctx->insn_start_updated = true;
tcg_set_insn_start_param(ctx->base.insn_start, 1, ctx->opcode);
}
static void gen_pc_plus_diff(TCGv target, DisasContext *ctx,
target_long diff)
{
target_ulong dest = ctx->base.pc_next + diff;
assert(ctx->pc_save != -1);
if (tb_cflags(ctx->base.tb) & CF_PCREL) {
tcg_gen_addi_tl(target, cpu_pc, dest - ctx->pc_save);
if (get_xl(ctx) == MXL_RV32) {
tcg_gen_ext32s_tl(target, target);
}
} else {
if (get_xl(ctx) == MXL_RV32) {
dest = (int32_t)dest;
}
tcg_gen_movi_tl(target, dest);
}
}
static void gen_update_pc(DisasContext *ctx, target_long diff)
{
gen_pc_plus_diff(cpu_pc, ctx, diff);
ctx->pc_save = ctx->base.pc_next + diff;
}
static void generate_exception(DisasContext *ctx, int excp)
{
gen_update_pc(ctx, 0);
gen_helper_raise_exception(tcg_env, tcg_constant_i32(excp));
ctx->base.is_jmp = DISAS_NORETURN;
}
static void gen_exception_illegal(DisasContext *ctx)
{
tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), tcg_env,
offsetof(CPURISCVState, bins));
if (ctx->virt_inst_excp) {
generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT);
} else {
generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST);
}
}
static void gen_exception_inst_addr_mis(DisasContext *ctx, TCGv target)
{
tcg_gen_st_tl(target, tcg_env, offsetof(CPURISCVState, badaddr));
generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS);
}
static void lookup_and_goto_ptr(DisasContext *ctx)
{
#ifndef CONFIG_USER_ONLY
if (ctx->itrigger) {
gen_helper_itrigger_match(tcg_env);
}
#endif
tcg_gen_lookup_and_goto_ptr();
}
static void exit_tb(DisasContext *ctx)
{
#ifndef CONFIG_USER_ONLY
if (ctx->itrigger) {
gen_helper_itrigger_match(tcg_env);
}
#endif
tcg_gen_exit_tb(NULL, 0);
}
static void gen_goto_tb(DisasContext *ctx, int n, target_long diff)
{
target_ulong dest = ctx->base.pc_next + diff;
/*
* Under itrigger, instruction executes one by one like singlestep,
* direct block chain benefits will be small.
*/
if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) {
/*
* For pcrel, the pc must always be up-to-date on entry to
* the linked TB, so that it can use simple additions for all
* further adjustments. For !pcrel, the linked TB is compiled
* to know its full virtual address, so we can delay the
* update to pc to the unlinked path. A long chain of links
* can thus avoid many updates to the PC.
*/
if (tb_cflags(ctx->base.tb) & CF_PCREL) {
gen_update_pc(ctx, diff);
tcg_gen_goto_tb(n);
} else {
tcg_gen_goto_tb(n);
gen_update_pc(ctx, diff);
}
tcg_gen_exit_tb(ctx->base.tb, n);
} else {
gen_update_pc(ctx, diff);
lookup_and_goto_ptr(ctx);
}
}
/*
* Wrappers for getting reg values.
*
* The $zero register does not have cpu_gpr[0] allocated -- we supply the
* constant zero as a source, and an uninitialized sink as destination.
*
* Further, we may provide an extension for word operations.
*/
static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext)
{
TCGv t;
if (reg_num == 0) {
return ctx->zero;
}
switch (get_ol(ctx)) {
case MXL_RV32:
switch (ext) {
case EXT_NONE:
break;
case EXT_SIGN:
t = tcg_temp_new();
tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]);
return t;
case EXT_ZERO:
t = tcg_temp_new();
tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]);
return t;
default:
g_assert_not_reached();
}
break;
case MXL_RV64:
case MXL_RV128:
break;
default:
g_assert_not_reached();
}
return cpu_gpr[reg_num];
}
static TCGv get_gprh(DisasContext *ctx, int reg_num)
{
assert(get_xl(ctx) == MXL_RV128);
if (reg_num == 0) {
return ctx->zero;
}
return cpu_gprh[reg_num];
}
static TCGv dest_gpr(DisasContext *ctx, int reg_num)
{
if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) {
return tcg_temp_new();
}
return cpu_gpr[reg_num];
}
static TCGv dest_gprh(DisasContext *ctx, int reg_num)
{
if (reg_num == 0) {
return tcg_temp_new();
}
return cpu_gprh[reg_num];
}
static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t)
{
if (reg_num != 0) {
switch (get_ol(ctx)) {
case MXL_RV32:
tcg_gen_ext32s_tl(cpu_gpr[reg_num], t);
break;
case MXL_RV64:
case MXL_RV128:
tcg_gen_mov_tl(cpu_gpr[reg_num], t);
break;
default:
g_assert_not_reached();
}
if (get_xl_max(ctx) == MXL_RV128) {
tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63);
}
}
}
static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm)
{
if (reg_num != 0) {
switch (get_ol(ctx)) {
case MXL_RV32:
tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm);
break;
case MXL_RV64:
case MXL_RV128:
tcg_gen_movi_tl(cpu_gpr[reg_num], imm);
break;
default:
g_assert_not_reached();
}
if (get_xl_max(ctx) == MXL_RV128) {
tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0));
}
}
}
static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh)
{
assert(get_ol(ctx) == MXL_RV128);
if (reg_num != 0) {
tcg_gen_mov_tl(cpu_gpr[reg_num], rl);
tcg_gen_mov_tl(cpu_gprh[reg_num], rh);
}
}
static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num)
{
if (!ctx->cfg_ptr->ext_zfinx) {
return cpu_fpr[reg_num];
}
if (reg_num == 0) {
return tcg_constant_i64(0);
}
switch (get_xl(ctx)) {
case MXL_RV32:
#ifdef TARGET_RISCV32
{
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]);
return t;
}
#else
/* fall through */
case MXL_RV64:
return cpu_gpr[reg_num];
#endif
default:
g_assert_not_reached();
}
}
static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num)
{
if (!ctx->cfg_ptr->ext_zfinx) {
return cpu_fpr[reg_num];
}
if (reg_num == 0) {
return tcg_constant_i64(0);
}
switch (get_xl(ctx)) {
case MXL_RV32:
{
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]);
return t;
}
#ifdef TARGET_RISCV64
case MXL_RV64:
return cpu_gpr[reg_num];
#endif
default:
g_assert_not_reached();
}
}
static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num)
{
if (!ctx->cfg_ptr->ext_zfinx) {
return cpu_fpr[reg_num];
}
if (reg_num == 0) {
return tcg_temp_new_i64();
}
switch (get_xl(ctx)) {
case MXL_RV32:
return tcg_temp_new_i64();
#ifdef TARGET_RISCV64
case MXL_RV64:
return cpu_gpr[reg_num];
#endif
default:
g_assert_not_reached();
}
}
/* assume it is nanboxing (for normal) or sign-extended (for zfinx) */
static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t)
{
if (!ctx->cfg_ptr->ext_zfinx) {
tcg_gen_mov_i64(cpu_fpr[reg_num], t);
return;
}
if (reg_num != 0) {
switch (get_xl(ctx)) {
case MXL_RV32:
#ifdef TARGET_RISCV32
tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t);
break;
#else
/* fall through */
case MXL_RV64:
tcg_gen_mov_i64(cpu_gpr[reg_num], t);
break;
#endif
default:
g_assert_not_reached();
}
}
}
static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t)
{
if (!ctx->cfg_ptr->ext_zfinx) {
tcg_gen_mov_i64(cpu_fpr[reg_num], t);
return;
}
if (reg_num != 0) {
switch (get_xl(ctx)) {
case MXL_RV32:
#ifdef TARGET_RISCV32
tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t);
break;
#else
tcg_gen_ext32s_i64(cpu_gpr[reg_num], t);
tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32);
break;
case MXL_RV64:
tcg_gen_mov_i64(cpu_gpr[reg_num], t);
break;
#endif
default:
g_assert_not_reached();
}
}
}
static void gen_jal(DisasContext *ctx, int rd, target_ulong imm)
{
TCGv succ_pc = dest_gpr(ctx, rd);
/* check misaligned: */
if (!has_ext(ctx, RVC) && !ctx->cfg_ptr->ext_zca) {
if ((imm & 0x3) != 0) {
TCGv target_pc = tcg_temp_new();
gen_pc_plus_diff(target_pc, ctx, imm);
gen_exception_inst_addr_mis(ctx, target_pc);
return;
}
}
gen_pc_plus_diff(succ_pc, ctx, ctx->cur_insn_len);
gen_set_gpr(ctx, rd, succ_pc);
gen_goto_tb(ctx, 0, imm); /* must use this for safety */
ctx->base.is_jmp = DISAS_NORETURN;
}
/* Compute a canonical address from a register plus offset. */
static TCGv get_address(DisasContext *ctx, int rs1, int imm)
{
TCGv addr = tcg_temp_new();
TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
tcg_gen_addi_tl(addr, src1, imm);
if (ctx->pm_mask_enabled) {
tcg_gen_andc_tl(addr, addr, pm_mask);
} else if (get_address_xl(ctx) == MXL_RV32) {
tcg_gen_ext32u_tl(addr, addr);
}
if (ctx->pm_base_enabled) {
tcg_gen_or_tl(addr, addr, pm_base);
}
return addr;
}
/* Compute a canonical address from a register plus reg offset. */
static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs)
{
TCGv addr = tcg_temp_new();
TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
tcg_gen_add_tl(addr, src1, offs);
if (ctx->pm_mask_enabled) {
tcg_gen_andc_tl(addr, addr, pm_mask);
} else if (get_xl(ctx) == MXL_RV32) {
tcg_gen_ext32u_tl(addr, addr);
}
if (ctx->pm_base_enabled) {
tcg_gen_or_tl(addr, addr, pm_base);
}
return addr;
}
#ifndef CONFIG_USER_ONLY
/*
* We will have already diagnosed disabled state,
* and need to turn initial/clean into dirty.
*/
static void mark_fs_dirty(DisasContext *ctx)
{
TCGv tmp;
if (!has_ext(ctx, RVF)) {
return;
}
if (ctx->mstatus_fs != EXT_STATUS_DIRTY) {
/* Remember the state change for the rest of the TB. */
ctx->mstatus_fs = EXT_STATUS_DIRTY;
tmp = tcg_temp_new();
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
if (ctx->virt_enabled) {
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
}
}
}
#else
static inline void mark_fs_dirty(DisasContext *ctx) { }
#endif
#ifndef CONFIG_USER_ONLY
/*
* We will have already diagnosed disabled state,
* and need to turn initial/clean into dirty.
*/
static void mark_vs_dirty(DisasContext *ctx)
{
TCGv tmp;
if (ctx->mstatus_vs != EXT_STATUS_DIRTY) {
/* Remember the state change for the rest of the TB. */
ctx->mstatus_vs = EXT_STATUS_DIRTY;
tmp = tcg_temp_new();
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
if (ctx->virt_enabled) {
tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
}
}
}
#else
static inline void mark_vs_dirty(DisasContext *ctx) { }
#endif
static void finalize_rvv_inst(DisasContext *ctx)
{
mark_vs_dirty(ctx);
ctx->vstart_eq_zero = true;
}
static void gen_set_rm(DisasContext *ctx, int rm)
{
if (ctx->frm == rm) {
return;
}
ctx->frm = rm;
if (rm == RISCV_FRM_DYN) {
/* The helper will return only if frm valid. */
ctx->frm_valid = true;
}
/* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
decode_save_opc(ctx);
gen_helper_set_rounding_mode(tcg_env, tcg_constant_i32(rm));
}
static void gen_set_rm_chkfrm(DisasContext *ctx, int rm)
{
if (ctx->frm == rm && ctx->frm_valid) {
return;
}
ctx->frm = rm;
ctx->frm_valid = true;
/* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
decode_save_opc(ctx);
gen_helper_set_rounding_mode_chkfrm(tcg_env, tcg_constant_i32(rm));
}
static int ex_plus_1(DisasContext *ctx, int nf)
{
return nf + 1;
}
#define EX_SH(amount) \
static int ex_shift_##amount(DisasContext *ctx, int imm) \
{ \
return imm << amount; \
}
EX_SH(1)
EX_SH(2)
EX_SH(3)
EX_SH(4)
EX_SH(12)
#define REQUIRE_EXT(ctx, ext) do { \
if (!has_ext(ctx, ext)) { \
return false; \
} \
} while (0)
#define REQUIRE_32BIT(ctx) do { \
if (get_xl(ctx) != MXL_RV32) { \
return false; \
} \
} while (0)
#define REQUIRE_64BIT(ctx) do { \
if (get_xl(ctx) != MXL_RV64) { \
return false; \
} \
} while (0)
#define REQUIRE_128BIT(ctx) do { \
if (get_xl(ctx) != MXL_RV128) { \
return false; \
} \
} while (0)
#define REQUIRE_64_OR_128BIT(ctx) do { \
if (get_xl(ctx) == MXL_RV32) { \
return false; \
} \
} while (0)
#define REQUIRE_EITHER_EXT(ctx, A, B) do { \
if (!ctx->cfg_ptr->ext_##A && \
!ctx->cfg_ptr->ext_##B) { \
return false; \
} \
} while (0)
static int ex_rvc_register(DisasContext *ctx, int reg)
{
return 8 + reg;
}
static int ex_sreg_register(DisasContext *ctx, int reg)
{
return reg < 2 ? reg + 8 : reg + 16;
}
static int ex_rvc_shiftli(DisasContext *ctx, int imm)
{
/* For RV128 a shamt of 0 means a shift by 64. */
if (get_ol(ctx) == MXL_RV128) {
imm = imm ? imm : 64;
}
return imm;
}
static int ex_rvc_shiftri(DisasContext *ctx, int imm)
{
/*
* For RV128 a shamt of 0 means a shift by 64, furthermore, for right
* shifts, the shamt is sign-extended.
*/
if (get_ol(ctx) == MXL_RV128) {
imm = imm | (imm & 32) << 1;
imm = imm ? imm : 64;
}
return imm;
}
/* Include the auto-generated decoder for 32 bit insn */
#include "decode-insn32.c.inc"
static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a,
void (*func)(TCGv, TCGv, target_long))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
func(dest, src1, a->imm);
if (get_xl(ctx) == MXL_RV128) {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
func(desth, src1h, -(a->imm < 0));
gen_set_gpr128(ctx, a->rd, dest, desth);
} else {
gen_set_gpr(ctx, a->rd, dest);
}
return true;
}
static bool gen_logic(DisasContext *ctx, arg_r *a,
void (*func)(TCGv, TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
func(dest, src1, src2);
if (get_xl(ctx) == MXL_RV128) {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv src2h = get_gprh(ctx, a->rs2);
TCGv desth = dest_gprh(ctx, a->rd);
func(desth, src1h, src2h);
gen_set_gpr128(ctx, a->rd, dest, desth);
} else {
gen_set_gpr(ctx, a->rd, dest);
}
return true;
}
static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext,
void (*func)(TCGv, TCGv, target_long),
void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
if (get_ol(ctx) < MXL_RV128) {
func(dest, src1, a->imm);
gen_set_gpr(ctx, a->rd, dest);
} else {
if (f128 == NULL) {
return false;
}
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
f128(dest, desth, src1, src1h, a->imm);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv),
void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
TCGv src2 = tcg_constant_tl(a->imm);
if (get_ol(ctx) < MXL_RV128) {
func(dest, src1, src2);
gen_set_gpr(ctx, a->rd, dest);
} else {
if (f128 == NULL) {
return false;
}
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv src2h = tcg_constant_tl(-(a->imm < 0));
TCGv desth = dest_gprh(ctx, a->rd);
f128(dest, desth, src1, src1h, src2, src2h);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv),
void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
TCGv src2 = get_gpr(ctx, a->rs2, ext);
if (get_ol(ctx) < MXL_RV128) {
func(dest, src1, src2);
gen_set_gpr(ctx, a->rd, dest);
} else {
if (f128 == NULL) {
return false;
}
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv src2h = get_gprh(ctx, a->rs2);
TCGv desth = dest_gprh(ctx, a->rd);
f128(dest, desth, src1, src1h, src2, src2h);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*f_tl)(TCGv, TCGv, TCGv),
void (*f_32)(TCGv, TCGv, TCGv),
void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else if (olen != 128) {
g_assert_not_reached();
}
}
return gen_arith(ctx, a, ext, f_tl, f_128);
}
static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext,
void (*func)(TCGv, TCGv, target_long),
void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
{
TCGv dest, src1;
int max_len = get_olen(ctx);
if (a->shamt >= max_len) {
return false;
}
dest = dest_gpr(ctx, a->rd);
src1 = get_gpr(ctx, a->rs1, ext);
if (max_len < 128) {
func(dest, src1, a->shamt);
gen_set_gpr(ctx, a->rd, dest);
} else {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
if (f128 == NULL) {
return false;
}
f128(dest, desth, src1, src1h, a->shamt);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a,
DisasExtend ext,
void (*f_tl)(TCGv, TCGv, target_long),
void (*f_32)(TCGv, TCGv, target_long),
void (*f_128)(TCGv, TCGv, TCGv, TCGv,
target_long))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else if (olen != 128) {
g_assert_not_reached();
}
}
return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128);
}
static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv))
{
TCGv dest, src1, src2;
int max_len = get_olen(ctx);
if (a->shamt >= max_len) {
return false;
}
dest = dest_gpr(ctx, a->rd);
src1 = get_gpr(ctx, a->rs1, ext);
src2 = tcg_constant_tl(a->shamt);
func(dest, src1, src2);
gen_set_gpr(ctx, a->rd, dest);
return true;
}
static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*func)(TCGv, TCGv, TCGv),
void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv))
{
TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
TCGv ext2 = tcg_temp_new();
int max_len = get_olen(ctx);
tcg_gen_andi_tl(ext2, src2, max_len - 1);
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
if (max_len < 128) {
func(dest, src1, ext2);
gen_set_gpr(ctx, a->rd, dest);
} else {
TCGv src1h = get_gprh(ctx, a->rs1);
TCGv desth = dest_gprh(ctx, a->rd);
if (f128 == NULL) {
return false;
}
f128(dest, desth, src1, src1h, ext2);
gen_set_gpr128(ctx, a->rd, dest, desth);
}
return true;
}
static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
void (*f_tl)(TCGv, TCGv, TCGv),
void (*f_32)(TCGv, TCGv, TCGv),
void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else if (olen != 128) {
g_assert_not_reached();
}
}
return gen_shift(ctx, a, ext, f_tl, f_128);
}
static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
void (*func)(TCGv, TCGv))
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, ext);
func(dest, src1);
gen_set_gpr(ctx, a->rd, dest);
return true;
}
static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
void (*f_tl)(TCGv, TCGv),
void (*f_32)(TCGv, TCGv))
{
int olen = get_olen(ctx);
if (olen != TARGET_LONG_BITS) {
if (olen == 32) {
f_tl = f_32;
} else {
g_assert_not_reached();
}
}
return gen_unary(ctx, a, ext, f_tl);
}
static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPUState *cpu = ctx->cs;
CPURISCVState *env = cpu_env(cpu);
return cpu_ldl_code(env, pc);
}
/* Include insn module translation function */
#include "insn_trans/trans_rvi.c.inc"
#include "insn_trans/trans_rvm.c.inc"
#include "insn_trans/trans_rva.c.inc"
#include "insn_trans/trans_rvf.c.inc"
#include "insn_trans/trans_rvd.c.inc"
#include "insn_trans/trans_rvh.c.inc"
#include "insn_trans/trans_rvv.c.inc"
#include "insn_trans/trans_rvb.c.inc"
#include "insn_trans/trans_rvzicond.c.inc"
#include "insn_trans/trans_rvzacas.c.inc"
#include "insn_trans/trans_rvzawrs.c.inc"
#include "insn_trans/trans_rvzicbo.c.inc"
#include "insn_trans/trans_rvzfa.c.inc"
#include "insn_trans/trans_rvzfh.c.inc"
#include "insn_trans/trans_rvk.c.inc"
#include "insn_trans/trans_rvvk.c.inc"
#include "insn_trans/trans_privileged.c.inc"
#include "insn_trans/trans_svinval.c.inc"
#include "insn_trans/trans_rvbf16.c.inc"
#include "decode-xthead.c.inc"
#include "insn_trans/trans_xthead.c.inc"
#include "insn_trans/trans_xventanacondops.c.inc"
/* Include the auto-generated decoder for 16 bit insn */
#include "decode-insn16.c.inc"
#include "insn_trans/trans_rvzce.c.inc"
/* Include decoders for factored-out extensions */
#include "decode-XVentanaCondOps.c.inc"
/* The specification allows for longer insns, but not supported by qemu. */
#define MAX_INSN_LEN 4
static inline int insn_len(uint16_t first_word)
{
return (first_word & 3) == 3 ? 4 : 2;
}
static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode)
{
/*
* A table with predicate (i.e., guard) functions and decoder functions
* that are tested in-order until a decoder matches onto the opcode.
*/
static const struct {
bool (*guard_func)(const RISCVCPUConfig *);
bool (*decode_func)(DisasContext *, uint32_t);
} decoders[] = {
{ always_true_p, decode_insn32 },
{ has_xthead_p, decode_xthead },
{ has_XVentanaCondOps_p, decode_XVentanaCodeOps },
};
ctx->virt_inst_excp = false;
ctx->cur_insn_len = insn_len(opcode);
/* Check for compressed insn */
if (ctx->cur_insn_len == 2) {
ctx->opcode = opcode;
/*
* The Zca extension is added as way to refer to instructions in the C
* extension that do not include the floating-point loads and stores
*/
if ((has_ext(ctx, RVC) || ctx->cfg_ptr->ext_zca) &&
decode_insn16(ctx, opcode)) {
return;
}
} else {
uint32_t opcode32 = opcode;
opcode32 = deposit32(opcode32, 16, 16,
translator_lduw(env, &ctx->base,
ctx->base.pc_next + 2));
ctx->opcode = opcode32;
for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) {
if (decoders[i].guard_func(ctx->cfg_ptr) &&
decoders[i].decode_func(ctx, opcode32)) {
return;
}
}
}
gen_exception_illegal(ctx);
}
static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPURISCVState *env = cpu_env(cs);
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
RISCVCPU *cpu = RISCV_CPU(cs);
uint32_t tb_flags = ctx->base.tb->flags;
ctx->pc_save = ctx->base.pc_first;
ctx->priv = FIELD_EX32(tb_flags, TB_FLAGS, PRIV);
ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX);
ctx->mstatus_fs = FIELD_EX32(tb_flags, TB_FLAGS, FS);
ctx->mstatus_vs = FIELD_EX32(tb_flags, TB_FLAGS, VS);
ctx->priv_ver = env->priv_ver;
ctx->virt_enabled = FIELD_EX32(tb_flags, TB_FLAGS, VIRT_ENABLED);
ctx->misa_ext = env->misa_ext;
ctx->frm = -1; /* unknown rounding mode */
ctx->cfg_ptr = &(cpu->cfg);
ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL);
ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW);
ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3);
ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s;
ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s;
ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s;
ctx->vstart_eq_zero = FIELD_EX32(tb_flags, TB_FLAGS, VSTART_EQ_ZERO);
ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX);
ctx->misa_mxl_max = mcc->misa_mxl_max;
ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL);
ctx->address_xl = FIELD_EX32(tb_flags, TB_FLAGS, AXL);
ctx->cs = cs;
ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED);
ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED);
ctx->ztso = cpu->cfg.ext_ztso;
ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER);
ctx->zero = tcg_constant_tl(0);
ctx->virt_inst_excp = false;
}
static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu)
{
}
static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
target_ulong pc_next = ctx->base.pc_next;
if (tb_cflags(dcbase->tb) & CF_PCREL) {
pc_next &= ~TARGET_PAGE_MASK;
}
tcg_gen_insn_start(pc_next, 0);
ctx->insn_start_updated = false;
}
static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPURISCVState *env = cpu_env(cpu);
uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next);
ctx->ol = ctx->xl;
decode_opc(env, ctx, opcode16);
ctx->base.pc_next += ctx->cur_insn_len;
/* Only the first insn within a TB is allowed to cross a page boundary. */
if (ctx->base.is_jmp == DISAS_NEXT) {
if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) {
ctx->base.is_jmp = DISAS_TOO_MANY;
} else {
unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK;
if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) {
uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next);
int len = insn_len(next_insn);
if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
}
}
}
}
static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
switch (ctx->base.is_jmp) {
case DISAS_TOO_MANY:
gen_goto_tb(ctx, 0, 0);
break;
case DISAS_NORETURN:
break;
default:
g_assert_not_reached();
}
}
static void riscv_tr_disas_log(const DisasContextBase *dcbase,
CPUState *cpu, FILE *logfile)
{
#ifndef CONFIG_USER_ONLY
RISCVCPU *rvcpu = RISCV_CPU(cpu);
CPURISCVState *env = &rvcpu->env;
#endif
fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
#ifndef CONFIG_USER_ONLY
fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: %d\n",
env->priv, env->virt_enabled);
#endif
target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
}
static const TranslatorOps riscv_tr_ops = {
.init_disas_context = riscv_tr_init_disas_context,
.tb_start = riscv_tr_tb_start,
.insn_start = riscv_tr_insn_start,
.translate_insn = riscv_tr_translate_insn,
.tb_stop = riscv_tr_tb_stop,
.disas_log = riscv_tr_disas_log,
};
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
vaddr pc, void *host_pc)
{
DisasContext ctx;
translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base);
}
void riscv_translate_init(void)
{
int i;
/*
* cpu_gpr[0] is a placeholder for the zero register. Do not use it.
* Use the gen_set_gpr and get_gpr helper functions when accessing regs,
* unless you specifically block reads/writes to reg 0.
*/
cpu_gpr[0] = NULL;
cpu_gprh[0] = NULL;
for (i = 1; i < 32; i++) {
cpu_gpr[i] = tcg_global_mem_new(tcg_env,
offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]);
cpu_gprh[i] = tcg_global_mem_new(tcg_env,
offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]);
}
for (i = 0; i < 32; i++) {
cpu_fpr[i] = tcg_global_mem_new_i64(tcg_env,
offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]);
}
cpu_pc = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, pc), "pc");
cpu_vl = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, vl), "vl");
cpu_vstart = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, vstart),
"vstart");
load_res = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, load_res),
"load_res");
load_val = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, load_val),
"load_val");
/* Assign PM CSRs to tcg globals */
pm_mask = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, cur_pmmask),
"pmmask");
pm_base = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, cur_pmbase),
"pmbase");
}